高性能碳纳米管/聚乙烯醇复合材料的制备及其物理和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是碳原子组成的一维管状纳米材料,具有优异的力学性能和独特的传导性能。其拉伸强度可达63GPa,模量超过0.27TPa,是最强的纤维材料。采用碳纳米管作为聚合物材料的增强体,不仅可以显著提高聚合物的力学性能,同时能够赋予聚合物材料许多新的功能,实现多功能高强复合材料。然而由于碳纳米管的纳米尺度及团聚效应等因素使得制备理想结构的碳纳米管复合材料成为实现其优越性能的重要障碍。
     目前广泛采用的碳纳米管复合材料制备方法还是基于将粉末状碳纳米管与聚合物介质相混合的方法。这些共混方法所制备的碳纳米管复合材料在力学性能上并没有充分体现碳纳米管的增强作用,其拉伸强度值往往只有几十兆帕。这主要是由于这些方法无法满足制备高强碳管复合材料的必要结构条件,即长碳纳米管以较高的纤维体积含量且排列规整地均匀分散在聚合物树脂中。因此,如何设计并采用一种新型的制备方法,在满足碳纳米管复合材料的结构条件的基础上实现高强高模碳纳米管复合材料并对复合材料的结构及性能进行系统研究成为本课题最主要的研究目的。
     在本课题中,我们设计并首次实现了一种新型碳纳米管复合材料的制备方法,卷绕喷洒法。这种方法是将可纺丝碳纳米管阵列中抽取出的碳纳米管薄膜或丝束沿抽取方向卷绕在匀速转动的卷绕辊上,同时在卷绕辊表面喷洒一定浓度的聚合物喷洒液,使聚合物大分子随着喷洒液渗入每一层碳纳米管薄膜或丝束,并随着喷洒液的挥发与相邻碳纳米管相结合从而得到碳纳米管复合材料。若喷洒液中不含有任何聚合物大分子,相应方法也可制备成定向碳纳米管纸。通过卷绕喷洒工艺,我们采用不同结构参数的碳纳米管分别制备了高性能碳纳米管纸和碳纳米管复合材料,并对这些材料的结构及性能进行分析。根据对卷绕喷洒方法及工艺参数的研究和探讨,揭示了新型制备工艺对其结构和性能的影响规律;通过建立相关的理论模型和采用实验测试手段的方法,系统地研究了碳纳米管纸与复合材料的微观结构与其宏观性能间的关系。具体研究内容如下
     首先,利用卷绕喷洒法采用三种不同碳纳米管标记为CNT-1, CNT-2和CNT-3分别制备成碳纳米管纸,通过透射电镜(TEM),拉曼光谱,光学显微镜和扫描电镜(SEM)对三种碳纳米管纸的形态和结构进行了表征并采用拉伸力学测试和四点接触法电阻测试对其拉伸性能和导电性能进行测试和对比分析。透射电镜图像显示CNT-1, CNT-2和CNT-3的管壁数目分别为3,6和50,经测量直径分别为8nm,8-10nm和45nm。拉曼光谱结果显示这三种碳纳米管D峰与G峰强度比值分别对应为0.54、0.63和0.35,表明CNT-3石墨化程度最高,缺陷最少。光学显微镜观察结果显示由等容量的去离子水和酒精混合配置的喷洒液在碳纳米管薄膜表面形成的接触角θ<90°,能够在短时间内渗入薄膜内部。SEM结果显示卷绕喷洒工艺不仅没有破坏碳纳米管薄膜高取向度的特征,且在一定程度减小了碳纳米管之间的空间距离,由此获得结构更加致密的高取向碳纳米管纸。CNT-1, CNT-2和CNT-3碳纳米管纸的平均强度依次为563MPa、423MPa、118MPa,平均模量依次为15.3GPa、10.1GPa、5.2GPa、与传统过滤法所制备的碳纳米管纸相比,定向碳纳米管纸具有优异的力学性能。随着碳纳米管直径的增大,碳纳米管纸的力学性能逐渐降低,符合有效截面利用率原理。四线法电阻测试结果显示碳纳米管纸的电导率随管壁数的增加分别547S/cm,356S/cm和288S/cm。高取向碳纳米管纸电导率的模型表明,其电导率的主要与单根碳纳米竹的平均电阻,碳纳米管的直径以及碳纳米管纸的孔隙率有关。
     其次,在碳纳米管纸制备和研究的基础上,采用卷绕喷洒法以碳纳米管可纺丝阵列和水溶性聚乙烯醇溶液为原料制备了多壁(50壁)碳纳米管/聚乙烯醇复合材料。通过热失重分析(TGA), SEM,拉伸力学及电阻测试等方法研究了不同碳纳米管丝束抽取速度和喷洒溶液浓度对碳管复合材料结构和性能的影响。当喷洒聚合物溶液浓度为10g/L时,测试结果显示,随着碳纳米管丝束抽取速度从8mm/s增加到18mm/s,碳纳米管复合材料的平均强度从184MPa提高到289MPa,平均模量从14GPa提高到22GPa,电导率从115S/cm提高到157S/cm。拉伸断裂面的SEM结果显示,碳纳米管均匀分布在聚合物树脂中,其抽拔长度在5μm以内,远远小于其自身长度(700μm),说明卷绕喷洒工艺能够赋予碳纳米管与聚合物树脂之间很好的界面结合作用。当保持碳纳米管抽取速度为18mm/s时,随着碳纳米管喷洒溶液浓度从10g/L降低至2.5g/L,复合材料的平均强度从289MPa提高至937MPa,平均模量从22GPa提高到68GPa,电导率从157S/cm增加到589S/cm。TGA结果显示此时碳纳米管的含量高达57wt.%。拉伸断裂面的SEM图像中已观测不到连续相的聚合物树脂,均为抽拔出的碳纳米管,且能发现多壁碳纳米管特有的“剑鞘”断裂模式,说明外力通过聚合物介质有效地传递到了碳纳米管的外层竹壁上。当聚合物喷洒液的浓度进一步降低到1g/L时,复合材料的平均强度和模量相应降低至772MPa和58GPa,但导电性持续增加至747S/cm。
     最后,采用性能优异的少壁(6壁)碳纳米管作为原料在改变喷洒聚合物溶液浓度的基础上对碳纳米管复合材料的力学和电学性能进行优化,并通过偏光拉曼光谱和SEM以及TGA测试对复合材料制备参数,微观结构以及宏观性能之间的关系进行了系统研究。当碳纳米管丝束抽取速度为18mm/s,喷洒液浓度为1g/L时,复合材料力学性能最好,其中平均拉伸强度可达1.7GPa,最高拉伸强度高达1.8GPa。拉伸模量受环境湿度影响,当湿度约为5%时,最大拉伸模量为96GPa,当湿度约超过50%时,拉伸模量为47GPa,此时最大断裂功可达112.3J/g。复合材料表面及其拉伸断裂面的SEM图像表明此时碳纳米管与聚合物形成最均匀的界面结构。喷洒液浓度高于1g/L时,有过量的聚合物包覆在碳管表面,喷洒液浓度低于1g/L时,复合材料表面存在没有聚合物填充的微孔。偏光拉曼测试的结果显示,当入射激光偏振方向与复合材料中碳管取向方向之间的夹角从0°增加至90°时,复合材料拉曼光谱的G’峰的均一化强度从1降低至0.493,说明了碳纳米管在复合材料中高度取向排列,复合材料具有各项异性的特征。而未经过真空热压的复合材料的G’峰的均一化强度仅降低至0.566,充分说明真空热压方法能够进一步优化碳纳米管在复合材料中的取向度。此外,四点接触法电阻测试结果显示此时碳管复合材料的电导率为693S/cm。随着喷洒溶液浓度降低至0.5g/L,复合材料的平均强度下降至1.5GPa,但其电导率仍然增加至781S/cm。
     以上结果表明采用卷绕喷洒法制备高性能碳纳米管复合材料完全可行。与其他复合材料制备方法相比,这种方法能够同时满足复合材料中高体积含量的长碳纳米管以高度取向的排列方式与聚合物均匀有效地结合。在对碳纳米管丝束抽取速度及喷洒溶液浓度以及热压等方法优化的前提下,实现了高强度高模量的导电碳纳米管复合材料,为碳纳米管复合材料的制备方法提供了新的方向。此外,对复合材料结构,力学性能及电性能的研究为高性能碳纳米管复合材料的研究提供了必要的数据支持。
As a kind of one dimensional nano-sized material, carbon nanotube (CNT) possesses extraordinary mechanical properties and unique conductivity. The measured tensile strength of carbon nanotube is high up to63GPa and modulus is over0.27TPa. CNTs are the strongest fiber materials which make them ideal reinforcement for advanced composites. Reinforced with CNTs, polymer composites can obtain high performance with other new function, such as electrical or thermal conductive. However, realizing the outstanding properties of CNTs in polymer composites has many challenges, for CNTs are easy to aggregate together and hard to handle due to their small size. Fabricating CNT composites with desired structure is extremely difficult.
     Common traditional methods for the fabrication of CNT-polymer composites are based on combining the carbon nanotube powder and polymer together in a way of solution or melt mixing. By these approaches, tensile properties of the composites are usually very low, less than100MPa. In order to fully utilize the mechanical properties of CNTs, it is desired to uniformly distribute among the polymer matrix the unidirectionally-aligned long tubes at a high fraction. Therefore, designing a new method for fabricating CNT composites with such desired structure and then investigating their properties is very important.
     In this study, we demonstrate a one-step approach of "spray winding" to fabricate high-performance CNT composites. In this method, CNT sheets or ribbon, drawn out from CNT arrays are continuously collected (wound) onto a rotaing mandrel under the spray of a polymer solution. With the infiltration of solution into the CNT sheet and evaporation of solvent, polymer molecules have homogenous integration with CNTs, which is very critical in determining the properties of CNT composites. The oriented CNT paper can also be achieved by spraying polymer-free solution. Through spray winding, CNTs with different number of walls were fabricated into high performance aligned CNT paper and composites. The mechanism and technological parameters of spray winding method was studied. In addition, structures and properties of produced CNT paper and composites were investigated. Specifically as following:
     First, different CNTs, namely CNT-1, CNT-2and CNT-3were fabricated into CNT paper by spray winding. Through transmission electron microscope (TEM), Raman spectroscopy, optical microscope and scanning electron microscope (SEM), morphology and structure of the CNT paper were characterized. The tensile properties and electrical conductivity were investigated through tensile testing and four-point-probe resistance testing. TEM image of the individual CNTs showed the wall numbers of CNT-1, CNT-2and CNT-3are3,6and50respectively, and their diameters were measured to be8nm,8-10nm and45nm. Raman spectroscopy results showed the ratio ID/IG of the D and G band intensities of the CNTs are0.54,0.63and0.35correspondingly, which indicates CNT-3has the least defects. By optical microscopy, we observed that the sprayed solution made by mixing the same volume of DI water and ethanol can infiltrate into the CNT sheet instantly. The capillary force results from the evaporation of the solvent draws the neighboring CNTs together. SEM images demonstrated that the highly alignment of CNTs in the CNT sheet was not damaged after the spray winding technique. Moreover, the interspaces of CNTs were decreased, which resulted into a densely compact highly oriented CNT paper. The average tensile strengths of CNT-1, CNT-2and CNT-3paper were563MPa,423MPa and118MPa, with average modulus of15.3GPa,10.1GPa and5.2GPa respectively. Compared with the CNT paper made by traditional methods, the aligned CNT paper showed excellent mechanical properties. With increasing the CNT diameter, the mechanical properties of CNT paper is reduced, which is explained by the theory of effective cross-section area. According to the resistance results tested by four-point-probe method, the electrical conductivity of the three CNT paper were547S/cm,356S/cm and288S/cm. The electrical conductivity model indicated that the average resistance and diameter of the CNTs, porosity of CNT paper is the main factor to the resistance of CNT paper.
     Secondly, based on the research of CNT paper by spray winding, multi-walled (50walls) CNTs (MWNTs) and water soluble poly (vinyl alcohol)(PVA) were fabricated into MWNT/PVA composites by spraying the PVA solution. Influence of different drawing speed and polymer solution concentration to the structure and properties of CNT composites were investigated through thermal gravimetric analysis (TGA), SEM, tensile and resistance testing. Under the10g/L-PVA solution spraying, with increasing the CNT ribbon drawing speed of8mm/s to18mm/s, the average tensile strength of MWNT/PVA composites was improved from184MPa to289MPa, with average modulus improved from14GPa to22GPa, electrical conductivity improved from115S/cm to157S/cm. SEM image of the fractured surface showed that MWNTs were uniformly distributed into the polymer matrix, with a pull out length of less than5μm, which indicated a good interface between nanotubes and PVA polymer. When the drawing speed of ribbon was kept at18mm/s, with decreasing of the PVA concentration from10g/L to2.5g/L, the average tensile strength of MWNT/PVA composites was improved from289MPa to937MPa, with modulus improvement from22GPa to68GPa and electrical conductivity from157S/cm to589S/cm. The mass fraction of the composites with highest strength was tested to be53%based on the TGA results. The SEM image of the fracture surfaced demonstrated a CNT rich cross section. The typical "sword in sheath" breaking of MWNT can be found, which suggested an effective load transfer from the matrix to the nanotubes. With decreasing the polymer concentration to1g/L, the mechanical properties of composites was decreased with an average strength and modulus of772MPa and58GPa. However, the electrical conductivity was still improved to747S/cm.
     At last, in order to improved the mechanical and conductivity properties of the composites, few-walled (6walls) CNTs (FWNTs) were used with different concentration of sprayed PVA solution. By polarized Raman spectroscopy, SEM, TGA and other testing method, the relationship between processing, structure and properties of the composites were systematically studied. When the drawing speed of the CNT ribbon is18mm/s and sprayed solution concentration is1g/L, FWNT composites achieved the best mechanical properties with an average tensile strength of1.7GPa and the highest tensile strength of1.8GPa. The tensile modulus is found to be affected by the embient humidity. When the humidity is about5%, the highest modulus of composites reached to96GPa. When humidity is over50%, the composites film has a modulus of47GPa and a toughness of over100J/g. SEM images of the surface and cross-section of the composites demonstrated that the1g/L solution produced an optimized structure with relatively high CNT fraction and no void. There was excessive matrix around the nanotubes when the concentration of the sprayed PVA solution was2g/L and there were micrometer-sized voids within the composites when the concentration is0.5g/L. Polarized Raman spectroscopy analysis of the composites with optimal structure showed that the normalized G'-band Raman intensity decreased from1to0.493when the angle between the composites film and the polarization axis of the incident laser beam was changed from0°to90°. This indicated an anisotropic characteristic of the composites with highly aligned CNTs. Composites before hot-pressing has a decreased normalized intensity of0.566, which stated that the degree of alignment can be further improved by the vacuum aid hot-pressing process. Additionally, the electrical conductivity of the composites with the best mechanical properties was calculated to be693S/cm after4-point-probe resistance testing. With decreasing the polymer concentration to0.5g/L during fabrication, the average tensile strength of the compsites decreased to1.5GPa. However, the conductivity of the composites increased to781S/cm.
     In conclusion, spray winding approach is absolutely feasible for the fabrication of high performance CNT-polymer composites. Compared with other methods, this approach can obtain the desired CNT composites structure with high fractional long and aligned CNT uniformly distributed into the polymer matrix. Though optimizing the process, such as ribbon drawing speed, solution concentration and vacuum aid hot-pressing, high strength and modulus conductive CNT composites is successfully achieved. The influence of the process to the structure and properties of the composites was systematically studied.
引文
1. Wang X, Bradford PD, Liu W, Zhao H, Inoue Y, Maria J-P, et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol.2011;71 (14):1677-83.
    2. Cheng QF, Wang JP, Wen JJ, Liu CH, Jiang KL, Li QQ, et al. Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon. 2010;48(1):260-6.
    3. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science.2010;35(3):357-401.
    4. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nano.2010;5(7):531-7.
    5. Hyder MN, Lee SW, Cebeci FC, Schmidt DJ, Shao-Horn Y, Hammond PT. Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano.2011;5(11):8552-61.
    6. Li X, Rong J, Wei B. Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress. ACS Nano. 2010;4(10):6039-49.
    7. Kuznetzov AA, Lee SB, Zhang M, Baughman RH, Zakhidov A A. Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays. Carbon.2010;48(1):41-6.
    8. Zhou O, Calderon-Colon X. Carbon Nanotube-Based Field Emission X-Ray Technology. Carbon Nanotube and Related Field Emitters:Wiley-VCH Verlag GmbH & Co. KGaA 2010, p.417-37.
    9. Kim S, Cho E, Han S, Cho Y, Cho SH, Kim C. et al. Microscopic origin of current degradation of fully-sealed carbon-nanotube field emission display. Solid State Communications.2009; 149(17-18):670-2.
    10. Zilli D, Bonelli PR, Cukierman AL. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sensors and Actuators B:Chemical.2011;157(1):169-76.
    11. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nano.2011;6(5):296-301.
    12. Musameh M, Notivoli MR, Hickey M, Kyratzis IL, Gao Y, Huynh C, et al. Carbon Nanotube Webs:A Novel Material for Sensor Applications. Adv Mater. 2011;23(7):906-10.
    13. Wilson NR, Macpherson JV. Carbon nanotube tips for atomic force microscopy. Nat Nano.2009;4(8):483-91.
    14. Koehne JE, Stevens RM, Zink T, Deng Z, Chen H, Weng IC, et al. Using carbon nanotube probes for high-resolution three-dimensional imaging of cells. Ultramicroscopy.2011;111(8):1155-62.
    15. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, et al. Stretchable, Porous, and Conductive Energy Textiles. Nano Letters.2010;10(2):708-14.
    16. Venkatesan J, Ryu B, Sudha PN, Kim S-K. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. International Journal of Biological Macro molecules.2012;50(2):393-402.
    17. Rosca ID, Hoa SV. Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications. Compos Sci Technol.2011;71(2):95-100.
    18. Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, et al. Poly(vinyl alcohol)/SWNT composite film. Nano Letters.2003;3(9):1285-8.
    19. Liu L, Barber AH, Nuriel S, Wagner HD. Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/Poly(vinyl alcohol) Nanocomposites. Advanced Functional Materials.2005;15(6):975-80.
    20. Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon.2005;43(7):1499-505.
    21. Wardle BL, Saito DS, Garcia EJ, Hart AJ, de Villoria RG, Verploegen EA. Fabrication and Characterization of Ultrahigh-Volume-Fraction Aligned Carbon Nanotube-Polymer Composites. Adv Mater.2008;20(14):2707-14.
    22. Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B. High Mechanical Performance Composite Conductor:Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites. Advanced Functional Materials. 2009;19(20):3219-25.
    23. Ciselli P, Zhang R, Wang Z, Reynolds CT, Baxendale M, Peijs T. Oriented UHMW-PE/CNT composite tapes by a solution casting-drawing process using mixed-solvents. European Polymer Journal.2009;45(10):2741-8.
    24. Shim BS, Zhu J, Jan E, Critchley K, Ho S, Podsiadlo P, et al. Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano. 2009;3(7):1711-22.
    25. Spitalsky Z, Tsoukleri G, Tasis D, Krontiras C, Georga SN, Galiotis C. High volume fraction carbon nanotube-epoxy composites. Nanotechnology. 2009;20(40):405702.
    26. Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol.2010;70(13):1980-5.
    1. Abbesen T, ed. Carbon nanotubes, Preparation and Properties:CRC Press USA 1997.
    2. Kroto HW, Heath JR, O'Briea SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature.1985;318:162-3.
    3. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60:a new form of carbon. Nature.1990;347(6291):354-8.
    4. Iijima S. Helical Microtubules of Graphitic Carbon. Nature. 1991;354(6348):56-8.
    5. Harris PJF. Carbon Nanotube Science:Synthesis, Properties and Applications: Cambridge University Press; 2009.
    6. Meyyappan M, ed. Carbon Nanotubes:Science and Applications:CRC Press USA 2004.
    7. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic-structure of chiral graphene tubules. Applied Physics Letters.1992;60(18):2204-6.
    8. Henning T, Salama F. Carbon in the Universe. Science. 1998;282(5397):2204-10.
    9. Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nanotubes and their composites:a review. Composites Science and Technology.2001;61(13):1899-912.
    10. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes. San Diego, EUA:Academic Press 1996.
    11. Iijima S, Ajayan PM, Ichihashi T. Growth model for carbon nanotubes. Physical Review Letters.1992;69(21):3100.
    12. Keidar M, Waas AM. On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology.2004;15(11):1571.
    13. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature.1997;388(6644):756-8.
    14. Colbert DT, Zhang J, McClure SM, Nikolaev P, Chen Z, Hafner JH, et al. Growth and Sintering of Fullerene Nanotubes. Science. 1994;266(5188):1218-22.
    15. Cadek M, Murphy R, McCarthy B, Drury A, Lahr B, Barklie RC, et al. Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon.2002;40(6):923-8.
    16. Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y. Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond and Related Materials.2006; 15(4-8):1098-102.
    17. Scott CD, Arepalli S, Nikolaev P, Smalley RE. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A: Materials Science & Processing.2001;72(5):573-80.
    18. Yudasaka M, Komatsu T, Ichihashi T, Iijima S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chemical Physics Letters.1997;278(1-3):102-6.
    19. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science.1996;273(5274):483-7.
    20. Klanwan J, Seto T, Furukawa T, Otani Y, Charinpanitkul T, Kohno M, et al. Generation and size classification of single-walled carbon nanotube aerosol using atmospheric pressure pulsed laser ablation (AP-PLA). J Nanopart Res. 2010;12(8):2747-55.
    21. Bystrzejewski M, Ruemmeli MH, Lange H, Huczko A, Baranowski P, Gemming T, et al. Single-Walled Carbon Nanotubes Synthesis:A Direct Comparison of Laser Ablation and Carbon Arc Routes. J Nanosci Nanotechnol. 2008;8(11):6178-86.
    22. Bower C, Zhou O, Zhu W, Werder DJ, Jin S. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters.2000;77(17):2767-9.
    23. Li Y-L, Kinloch IA, Windle AH. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Science.2004;304(5668):276-8.
    24. Sinnott SB, Andrews R, Qian D, Rao AM, Mao Z, Dickey EC, et al. Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters.1999;315(1-2):25-30.
    25. Sadeghian Z. Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Materials.2009;24(1):33-8.
    26. Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW. The production and structure of pyrolytic carbon nanotubes (PCNTs). Journal of Physics and Chemistry of Solids.1993;54(12):1841-8.
    27. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, et al. Continuous production of aligned carbon nanotubes:a step closer to commercial realization. Chemical Physics Letters.1999;303(5-6):467-74.
    28. 韦进全,张先锋,王昆林.碳纳米管宏观体:清华大学出版社;2006.
    29. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, et al. Controlled production of aligned-nanotube bundles. Nature. 1997;388(6637):52-5.
    30. Benito AM, Maniette Y, Munoz E, Martinez MT. Carbon nanotubes production by catalytic pyrolysis of benzene. Carbon.1998;36(5):681-3.
    31. Ivanov V, Nagy JB, Lambin P, Lucas A, Zhang XB, Zhang XF, et al. The study of carbon nanotubules produced by catalytic method. Chemical Physics Letters.1994;223(4):329-35.
    32. Zhang L, Tan Y, Resasco DE. Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoMo catalyst particles. Chemical Physics Letters.2006;422(1-3):198-203.
    33. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science.2004:306(5700):1362-4.
    34. Jiang K, Li Q, Fan S. Nanotechnology:Spinning continuous carbon nanotube yarns. Nature.2002;419(6909):801-
    35. Zhang Q, Wang D-G, Huang J-Q, Zhou W-P, Luo G-H, Qian W-Z, et al. Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon. 2010;48(10):2855-61.
    36. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rosner H, et al. Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Physical Chemistry Chemical Physics.2002;4(11).
    37. Lu JP. Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters.1997;79(7):1297.
    38. Sears A, Batra RC. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B,2004,69(23):235406.
    39. Treacy MMJ, Ebbcsen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature.1996;381(6584):678-80.
    40. Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science. 1999;283(5407):1513-6.
    41. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science.2000;287(5453):637-40.
    42. Yu M-F, Yakobson BI, Ruoff RS. Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B.2000;104(37):8764-7.
    43. Yu M-F, Files BS, Arepalli S, Ruoff RS. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Physical Review Letters.2000;84(24):5552-5.
    44. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of graphene tubules based on C_{60}. Physical Review B.1992;46(3):1804-11.
    45. Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon. 1995;33(7):883-91.
    46. Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Physical Review Letters.1992;68(5):631-4.
    47. Tanaka K, Aoki H, Ago H, Yamabe T, Okahara K. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon. 1997;35(1):121-5.
    48. Lambin P, Meunier V, Rubio A. Electronic structure of polychiral carbon nanotubes. Physical Review B.2000;62(8):5129-35.
    49. Benedict LX, Crespi VH, Louie SG, Cohen ML. Static conductivity and superconductivity of carbon nanotubes:Relations between tubes and sheets. Physical Review B.1995;52(20):14935-40.
    50. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature. 1997;386(6624):474-7.
    51. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature.1996;382(6586):54-6.
    52. Wang X, Bradford PD, Liu W, Zhao H, Inoue Y, Maria J-P, et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol.2011;71 (14):1677-83.
    53. Cheng QF, Wang JP, Wen JJ, Liu CH, Jiang KL, Li QQ, et al. Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon. 2010;48(1):260-6.
    54. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science.2010;35(3):357-401.
    55. Liu W, Zhang X, Xu G, Bradford PD, Wang X, Zhao H, et al. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. Carbon.2011;49(14):4786-91.
    56. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nano.2010;5(7):531-7.
    57. Hyder MN, Lee SW, Cebeci FC, Schmidt DJ, Shao-Horn Y, Hammond PT. Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano.2011;5(11):8552-61.
    58. Li X, Rong J, Wei B. Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress. ACS Nano. 2010;4(10):6039-49.
    59. Kuznetzov AA, Lee SB, Zhang M, Baughman RH, Zakhidov AA. Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays. Carbon.2010;48(1):41-6.
    60. Zhou O, Calderon-Colon X. Carbon Nanotube-Based Field Emission X-Ray Technology. Carbon Nanotube and Related Field Emitters:Wiley-VCH Verlag GmbH & Co. KGaA 2010, p.417-37.
    61. Kim S, Cho E, Han S, Cho Y, Cho SH, Kim C, ct al. Microscopic origin of current degradation of fully-sealed carbon-nanotube field emission display. Solid State Communications.2009;149(17-18):670-2.
    62. Wilson NR, Macpherson JV. Carbon nanotube tips for atomic force microscopy. Nat Nano.2009;4(8):483-91.
    63. Koehne JE, Stevens RM, Zink T, Deng Z, Chen H. Weng IC, et al. Using carbon nanotube probes for high-resolution three-dimensional imaging of cells. Ultramicroscopy.2011;111(8):1155-62.
    64. Zilli D, Bonelli PR, Cukierman AL. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sensors and Actuators B:Chemical.2011;157(1):169-76.
    65. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nano.2011;6(5):296-301.
    66. Musameh M, Notivoli MR, Hickey M, Kyratzis IL, Gao Y, Huynh C, et al. Carbon Nanotube Webs:A Novel Material for Sensor Applications. Adv Mater. 2011;23(7):906-10.
    67. Jiang K, Wang J, Li Q, Liu L, Liu C, Fan S. Superaligned Carbon Nanotube Arrays, Films, and Yarns:A Road to Applications. Adv Mater. 2011;23(9):1154-61.
    68. Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. Science. 1994;265(5176):1212-4.
    69. Camponeschi E, Vance R, Al-Haik M, Garmestani H, Tannenbaum R. Properties of carbon nanotube-polymer composites aligned in a magnetic field. Carbon.2007;45(10):2037-46.
    70. Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater.1999;11(11):937-+.
    71. Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, et al. Poly(vinyl alcohol)/SWNT composite film. Nano Letters.2003;3(9):1285-8.
    72. Ryan KP, Cadek M, Nicolosi V, Blond D, Ruether M, Armstrong G, et al. Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Compos Sci Technol.2007;67(7-8):1640-9.
    73. Chen W, Tao X, Xue P, Cheng X. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films. Applied Surface Science.2005;252(5):1404-9.
    74. Bin Y, Mine M, Koganemaru A, Jiang X, Matsuo M. Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites. Polymer.2006;47(4):1308-17.
    75. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters.2002;81(27):5123-5.
    76. Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters.2000;76(20):2868-70.
    77. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer.2006;47(22):7740-6.
    78. Nayak RR, Lee KY, Shanmugharaj AM, Ryu SH. Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. European Polymer Journal.2007;43(12):4916-23.
    79. Ciselli P, Zhang R, Wang Z, Reynolds CT, Baxendale M, Peijs T. Oriented UHMW-PE/CNT composite tapes by a solution casting-drawing process using mixed-solvents. European Polymer Journal.2009;45(10):2741-8.
    80. Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer. 2003;44(19):5643-54.
    81. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP. Mechanical and morphological characterization of polymer-carbon nanocompo sites from functionalized carbon nanotubes. Carbon.2004;42(14):2849-54.
    82. Liu L, Barber AH, Nuriel S, Wagner HD. Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/Poly(vinyl alcohol) Nanocomposites. Advanced Functional Materials.2005;15(6):975-80.
    83. Wang Z, Ciselli P, Peijs T. The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly(vinyl alcohol) tapes. Nanotechnology.2007;18(45).
    84. Jin Z, Pramoda KP, Xu G, Goh SH. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chemical Physics Letters.2001;337(1-3):43-7.
    85. Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng. 2002;287(6):395-403.
    86. Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon.2005;43(7):1499-505.
    87. Zhang WD, Shen L, Phang IY, Liu T. Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules. 2003;37(2):256-9.
    88. Krause B, Potschke P, HauBler L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos Sci Technol.2009;69(10):1505-15.
    89. Yuan J-M, Fan Z-F, Chen X-H, Chen X-H, Wu Z-J, He L-P. Preparation of polystyrene-multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer. 2009;50(14):3285-91.
    90. Yang L, Liu F, Xia H, Qian X, Shen K, Zhang J. Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon.2011;49(10):3274-83.
    91. Rios PF, Ophir A, Kenig S, Efrati R, Zonder L, Popovitz-Biro R. Impact of injection-molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites. Journal of Applied Polymer Science.2011;120(1):70-8.
    92. Li S-N, Li B, Li Z-M, Fu Q, Shen K-Z. Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer.2006;47(13):4497-500.
    93. Kanagaraj S, Varanda FR, Zhil'tsova TV, Oliveira MSA, Simoes JAO. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol.2007;67(15-16):3071-7.
    94. Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon.2003;41(14):2779-85.
    95. Potschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer.2002;43(11):3247-55.
    96. Bangarusampath DS, Ruckdaschel H, Altstadt V, Sandler JKW, Garray D, Shaffer MSP. Rheological and electrical percolation in melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Chemical Physics Letters.2009;482(1-3):105-9.
    97. Esawi AMK, Salem HG, Hussein HM, Ramadan AR. Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube-composites and its effect on their mechanical properties. Polym Composite.2010;31(5):772-80.
    98. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering:A.1999;271(1-2):395-400.
    99. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS. Synthesis and Dispersion Characteristics of Multi-Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In-Situ Bulk Polymerization. Macro molecular Rapid Communications.2003;24(18):1070-3.
    100. Cui L, Tarte NH, Woo SI. Synthesis and Characterization of PMMA/MWNT Nanocomposites Prepared by in Situ Polymerization with Ni(acac)2 Catalyst. Macromolecules.2009;42(22):8649-54.
    101. Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, et al. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos Sci Technol.2006;66(9):1190-7.
    102. Wu K-L, Chou S-C, Cheng Y-Y. Comparison of polyimide/multiwalled carbon nanotube (MWNT) nanocomposites by in situ polymerization and blending. Journal of Applied Polymer Science.2010; 116(6):3111-7.
    103. Tong X, Liu C, Cheng H-M, Zhao H, Yang F, Zhang X. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. Journal of Applied Polymer Science.2004;92(6):3697-700.
    104. Dong X, Wang L, Deng L, Li J, Huo J. Preparation of nano-polyethylene fibres using Cp2ZrCl2/carbon nanotube catalytic system. Materials Letters. 2007;61(14-15):3111-5.
    105. Dong X, Wang L, Sun T, Zhou J, Yang Q. Study on ethylene polymerization catalyzed by Cp2ZrCl2/carbon nanotube system. Journal of Molecular Catalysis A:Chemical.2006;255(1-2):10-5.
    106. Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S. Synthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals. 1999;102(1-3):1266-7.
    107. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray DJ, et al. Carbon Nanotube and Polypyrrole Composites:Coating and Doping. Adv Mater. 2000;12(7):522-6.
    108. Maser WK, Benito AM, Callejas MA, Seeger T, Martinez MT, Schreiber J, et al. Synthesis and characterization of new polyaniline/nanotube composites. Materials Science and Engineering:C.2003;23(1-2):87-91.
    109. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon.2003:41(8):1551-7.
    110. Koziol KKK, Boncel S, Shaffer MSP, Windle All. Aligned carbon nanotube-polystyrene composites prepared by in situ polymerisation of stacked layers. Compos Sci Technol.2011;71 (13):1606-11.
    111. Kakade BA, Pillai VK, Late DJ, Chavan PG, Sheini FJ, More MA, et al. High current density, low threshold field emission from functionalized carbon nanotube bucky paper. Applied Physics Letters.2010;97(7):073102.
    112. Dumee L, Germain V, Sears K., Schiitz J, Finn N, Duke M.et al. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. Journal of Membrane Science.2011;376(1-2):241-6.
    113. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater. 2006;5(12):987-94.
    114. Wang Z, Liang Z, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites Part A:Applied Science and Manufacturing.2004;35(10):1225-32.
    115. Gou J. Single-walled nanotube bucky paper and nanocomposite. Polymer International.2006;55(11):1283-8.
    116. Spitalsky Z, Tsoukleri G, Tasis D, Krontiras C, Georga SN, Galiotis C. High volume fraction carbon nanotube-epoxy composites. Nanotechnology. 2009;20(40):405702.
    117. Wang S, Liang Z, Pham G, Park Y-B, Wang B, Zhang C, et al. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology.2007;18(9):095708.
    118. Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C, et al. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology.2008;19(32):325705.
    119. Coleman JN, Blau WJ, Dalton AB, Munoz E, Collins S, Kim BG, et al. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters. 2003;82(11):1682-4.
    120. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, et al. Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters.2006;6(9):1880-6.
    121. Zhou Y, Hu L, Gruner G. A method of printing carbon nanotube thin films. Applied Physics Letters.2006;88(12):123109.
    122. Wang D, Song P, Liu C, Wu W, Fan S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology. 2008;19(7):075609.
    123. Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol.2010;70(13):1980-5.
    124. Wardle BL, Saito DS, Garcia EJ, Hart AJ, de Villoria RG, Verploegen EA. Fabrication and Characterization of Ultrahigh-Volume-Fraction Aligned Carbon Nanotube-Polymer Composites. Adv Mater.2008;20(14):2707-14.
    125. Cheng QF, Wang JP, Jiang KL, Li QQ, Fan SS. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. J Mater Res.2008;23(11):2975-83.
    126. Cheng Q, Bao J, Park J, Liang Z, Zhang C, Wang B. High Mechanical Performance Composite Conductor:Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites. Advanced Functional Materials. 2009;19(20):3219-25.
    127. Cheng Q, Wang B, Zhang C, Liang Z. Functionalized Carbon-Nanotube Sheet/Bismaleimide Nanocomposites:Mechanical and Electrical Performance Beyond Carbon-Fiber Composites. Small.2010;6(6):763-7.
    128. Inoue Y, Suzuki Y, Minami Y, Muramatsu J, Shimamura Y, Suzuki K, et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon.2011;49(7):2437-43.
    129. Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y. Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol.2011;71(16):1826-33.
    130. Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater.2002;1(3):190-4.
    131. Paloniemi H, Lukkarinen M, Aaritalo T, Areva S, Leiro J, Heinonen M, et al. Layer-by-Layer Electrostatic Self-Assembly of Single-Wall Carbon Nanotube Polyelectrolytes. Langmuir.2005;22(1):74-83.
    132. Shim BS, Tang Z, Morabito MP, Agarwal A, I long H, Kotov NA. Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics. Chemistry of Materials.2007:19(23):5467-74.
    133. Olek M, Ostrander J, Jurga S, Mohwald H, Kotov N, Kempa K, et al. Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies. Nano Letters.2004;4(10):1889-95.
    134. Tian Y, Park JG, Cheng Q, Liang Z, Zhang C, Wang B. The fabrication of single-walled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment. Nanotechnology.2009;20(33):335601.
    135. Shim BS, Zhu J, Jan E, Critchley K, Ho S, Podsiadlo P, et al. Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano. 2009;3(7):1711-22.
    136. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, et al. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science. 2000;290(5495):1331-4.
    137. O'Connor I, De S, Coleman JN, Gun'ko YK. Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films. Carbon.2009;47(8):1983-8.
    138. Li YQ, Yu T, Pui T, Chen P, Zheng LX, Liao K. Fabrication of transparent and conductive carbon nanotube/polyvinyl butyral films by a facile solution surface dip coating method. Nanoscale.2011;3(6):2469-71.
    139. Blond D, Walshe W, Young K, Blighe FM, Khan U, Almecija D, et al. Strong, Tough, Electrospun Polymer-Nanotube Composite Membranes with Extremely Low Density. Advanced Functional Materials. 2008;18(17):2618-24.
    140. Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC. Continuous Spinning of a Single-Walled Carbon Nanotube-Nylon Composite Fiber. Journal of the American Chemical Society.2005;127(11):3847-54.
    141. Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He JS. Regenerated-Cellulose/Multiwalled- Carbon-Nanotube Composite Fibers with Enhanced Mechanical Properties Prepared with the Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Adv Mater.2007;19(5):698-704.
    142. Zhang X, Liu T, Sreekumar TV, Kumar S, Hu X, Smith K. Gel spinning of PVA/SWNT composite fiber. Polymer.2004;45(26):8801-7.
    143. Xu X, Uddin AJ, Aoki K, Gotoh Y, Saito T, Yumura M. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning. Carbon. 2010;48(7):1977-84.
    144. Kirkpatrick S. Percolation and Conduction. Reviews of Modern Physics. 1973;45(4):574-88.
    145. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006;47(6):2036-45.
    1. Kakade BA, Pillai VK, Late DJ, Chavan PG, Sheini FJ, More MA, et al. High current density, low threshold field emission from functionalized carbon nanotube bucky paper. Applied Physics Letters.2010;97(7):073102.
    2. Dumee L, Germain V, Sears K, Schutz J, Finn N, Duke M, et al. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. Journal of Membrane Science.2011;376(1-2):241-6.
    3. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater. 2006;5(12):987-94.
    4. Miao Y, Chen L, Sammynaiken R. Lin Y, Zhang WJ. Note:Optimization of piezoresistive response of pure carbon nanotubes networks as in-plane strain sensors. Review of Scientific Instruments.2011;82(12):126104--3.
    5. Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C, et al. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology.2008;19(32):325705.
    6. Xu GH, Zhang Q, Zhou WP, Huang JQ, Wei F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl Phys A-Mater Sci Process.2008;92(3):531-9.
    7. Ago H, Petritsch K, Shaffer MSP. Windle AH. Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater.1999;11(15):1281-+.
    8. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, et al. Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters.2006;6(9):1880-6.
    9. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R. Mechanical properties of nanotube sheets:Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics. 2004;95(8):4335-45.
    10. Song PC, Liu CH, Fan SS. Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Appl Phys Lett.2006;88(15):153111.
    11. Ci L, Manikoth SM, Li X, Vajtai R, Ajayan PM. Ultrathick Freestanding Aligned Carbon Nanotube Films. Adv Mater.2007;19(20):3300-3.
    12. Wang D, Song P, Liu C, Wu W, Fan S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology. 2008;19(7):075609.
    13. Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol.2010;70(13):1980-5.
    14. Cheng QF, Bao JW, Park J, Liang ZY, Zhang C, Wang B. High Mechanical Performance Composite Conductor:Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites. Adv Funct Mater.2009;19(20):3219-25.
    15. Inoue Y, Kakihata K, Hirono Y, Horie T, Ishida A, Mimura H. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Applied Physics Letters.2008;92(21):213113-3.
    16. Jia J, Zhao J, Xu G, Di J, Yong Z, Tao Y, et al. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon. 2011;49(4):1333-9.
    17. Rondeau X, Affolter C, Komunjer L, Clausse D, Guigon P. Experimental determination of capillary forces by crushing strength measurements. Powder Technology.2003;130(1-3):124-31.
    18. Smajda R, Kukovecz A, Konya Z, Kiricsi I. Structure and gas permeability of multi-wall carbon nanotube buckypapers. Carbon.2007;45(6):1176-84.
    19. Gojny FH, Wichmann MHG, Fiedler B, Kinloch I A, Bauhofer W, Windle AH, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006;47(6):2036-45.
    20. Inoue Y, Suzuki Y, Minami Y, Muramatsu J, Shimamura Y, Suzuki K, et al. Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon.2011;49(7):2437-43.
    21. Li S, Yu Z, Rutherglen C, Burke PJ. Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes. Nano Lett.2004;4(10):2003-7.
    22. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature.1996;382(6586):54-6.
    23. Frank S, Poncharal P, Wang ZL, Heer WAd. Carbon Nanotube Quantum Resistors. Science.1998;280(5370):1744-6.
    24. Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Physical Review Letters.1992;68(5):631-4.
    25. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic-structure of chiral graphene tubules. Applied Physics Letters.1992;60(18):2204-6.
    1. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science.2000;287(5453):637-40.
    2. Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44(9):1624-52.
    3. Nayak RR, Lee KY, Shanrnugharaj AM, Ryu SH. Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. Eur Polym J.2007;43(12):4916-23.
    4. Li SN, Li B, Li ZM, Fu Q, Shen KZ. Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding. Polymer.2006;47(13):4497-500.
    5. Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science.2010;35(3):357-401.
    6. Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, et al. High Performance Nanotube-Reinforced Plastics:Understanding the Mechanism of Strength Increase. Adv Funct Mater.2004;14(8):791-8.
    7. Shim BS, Zhu J, Jan E, Critchley K, Ho SS, Podsiadlo P, et al. Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano. 2009;3(7):1711-22.
    8. Bradford PD, Wang X, Zhao H, Maria J-P, Jia Q, Zhu YT. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol.2010;70(13):1980-5.
    9. Zheng LX, Zhang XF, Li QW, Chikkannanavar SB, Li Y, Zhao YH, et al. Carbon-nanotube cotton for large-scale fibers. Adv Mater. 2007;19(18):2567-+.
    10. Inoue Y, Kakihata K, Hirono Y, Horie T, Ishida A, Mimura H. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl Phys Lett.2008;92(21).
    11. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science.1997;275(5297):187-91.
    12. Saito R, Jorio A, Souza Filho AG, Grueneis A, Pimenta MA, Dresselhaus G et al. Dispersive Raman spectra observed in graphite and single wall carbon nanotubes. Physica B:Condensed Matter.2002;323(1-4):100-6.
    13. Corio P, Santos PS, Brar VW, Samsonidze GG, Chou SG, Dresselhaus MS. Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes. Chemical Physics Letters. 2003;370(5-6):675-82.
    14.刘忠范,ed.碳纳米管-科学与应用:科学出版社2007.
    15. Cui S, Canet R, Derre A, Couzi M, Delhaes P. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon.2003;41(4):797-809.
    16. Fisher FT, Bradshaw RD, Brinson LC. Effects of nanotube waviness on the modulus of nanotube-reinforced polymers. Applied Physics Letters. 2002;80(24):4647-9.
    17. Fisher FT, Bradshaw RD, Brinson LC. Fiber waviness in nanotube-reinforced polymer composites—Ⅰ:Modulus predictions using effective nanotube properties. Compos Sci Technol.2003;63(11):1689-703.
    18. Li C, Chou T-W. Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. Composites Part A:Applied Science and Manufacturing.2009;40(10):1580-6.
    19. Miaudet P, Badaire S, Maugey M, Derre A, Pichot V, Launois P, et al. Hot-Drawing of Single and Multiwall Carbon Nanotube Fibers for High Toughness and Alignment. Nano Letters.2005;5(11):2212-5.
    20. Wang Z, Ciselli P, Peijs T. The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly(vinyl alcohol) tapes. Nanotechnology.2007; 18(45).
    21. Wang X, Bradford PD, Liu W, Zhao H, Inouc Y, Maria J-P, et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol.2011;71 (14):1677-83.
    22. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer.1999;40(21):5967-71.
    23. Qian D, Dickey HC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters.2000;76(20):2868-70.
    24. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, et al. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol.2004;64(15):2309-16.
    25. Andrews R, Jacques D, Qian D, Rantell T. Multiwall Carbon Nanotubes: Synthesis and Application. Accounts of Chemical Research. 2002;35(12):1008-17.
    26. Rondeau X, Affolter C, Komunjer L, Clausse D, Guigon P. Experimental determination of capillary forces by crushing strength measurements. Powder Technology.2003;130(1-3):124-31.
    27. Hou Y, Tang J, Zhang H, Qian C, Feng Y, Liu J. Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. ACS Nano.2009;3(5):1057-62.
    28. Yu M-F, Yakobson BI, Ruoff RS. Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B.2000;104(37):8764-7.
    29. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature.1996;382(6586):54-6.
    1. Lukic B, Seo JW, Bacsa RR, Delpeux S, Beguin F, Bister G, et al. Catalytically Grown Carbon Nanotubes of Small Diameter Have a High Young's Modulus. Nano Letters.2005;5(10):2074-7.
    2. Qi H, Qian C, Liu J. Synthesis of High-Purity Few-Walled Carbon Nanotubes from Ethanol/Methanol Mixture. Chemistry of Materials.2006;18(24):5691-5.
    3. Hou Y, Tang J, Zhang H, Qian C, Feng Y, Liu J. Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites. ACS Nano.2009;3(5):1057-62.
    4. Shim BS, Zhu J, Jan E, Critchley K, Ho SS, Podsiadlo P, et al. Multiparameter Structural Optimization of Single-Walled Carbon Nanotube Composites: Toward Record Strength, Stiffness, and Toughness. ACS Nano. 2009;3(7):1711-22.
    5. Wang Z, Ciselli P, Peijs T. The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly(vinyl alcohol) tapes. Nanotechnology.2007;18(45).
    6. Ryan KP, Cadek M, Nicolosi V, Blond D, Ructher M, Armstrong G, et al. Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Compos Sci Technol.2007;67(7-8):1640-9.
    7. Liu L, Barber AH, Nuriel S, Wagner HD. Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/Poly(vinyl alcohol) Nanocomposites. Advanced Functional Materials.2005;15(6):975-80.
    8. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon.2004;42(14):2849-54.
    9. Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, et al. Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns. ACS Nano.2010;4(10):5827-34.
    10. Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ. Free Volume and the Mechanism of Plasticization in Water-Swollen Poly(vinyl alcohol). Macromolecules.1996;29(25):8137-43.
    11. Fang C, Zhao J, Jia J, Zhang Z, Zhang X, Li Q. Enhanced carbon nanotube fibers by polyimide. Appl Phys Lett.2010;97(18):181906.
    12. O'Connor I, Hayden H, Coleman JN, Gun'ko YK. High-Strength, High-Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions. Small.2009;5(4):466-9.
    13. Raravikar NR, Schadler LS, Vijayaraghavan A, Zhao Y, Wei B, Ajayan PM. Synthesis and Characterization of Thickness-Aligned Carbon Nanotube-Polymer Composite Films. Chem Mat.2005;17(5):974-83.
    14. Frogley MD, Zhao Q, Wagner HD. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Physical Review B.2002;65(11):113413.
    15. Cox HL. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics.1952;3(3):72.
    16. Carman GP, Reifsnider KL. Micromechanics of short-fiber composites. Composites Science and Technology.1992;43(2):137-46.
    17. Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44(9):1624-52.
    18. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science.2000;287(5453):637-40.
    19. Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett. 2000;76(20):2868-70.
    20. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters.2002;81(27):5123-5.
    21. Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, et al. Poly(vinyl alcohol)/SWNT Composite Film. Nano Lett.2003;3(9):1285-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700