秦岭山地红桦林群落的稳定性及其维持机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球生态环境的不断恶化,探索生物与环境相互作用机理及其适应机制一直是当今生态学研究的热点问题,其中森林群落的稳定性及其维持机制就是其中主要的一方面。秦岭作为我国具有国际意义的陆地生态系统关键区域之一,一直是国内外森林生态系统研究的热点区域。然而,红桦作为秦岭主要的植被类型之一,有关其在秦岭的稳定性及其在山地垂直带谱的地位和作用一直存在争议,至今未有明晰的结论。鉴于此,本研究选择秦岭山地红桦群落为研究对象,通过全面的资料收集和野外调查,从种群、群落及其环境因素三个角度详细的研究和分析秦岭山地红桦林群落稳定性和维持机制,从而为红桦在秦岭山地植被带谱中的定位以及保护利用提供科学依据。本研究的主要研究结果如下:
     (1)秦岭红桦林群落内共含维管植物182种,隶属128属66科,其中乔木层16科18属39种;灌木层21科34属54种;草本层32科76属82种;层间植物5科6属8种。其中,科的地理分布类型中,世界分布科最多,占到42.41%;属的地理分布区类型中,78.13%的属为温带分布属,其中北温带属(包括北温带和南温带间断分布、欧亚和南美洲温带间断分布)为主要分布属。可以充分说明秦岭红桦林具有明显的温带特性。从秦岭山地红桦林群落外貌来看,秦岭红桦林中高位芽植物占61.82%,在高位芽植物种,落叶阔叶植物78种,占95.12%;说明红桦林中落叶阔叶成分占绝对优势,反应出红桦林分布区的温带气候特征。根据红桦林群落的外貌和乔木优势种组成将所调查红桦林群落分为红桦纯林(B. ablosinensis community)、红桦-辽东栎林(B.ablosinensis-Quercus liaotungensis community)、红桦-五裂槭-华山松林(B.ablosinensis-Acer oliverianum-Pinus armandii community)、红桦-太白杨-少脉椴林(B.ablosinensis-Populus purdomii-Tilia latevirens community)、红桦-华西枫杨林(B.ablosinensis-Pterocarya insignis community)、红桦-华山松林(B. ablosinensis-Pinusarmandii community)、红桦-华山松-牛皮桦林(B. ablosinensis-Pinus armandii-Betula utiliscommunity)、红桦-牛皮桦-巴山冷杉林(B. ablosinensis-Betula utilis-Abies fargesiicommunity)、红桦-牛皮桦林(B. ablosinensis-Betula utilis community)9个群落类型。
     (2)对秦岭天然红桦林群落的更新调查表明:红桦林下乔木更新幼苗以槭树科(Aceraceae)和松科(Pinaceae)为主。其中,红桦幼龄林中优势种红桦更新较好,而熟林和过熟林中幼苗更新极差。群落更新受群落密度的影响较大,乔木的胸高断面积和灌木盖度都与林下更新幼苗和幼树密度存在一定的负相关关系,随胸高断面积和灌木盖度的增加幼苗幼树呈减小趋势;草本植物的盖度对幼苗的更新密度的影响比较复杂,没有明显的趋势。此外,红桦林择伐迹地的研究表明,择伐能明显促进红桦的天然更新,小面积择伐更新50年后,尽管红桦林物种组成上没有变化,但红桦种群的比重及其幼苗、幼树的密度明显增加。
     (3)秦岭红桦林的林隙形成方式主要以自然立枯和折干为主,林隙密度约为11.42个hm-1;林隙形成木多1-2株形成木形成,3株以上林隙形成木导致的林隙较少;多数林隙由优势种红桦导致或者参与形成;林隙平均面积(林冠隙)约为73.71±21.54m2,多数林隙面积在20-80m2范围;林隙下幼苗组成以红桦的为主,红桦幼苗在60m2以上的林隙中更新较好,说明林隙更新是红桦成功更新的一种重要方式,且林隙面积越大越利于红桦幼苗的建立。
     (4)空间格局分析是揭示群落和种群生态学过程的有效手段。天然红桦林中,红桦种群整体表现为随机分布,但由于其依赖于扰动进行更新,幼树主要表现为小尺度聚集型分布。红桦不同发育阶段的空间关系表明,红桦大径级个体和幼树呈现明显的负关联,说明大径级红桦对红桦幼树有一定的排斥作用,这种现象可能由于大径级红桦树冠的遮阴作用抑制幼苗的建立。此外,红桦幼树与立木残干在空间分布上呈明显的正关联,进一步证明红桦依赖于树木残干导致的林隙干扰进行斑块更新。
     (5)红桦的种子为具膜质翅的小型坚果,长宽约为1.5-2mm。红桦种子具有较强的扩散能力,种子雨强度随着离母株的距离先增加后减少,在离母株20-30m处的种子雨强度最大。红桦种子雨强度受风力和风向的影响较大,即使在逆风方向种子也能传播到100m以外。红桦种子成熟进入种子库中,大部分被截留在枯枝落叶层,少部分进入腐殖质层,其中大约50%的种子具有活性。红桦强大的种子雨强度和扩散能力为其保存着数量庞大的种子库,为红桦幼苗的补充和种群的持续提供了基础。
     (6)秦岭红桦林群落中,红桦-华山松、红桦-华山松-牛皮桦、和红桦-牛皮桦-巴山冷杉三个群落的稳定性最高,其次为红桦-五裂槭-华山松、红桦-辽东栎、红桦-牛皮桦和红桦-华西枫杨。红桦纯林和红桦-太白杨-少脉椴的稳定性最差。从海拔角度看,海拔在2300-2600m范围内红桦群落的稳定性最高,说明这个海拔范围是秦岭红桦群落最稳定的分布区域。对天然红桦群落稳定性影响最大的五个因子是:枯落物厚度、乔木竞争指数、乔木幼苗、幼树及成树的比例。Godron稳定性测定方法与稳定性指数法对群落稳定性的评价结果基本一致。群落物种多样性在群落稳定性方面起到很重要的作用,但二者并不一致,并不能完全代表群落的稳定性,因此不能机械的用多样性判断群落的稳定性,要结合群落的结构、树种特征、立地条件进行具体分析,综合评价群落的稳定状况。
     从环境条件看,秦岭中高海拔区域气候温凉湿润且气候波动较小、没有极端的恶劣气候,这就为红桦形成稳定群落提供了优越的环境条件,红桦群落的结构特征也证明了其对环境的高度适应性,因此红桦在秦岭不同区域都能在相似的海拔范围内形成稳定的群落类型;从种群角度看,优势种红桦能形成庞大的活性种子库,并能依赖林隙干扰进行幼苗补充保持其种群的延续性;此外,林隙干扰通过调节林分环境维持群落内物种组成和多样性,使红桦群落始终保持相对稳定的结构组成。通过这种机制,自然条件下红桦群落表现为时空异质的斑块聚集体,呈现局部过渡而整体稳定。因此,只要干扰存在,红桦就可以在秦岭长期存在,形成稳定的植被类型。
With the worsening of ecological environment over the world, exploring the mechanismof the biological and environmental interactions and adaptation mechanism has been a hotissue in today's ecological studies. Therein, the stability of forest communities and theirmaintaining mechanism is one important aspect. As a key region of the terrestrial ecosystemin China, the Qinling Mountains has been a hotspot over the global forest research. Betulaalbosinensis is an important vegetation type in Qinling Moutains. The palynological evidenceindicates that the Betula forests have been existing as zonal forests at geological period andmodern times in Qinling Moutain. However, the published reports on B. albosinensis forestsuggest that the natural regeneration of B. albosinensis in mature B. albosinensis forests ispoor, and it is impossible for B. albosinensis to keep their dominance for long time. So, thesereporters conclude that B. albosinensis is one of successional series and would be replaced bythe climax species. Until now, there is no a clear conclusion about the stability of B.albosinensis forests. Therefore, in order to determine the stability of B. albosinensiscommunities and its predominant mechanism in the Qinling Mountains, we studied thepopulation and community characteristics as well as the stability of the B. albosinensiscommunities from the viewpoints of population, community and environmental factors. Theinformation obtained is also useful from ecological and silvicultural perspectives. The mainresults were as follows:
     1. There exist182tracheophyte plant species, belong to128genera and66families in B.albosinensis forest of Qinling Mountains. Of all the plant species, tree layer shares39speices,18genera of16families; shrub layer shares54species,34genera of21families; herb layershares82species,76genera of32families. Besides, there are8vine species, belong to6genera and5families. World-widely distributed families dominate the flora of the B.albosinensis forest, while the distribution types of plant genera is dominated by temperategenera. This well suggests that there are clear temperate characteristics in B. albosinensisforest. From structural characteristics of B. albosinensis communities, it can be found thatphanerophytes occupied a dominant position among all life form spectra, and deciduousbroad-leaved species accounts for most. It indicates a temperate climate characteristic in B. albosinensis forest region. According to the appearance and dominant species composition,the B. albosinensis communities are divided into nine community types: B. ablosinensiscommunity、 B. ablosinensis-Quercus liaotungensis community、 B. ablosinensis-Aceroliverianum-Pinus armandii community、B. ablosinensis-Populus purdomii-Tilia latevirenscommunity、B. ablosinensis-Pterocarya insignis community、B. ablosinensis-Pinus armandiicommunity、B. ablosinensis-Pinus armandii-Betula utilis community、B. ablosinensis-Betulautilis-Abies fargesii community、B. ablosinensis-Betula utilis community.
     2. The study on the regeneration of B. albosinensis communities indicated: the seedlingand sapling pool of B. albosinensis communities is dominated by Aceraceae species andPinaceae species. The seedlings of B. albosinensis recruitment are abundant in young B.albosinensis communities and scarce in mature communities. Dense tree layer and shrub layerrestrict the regeneration of tree species. The density of seedlings and saplings has a significantnegative correlation both with tree basal area and shrub coverage. Differently, there was nosignificant relationship between seedling and sapling pool and herb coverage. In addition, alarge number of recruitments were found in stands with subsequent regenerationapproximately50years after strip clearcutting. After stripclearcutting, the sudden exposure ofpreviously forested lands andmore sunlight reaching the forest floor seemed responsible forthe successful regeneration of sunlight-loving B. albosinensis.
     3. The gap characteristics and disturbance regime in the B. albosinensis forest in theQinling Mountains were studied, including the type, quanity and causal factors of gaps andthe type, number, species composition and size structure of gap maker. The results indicatedthat the average gap area was73.71±21.54m2, and65.5%of the gaps were between20m2and80m2. Most gaps (78.1%) were caused by one or two standing death, and few werecaused by three or more gap makers. B. albosinensis were the major gap makers, and it wasmost possible to create gap by standing death. There was no apparent change between gap andnon-gap in species compostion, but in species abundance. In the gaps, the seedlings andsaplings of B. albosinensis were the main gap filler, and the large gap was more suitable for B.albosinensis regeneration. The results suggested that B. albosinensis depends on canopy gapsfor pulsed recruitment, which may make them capable of maintaining population stability.
     4. In order to understand the recruitment mechanism and recovery process of Betulaalbosinensis forest, using data collected from1hm2plots, univariate and bivariate O-ringfunctions were employed to determine spatial distribution of standing trees and snags indifferent age classes and correlate standing trees and snags. The results indicated that all B.albosinensis individuals showed a random distribution in space. B. albosinensis saplings weresignificantly clustered as a whole at the range from0to10m, but the pattern intensities decreased with increasing age so that large trees showed a stochastic spatial distribution atmost scales. In addition, patterns in the distribution of B. albosinensis saplings appear topersist and were consistent with highly aggregated patterns of snags caused by naturaldisturbances across the stand. Findings suggest cohorts of the B. albo-sinensis populationQinling Mountains are spatially clumped and the aggregation of different cohorts representspulsed recruitment after canopy disturbance.
     5. We studied the seed dispersal property, the seed bank and the germinationcharacteristics of B. albosinensis seeds. We found the seed density in seed rain is3951±2119ind/m2in the range of100m from mother tree. The seed rain intensity is maximum in thedistance10-30m from the mother tree and it is significantly difference in the differentdirection due to wind. In the seed bank ranged from0to50m from B. albosinensis cohort, thevisible seed density in the up litter layer was4029±2424ind/m2, and the density in the lowerhumus layer762±456ind/m2. The visible seed density estimated from the seeds collected inthe litter layer was significant higher than that estimated from the seeds on the soil surface.Besides, the recorded germination rates found that more than half of seeds in the seed bankwere active. The high output and dispersal capacity of B. ablosinensis them have anoverwhelming advantage in density and space occupation in the seed bank of their range.
     6. We studied the community sability of B. albosinensis communities in the QinlingMountains with Godron stability index method and principal component analysis method. Theresults indicated that B. ablosinensis-Pinus armandii community,B. ablosinensis-Pinusarmandii-Betula utilis community and B. ablosinensis-Betula utilis-Abies fargesii communityare the most stable community types in the B. albosinensis forest of Qinling Mountains, ofwhich the B. albosinensis communities at2200-2600m range of altitude were most stable,suggesting an optimum environment for B. albosinensis. Additionally, the results showed thatthe thickness of fallen leaves, trees competition index, the quantity proportion of seedlings,saplings and adults were the main factors influencing the community stability. The evaluationresult on the community stability from Godron stability index is consistent to the resultexamined by principal component analysis method. The species diversity index is a importantfactor in accessing the stabiligy of a community, However, we could not ascertain the stabilityof community only according the diversity index due to the interaction of other factors.
     The results above indicate that B. albosinensis forest in the Qinling Mountains is a stablevegetation type. On the one hand, high seed output and dispersibility make B. ablosinensispopulation have a large seed bank in density and space occupation.On the other hand, the B.ablosinensis population prone to cause canopy gaps under the natural disturbances (e.g.,windstorms, floods, heavy snows), which would provide a ideal environment for their regeneration. The rapid growth after germination of B. ablosinensis seeds can colonize rapidlythe new patchs created by canopy gaps, and than make them persist and dominate. At thesame time, the frequent canopy gaps also can reduce the dominance of the bettershade-tolerant species and maintain the typical species compostion. With the help of canopydisturbance, B. albosinensis achieve a stable mosaic structure of different-spatiotemporalcohorts. Besides, environment condition is also important for the persistence of B.ablosinensis forest. The altitude range between2000m and2800m in the Qinling Mountainshas a stable and cool-warm moist climate, which is most adaptive for the growth of B.albosinensis. Therefore, B. ablosinensis that distributes in the cool-warm moist zone betweenthe temperate deciduous broadleaf forest and the cold-temperate conifer forest in QinlingMountains attain stability.
引文
安丽娟,朱志红,王孝安,郭华.2007.子午岭马栏林区主要森林群落的稳定性分析.西北植物学报,27(5):0859~0863
    安树青,朱学雷,王峥峰.1999.海南五指山热带山地雨林植物物种多样性研究.生态学报,19(6):803~809
    白登忠,谢寿安,史睿杰,成洪刚.2012.秦岭土壤环境变化对土壤动物群落的影响.西北林学院学报,27(6):1~7.
    陈灵芝.1993.中国的生物多样性-现状及其保护对策.北京:科学出版社,1~99,99~113,210~212.
    陈高,代力民,范竹华,王庆礼.2002.森林生态系统健康及其评估监测.应用生态学报,13(5):605~610.
    丛沛桐,赵则海,张文辉,史军,祖元刚.2000.东灵山辽东栎群落演替的连续时间马尔可夫过程研究.木本植物研究,20(4):438~443
    曹子林,林思祖,杨梅,刘洪波,曹光球.2004.武夷山槠栲林光照、温度和湿度与林隙结构及年龄的回归分析.西北植物学报,4(1):105~110
    曹建华,李小波,赵春梅,蒋菊生,谢贵水.2007.森林生态系统养分循环研究进展.热带农业科学,27(6):68~78.
    覃光莲,杜国祯.2005.高寒草甸植物群落中物种多样性与群落变异性的关系及其机制初探.生态学杂志,24(11):1303~1307.
    程东升,黄海明,张大勇,雷光春,Hanki I.1999.集合种群动态:理论与应用,生物多样性,7(2):81~90.
    党承林.1998.植物群落的冗余结构-对生态系统稳定性的一种解释.生态学报,18(6):578~583.
    党承林,王崇云,王宝荣,李彦玲,黄其明.2002.植物群落的演替与稳定性.生态学杂志,21(2):30~35.
    丁圣彦,卢训令.2006.伏牛山和鸡公山自然保护区植物区系比较.地理研究,25(1):62~70
    丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因.植物学报,40(8):755~760.
    段文标,王晶,李岩.2008.红松阔叶混交林不同大小林隙小气候特征.应用生态学报,19(12):2561~2566.
    冯维波,于蜀.1996.关于环境恶化与保护的经济学思考.环境保护,6:4~46.
    方正,高淑贞.1963.秦岭太白山南北坡的植被垂直带谱.植物生态学与地植物学丛刊,l(1-2):162~163.
    傅抱璞等.1982.秦岭太白山夏季的小气候。地理学报,37(1):88~97.
    傅志军,郭俊理.1994.太白山红桦林的初步研究.植物生态学报,18(3):261~270.
    傅志军.1995.太白山红桦林的排序.西北植物学报,15(4):336~338.
    葛宝明,鲍毅新,郑祥.2004.生态学中关键种的研究综述.生态学杂志,23(6):102~106
    高贤明,陈灵芝.1998.北京山区辽东栎(Quercus liaotungensis)群落物种多样性的研究.植物生态学报,22(1):23~32.
    巩小强.2011.红桦树在林业生产中的开发与应用.中国林副特产,3:98~100.
    巩文.2003.桃河林区云、冷杉林分类型的多样性及稳定性.中南林学院学报,23(2):71~75.
    郭华,王孝安,肖娅萍.2005.秦岭太白红杉种群空间分布格局动态及分形特征研究.应用生态学报,16(2):227~232
    郭志华,肖文发,蒋有绪.2003.遥感在林冠动态监测研究中的应用.植物生态学报,27(6):851~858.
    郭垚鑫,康冰,李刚,王得祥,杨改河,王大伟.2011.小陇山红桦次生林物种组成与立木的点格局分析.应用生态学报,22(10):2574~2580.
    何凡能,葛全胜,戴君虎,林珊珊.2007.近300年来中国森林的变迁.地理学报,26(1):30~40.
    韩博平.1993.生态系统稳定性研究进展.生态与环境论丛,80~83.
    韩有志,王政权.2002.森林更新与空间异质性.应用生态学报,13(5):615~619
    郝黎仁,樊元,郝哲欧.2003. SPSS实用统计分析.北京:中国水利水电出版社.
    洪伟,吴承桢,林成来,赖建明.2000.福建龙栖山森林群落林窗边缘效应研究.林业科学,36(2):33~38.
    侯向阳,韩进轩.1997.长白山红松林主要树种空间格局的模拟分析.植物生态学报,21(3):242~249
    黄国卿,张惠军,王俊清.1988.洮坪红桦林皆伐迹地中幼林经营措施及效果初步探讨.甘肃林业科技,1:1~11.
    黄鹤羽,敖复.1982.红桦林皆伐迹地林粮间作促进天然更新的初步研究.林业科学,18(3):335~339.
    黄建辉,1994.生态系统内的物种多样性对稳定性的影响.见:钱迎倩,马克平(主编),生物多样性研究的原理与方法.北京:中国科学技术出版社,178~191.
    黄全能,陈存及,邱尔发,梁一池.1998.红锥天然林群落特征研究.亚热带植物通讯,27(2):7~11
    江洪.1992.云杉种群生态学.北京:中国林业出版社
    姜景民.1990.中国桦木属植物地理分布的研究.林业科学研究,3(1):55~62
    金红喜,杨占彪,袁彩霞等.2009.六盘山4种类型森林群落天然更新初探.西北林学院学报,24(1):93~97
    金永焕,李敦求.2005.长白山区次生林恢复过程中天然更新的动态.南京林业大学学报(自然科学版),29(5):65~68
    康华靖,刘鹏,陈子林,廖承川,李成惠,陈卫新,雷祖培.2007.不同生境香果树种群的径级结构与分布格局.林业科学,43(12):22~27.
    梁建萍,王爱民,梁胜发.2002.干扰与森林更新.林业科学研究,15(4):490~498
    雷妮娅,陈勇,李俊清,唐晓军.2007.四川小凉山珙桐更新及种群稳定性研究.北京林业大学学报,29(1):26~30.
    雷祖培,康华靖,张书润,林端丰,周秉良.乌岩岭国家级自然保护区种子植物区系的特征分析.武汉植物学研究,27(3):290~296.
    吕世丽,李新平,李文斌,慕小艳.2013.牛背梁自然保护区不同海拔高度森林土壤养分特征分析.西北农林科技大学(自然科学版),41(4):1~9.
    李博,杨持.2000.生态学.北京:高等教育出版社.
    李家俊.1989.太白山自然保护区综合考察论文集.西安:陕西师范大学出版社,141~158
    李猛,段文标,陈立新.2011.红松阔叶混交林林隙光量子通量密度的时空分布格局.应用生态学报,22(4):880~588.
    李明辉,何风华,刘云,潘存德.2005.天山云杉种群空间格局与动态.生态学报,25(5):1000~1006
    李楠,杨永川,李百战.2009.重庆铁山坪残存常绿阔叶林群落结构及动态研究.西南大学学报(自然科学版),31(7):12~20
    李新荣,张景光,刘立超,陈怀顺,石庆辉.2000.我国干早沙漠地区人工植被与环境演变过程中植物多样性的研究.植物生态学报,24(3):257~261
    李兆元,傅抱璞.1984.山地气候文集.北京:气象出版社,87~97
    李振基,刘初钿,杨志伟,何建源,林鹏.2000.武夷山自然保护区郁闭稳定甜槠林与人为干扰甜槠林物种多样性比较,植物生态学报,24(1):64~68
    李媛,陶建平,王永健,余小红,席一.2007.亚高山暗针叶林林缘华西箭竹对岷江冷杉幼苗更新的影响.植物生态学报,31(2)283~290
    李文良,张小平,郝朝运,吴建勋,王磊,王静,张姗姗.2009.湘鄂皖连香树种群的年龄结构和点格局分析.生态学报,29(6):3221~3230
    林玥,任坚毅,岳明.2008.太白山红桦种群结构与空间结构.植物生态学报,32(6):1335~1345.
    蔺菲,郝占庆,叶吉.2006.苔藓植物对植物天然更新的影响.生态学杂志,25(4):456~460
    刘灿然,马克平.1997.生物群落多样性的测定方法.生态学报,17(6):601~610.
    刘德广.2001.荔枝牧草复合系统节肢动物群落多样性与稳定性分析.生态学报,21(10):1596~1601.
    刘广金,土小宁,赵士洞等.2001.秦岭松栎林带生物量及其营养元索分布特征.林业科学,37(1);28~36.
    刘贵华,肖蒇,陈漱飞,张全发.2007.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用.自然科学进展,17(6):741~747.
    刘建国.1992.当代生态学博论.北京:中国科学技术出版社.
    刘慎鄂文集.1985.北京:科学出版社,74~85.
    刘世荣,唐守正.2002.我国天然林保护与可持续经营.生态安全与生态建设(主编李文华,王如松),中国气象出版社,85~89
    刘守江,苏智先.2004.四川九顶山西坡红桦林天然种群空间格局及更新研究.应用生态学报,15(1):1~4.
    刘艳红,赵惠勋.2000.干扰与物种多样性维持理论研究进展.北京林业大学学报,22(4):101~105.
    刘振亚,安定国,张瑛春,李健.2002.小陇山林业志.天水:小陇山林业实验局
    刘足根,朱教君,袁小兰等.2007.辽东山区长白落叶松天然更新调查.林业科学,43(1):42~49
    刘贵华,肖蒇,陈漱飞,张全发.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用.自然科学进展,17(6):741~747.
    柳新伟,周厚诚,李萍,彭少麟.2004.生态系统稳定性定义剖析.生态学报,11(24):2635~2640.
    繆宁,刘世荣,史作民等.2009.川西亚高山红桦-岷江冷杉林优势种群的空间格局分析.应用生态学报,20(6):1262~1270.
    缪宁,刘世荣,史作民,喻泓,刘兴良.2009.川西亚高山红桦-岷江冷杉林优势种群的空间格局分析.应用生态学报,20(6):1263~1270.
    马克平.1993.试论生物多样性的概念.生物多样性,1(1):20~22
    马克平,黄建辉,于顺利,陈灵芝.1995.北京东灵山地区植物群落多样性的研究Ⅱ——丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268~277
    马丹炜.2008.植物地理学.北京:科学出版社
    马姜明,李昆.2004.森林生态系统稳定性研究的现状与趋势.世界林业研究,17(1):15~19.
    潘文石等.秦岭大熊猫的自然庇护所.北京:北京大学出版社
    彭珂珊.1993.西北地区生态环境恶化致灾与改良对策.自然灾害学报,2(4):44~52.
    彭少鳞,向言词.1999.植物外来种入侵及其对生态系统的影响.生态学报,19(4):560~569.
    彭少麟.1987.森林群落稳定性与动态测度.广西植物,7(1):67~72.
    彭少鳞.1996.南亚热带森林群落动态学.北京:科学出版社.
    彭军,李旭光,付永川,刘玉成.2000.重庆四面山常绿阔叶林建群种的种子雨和种子库.应用生态学报,11(1):22~24.
    乔匀周,王开运,张远彬.2007.CO2浓度升高对两个种植密度下红桦生长和养分含量的影响.生态学杂志,26(3):301~306.
    秦自生,泰勒,蔡绪慎.1993.卧龙大熊猫生态环境的竹子与森林动态演替.北京:中国林业出版社,1~23,211~319.
    曲仲湘,文振旺.琅琊山林木现况分析.植物学报,3:349~369
    任明迅,吴振斌.2001.植物的冗余及其生态学意义Ⅰ.大型水生植物生长冗余研究.生态学报,21(7):1072~1078.
    任坚毅,林玥,岳明.2008.太白山红桦种子的萌发特性.植物生态学报,32(4):883~890.
    桑卫国,马克平,郑豫.1999.森林动态模型概论,植物学通报,16(3):193~200.
    尚占环,任国华,龙瑞军.2009.土壤种子库研究综述—规模、格局及影响因素.草业学报,18(1):144~154
    孙儒泳,李庆芬,刘翠娟,娄安如.2002.基础生态学.北京:高等教育出版社
    孙儒泳,李博,诸葛阳,尚玉昌.1993.普通生态学.北京:高等教育出版社,147.
    孙曦浩,李医民,华静,贡崇颖.2007.生物系统冗余结构的Type-2型数学模型.模糊系统与数学,21(5):144~151.
    孙敏.1993.经济社会发展与环境保护.北京:中国环境科学出版社
    苏波,韩兴国,黄建辉,渠春梅.2000.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略.生态学报,20(2):335~343
    宋新章,肖文发.2006.林隙微生境及更新研究进展.林业科学,42(5):114~119.
    苏建文,岳明,王永军.2006.太白山红桦林林隙特征的研究.应用与环境生物学报,12(2):195~199.
    孙儒泳.2001.动物生态学原理(第三版).北京:北京师范大学出版社,360~378.
    汪超,王孝安,郭华,范玮熠,朱志红.2006.黄土高原马栏林区主要森林群落物种多样性研究.西北植物学报,26(4):791~797.
    王荷生.1992.植物区系地理.北京:科学出版社
    王世雄,王孝安,李国庆,郭华,朱志红.2010.陕西子午岭植物群落演替过程中物种多样性变化与环境解释.生态学报,30(6):1638~1647.
    王伯荪,彭少鳞.1997.植被生态学.北京:中国环境科学出版社.
    王伯荪.1987.植物群落学.北京:高等教育出版社,22~24,67~68.
    王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变.热带亚热带森林生态系统研究.1:142~156
    王伯荪.1998.植被的镶嵌体系.生态科学,17(2):1~7
    王得祥,刘建军,李登武,雷瑞德,兰国玉.秦岭山地华山松林群落学特征研究.应用生态学报,15(3):357~362
    王得祥,刘建军,陈海滨.1999.秦岭林区华山松种群结构与动态研究.14(1):48~53
    王国宏.2002.再论生物多样性与生态系统的稳定性.生物多样性.10(1):126~134.
    王国宏.2006.再论生态系统的多样性与稳定性.生物多样性,17(1):22~26
    文焕然.1981.近五千年来豫鄂湘川间的大熊猫.西南师范学院学报.(1):87
    吴邦兴.云南哀牢山徐家坝中山湿性常绿阔叶林动态和节律的研究.植物学报,37(12):969~977
    吴彦,刘庆,何海,林波,尹华军.2004.光照与温度对云杉和红桦种子萌发的影响.应用生态学报,15(12):2229~2232.
    吴彦,刘庆,乔永康,潘开文,赵常明,陈庆恒.2001.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.植物生态学报,25(6):648~655
    吴刚.1998.长白山红松阔叶混交林林冠空隙树种更新动态规律的研究.应用生态学报,9(5):449~452.
    吴明作,刘玉萃,姜志林.2001.栓皮栎种群生殖生态与稳定性机制研究.生态学报,21(2):225~230.
    吴重华,王吉忍,杨俊秀,吴国华.2001.太白山自然保护区外生菌根及菌根真菌调查研究.西北农林科技大学(自然科学版),29(2):56~60.
    邬建国.1992生态演替理论和模型.刘建国.当代生态学博论.北京:中国科学技术出版社,49~64
    吴征镒.1991.中国种子植物属的分布区类型.云南植物研究,Suppl4:1~139.
    吴征镒,周浙昆,李德铢,彭华,孙航.2003.世界种子植物科的分布区类型系统.云南植物研究,25(3):245~257.
    许再富.1995.生态系统关键种类型及管理对策.云南植物研究,17(3):331~335.
    熊文愈,骆林川.植物群落演替研究概述.生态学进展,6(4):229~235
    邢雪荣,韩兴国,陈灵芝.2000.植物养分利用效率研究综述.应用生态学报,11(5):785~790
    夏冰,邓飞,贺善安.1997.林窗研究进展.植物资源与环境学报,6(4):50~57.
    肖玲,王开运,张远彬.2006. CO2浓度和温度升高对红桦根际微生物的影响.生态学报,26(6):1701~1708
    肖化顺,陈端吕.植物群落的现代演替理论浅析.中南林业调查规划,25(3):60~62
    谢晋阳,陈灵芝.1994.暖温带落叶阔叶林的物种多样性特征.生态学报,14(4):337~344.
    谢晋阳,陈灵芝.1997.中国暖温带若干灌丛群落多样性问题的研究.植物生态学报,21(3):197~207.
    薛建辉.2006.森林生态学.北京:中国林业出版社
    徐秀梅.1997.宁夏六盘山辽东栎林群落特征分析.宁夏农林科技,(2):15~18.
    徐秀兰,吴学宏,张国珍,张文华,李健强.2006.甜玉米种子携带真菌与种子活力关系分析.中国农业科学,39:1565~1570
    阳含熙,潘愉德,伍业钢.1988.长白山阔叶红松林马氏链模型.生态学报,8(3):211~219.
    杨慧,娄安如,高益军等.2007.北京东灵山地区白桦种群生活史特征与空间分布格局.植物生态学报,31(2):272~282
    岳明,任毅,党高弟等.2000.佛坪国家级自然保护区植被垂直带谱及其与邻近地区的比较.武汉植物学研究.18(5):375~382.
    岳明,张林静,党高弟等.2002佛坪国家级自然保护区植物群落物种多样性与海拔梯度的关系.地理科学,22(3):349~354.
    岳天祥,马世俊.1991.生态系统稳定性研究.生态学报,11(4):361~366
    岳天祥.2001.生物多样性研究及其问题.生态学报,3(24):462~467.
    杨万波,兰士波,李红艳.桦木属植物地理分布及利用价值述评.黑龙江生态工程职业学院学报,25(4):17~29
    杨洪晓,张金屯,吴波,李晓松,张友炎.2006.毛乌素沙地油蒿种群点格局分析.植物生态学报,30(4):563~570
    于顺利,郎南军,彭明俊,赵琳,郭永清,郑科,张立新,温绍龙,李晖.2007.种子雨研究进展.生态学杂志,26(10):1646~1652
    曾德慧,姜风歧.1996.樟子松人工固沙林稳定性研究.应用生态学报,7(4):337~343.
    臧润国,刘静艳,董大方.1999.林隙动态与森林生物多样性.北京:中国林业出版社,73~200.
    臧润国,郭忠凌,高文韬.1998a.长白山自然保护区阔叶红松林林隙更新的研究.应用生态学报,9(4):349~353.
    臧润国,刘涛,郭忠凌.1998b.长白山自然保护区阔叶红松林林隙干扰状况的研究.植物生态学报,22(2):135~142.
    臧润国,徐化成.1998c.林隙干扰研究进展.林业科学,34(1):1~22.
    邹春静,王庆礼,韩士杰.2001.长白山暗针叶林建群种竞争关系的研究.应用与环境生物学报,7(2):101~105.
    程东升3,黄海明张大勇,雷光春,Hanki I.1999.集合种群动态:理论与应用,生物多样性,7(2):81~90.
    张步.2006.生物多样性对生态系统功能及其稳定性的影响.中国生态农业学报,2006,4(14):12~15
    张昌贵,李景侠,强晓鸣.2009.陕西牛背梁国家级自然保护区生态评价。西北农林科技大学(自然科学版),37(2):73~80.
    张继义,赵哈林,张铜会,赵学勇.2004.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态.28(1):86~92.
    张继义,赵哈林.2003.植物群落稳定性研究评述.生态学杂志.22(4):42~48.
    张继义,赵哈林.2010.短期极端干旱事件干扰下退化沙质草地群落抵抗力稳定性的测度与比较.生态学报,30(20):5456~5465.
    张健,郝占庆,宋波,叶吉,李步杭,姚晓琳.2007.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性.应用生态学报,18(8):1681~1687.
    张金良,王万云,周灵国.2005.陕西自然保护区.西安:陕西旅游出版社,12~14.
    张金屯.1995.植被数量生态学方法.北京:中国科学技术出版社
    张金屯.1998.植物种群空间分布点格局分析.植物生态学报,22(4):344~349
    张金屯.2004.数量生态学.北京:科学出版社.
    张金屯,孟东平.2004.芦芽山华北落叶松林不同龄级立木的点格局分析.生态学报,24(1):35~40
    张立敏,陈斌,李正跃.应用中性理论分析局域群落中的物种多样性及稳定性.生态学报.2010,30(6):1556~1563.
    张玲,方精云.2004.太白山南坡土壤种子库的物种组成与优势成分的垂直分布格局.生物多样性,12(1):123~130.
    张全国,张大勇.2002.生物多样性与生态系统功能:进展与争论.生物多样性,10(1):49~60.
    张思玉,郑世群.2001.笔架山常绿阔叶林群落结构特征.林业科学,37(1):111~116
    张文辉,卢志军.2002.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学报,22(5):1093~1101.
    张文辉,卢志军,李景侠,刘国彬.2002.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报,22(3):476~483
    张文辉,许晓波,周建云,谢宗强.2005.濒危植物秦岭冷杉种群空间分布格局及动态.西北植物学报,25(9):1840~1847
    张煜星.2006.中国森林资源1950—2003年结构变化分析.北京林业大学学报,28(6):80~87
    张知彬,王祖望,李典谟.1998.生态复杂性研究—综述与展望.生态学报,18(4):433~441.
    赵传燕,别强,彭焕华.2010.祁连山北坡青海云杉林生境特征分析.地理学报,65(1):113~121
    赵平,彭少麟,张经炜.2000.恢复生态学-退化生态系统生物多样性恢复的有效途径.生态学杂志,19(1):53~58.
    赵平,彭少麟,张经炜.2000.恢复生态学-退化生态系统生物多样性恢复的有效途径.生态学杂志,19(1):53~58.
    赵文智,程国栋.2001.干旱区生态水文过程研究若干问题评述.科学通报,46(22):1851~1857.
    赵秀海.1996.长白山红松针阔混交林倒木对天然更新的影响(Ⅱ).林冠空隙对森林天然更新的影响.吉林林学院学报,12(1):5~7.
    赵秀海.张春雨,郑景明.2005.阔叶红松林林隙结构与树种多样性关系研究.应用生态学报,16(12):2236~2240.
    郑元润.2000.森林群落稳定性研究方法初探.林业科学,36(5):28~32.
    周彬,王戈,唐源盛,张炜银,臧润国.2010.中国西南山区天然林退化分区.林业科学研究,23(4):612~616.
    周德彰,杨玉坡.1980.四川西部高山林区桦木更新特性的初步研究.林业科学,20(2):154~156.
    周集中,马世骏,1990.生态系统的稳定性(现代生态学透视).北京:科学出版社,54~71.
    周隽,国庆喜.2007.林木竞争指数空间格局的地统计学分析.东北林业大学学报,35(9):42~44.
    周纪伦,郑师章,杨持.1992.植物生态学.北京:高等教育出版社
    毛志宏,朱教君.2006.干扰对植物群落物种组成及多样性的影响.生态学报,26(8):2696~2701.
    朱教君,李凤芹.2007.森林退化/衰退的研究与实践.应用生态学报,18(7):1601~1609
    朱志诚.1979.秦岭植被的变迁.西北大学学报(自然科学版),2:76~85
    朱志诚.1991b.秦岭及其以北黄土区植被地带性特征.地理科学,11(5):157~163.
    朱志诚.1982.关于秦岭及陕北黄土高原区辽东栎林的初步研究.植物生态学与地植物学丛刊,6(2):95~104.
    朱志诚.1991a.秦岭太白山桦林的稳定性.武汉植物学研究,9(2):169~175.
    竺可祯.1973.中国近五千年来气候变迁的初步研究.气象科技增刊(1).北京:国家气象局科技情报研究所.
    祝延成.1994.植物生态学.北京:高等教育出版社.
    Antolin M F and Addicott J F. Colonization, among short movement, and local populationneighborhoods of two aphid species. Oikos,61:45~53
    Akashi N.1989.The spatial pattern and canopy-understory association of trees in a cool temperate,mixed forest in western Japan. Ecological Research,11(3):311~319
    Barbour M.1987.Terrestrial Plant Ecology(2nd). Menlopark, California: The Benjiamin/CummingsPublishing Company,Inc,252~254.
    Beatley J C.1974. Phenological events and their environmental triggers in Mojava Desert ecosystems.Ecology,55:856~863.
    Beatty S W.1984.Influence of microtopography and canopy species on spatial patterns of forestunderstory plants. Ecology,65:1406~1419.
    Beedy A and Brennan A M.1997. First Ecology. London: Chapman&Hall.
    Begon M. et al.1990. Ecology: Individuals, populations and Communities.2nd ed. Boston: BlackwellScientific Publications,816~844.
    Borchsenius F, Kj r Nielsen P, Lawesson J E.2004. Vegetation structure and diversity of an ancienttemperate deciduous forest in SW Denmark.Plant Ecology,175(1):121~135
    Briand F,1983. Environmental control of foodweb structure. Ecology,64:253~263.
    Bazzaz F A. Plant species diversity in old-field successional ecosystem southern lllinois. Ecology,56:485~488
    Caldwell M M, Pearcy R W.1994. Exploitation of environmental beterogeneity by plants:Ecophysicalprocesses above and below ground. San Diego: Academic Press.
    Canham C D.1989. Different response to gaps among shade tolerant tree species. Ecology,70(3):548~550.
    Chazdon R L, Colwell R K, Denslow J S.1999.Tropical tree richness and resourse-based niches.Science,285:1459.
    Clements F E.1936. Nature and structure of the climax. Journal of Ecology,24:252~284
    Condit R, Ashton P S, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N,Hubbell S P, FosterR B, Itoh A, LaFrankie J V, Lee H S, Losos E, Manokaran N, Sukumar R, Yamakura T.2000. Spatialpatterns in the distribution of tropical species. Science,288(5470):1414~1418
    Connell J H, Slatyer R O.1977. Mechanisms of succession in natural communities and their role incommunity stability and organization. American Naturalist,111:1119~1144
    Connell J H.1978. Diversity in tropical rain forests and coral reefs.Science,199(4335):1302~1310
    Copley J.2000.Ecology goes underground. Nature,406:452~454.
    Currie D J.1991. Energy and large-scale patterns of animal-and plant-species richness. AmericanNaturalist,137:27~49
    Dale MRT.1999. Spatial pattern analysis in plant ecology. London: Cambridge University Press
    Daufresne T, Loreau M.2001. Ecological stoichiometry, primary producer-decomposer interactionsand ecosystem persistence. Ecology,82(11):30.
    Denslow J S, Spies T.1990. Canopy gaps in forest ecosystems: an introduction. Canadian Journal ofForest Research,20(5):642~648.
    DeAngelis D L.1975. Stability and connectance in food web models. Ecology,56:238~243.
    Diaz S, Cabido M.2001. Vive la difference: plant function diversity matters to ecosystem processes.Trends in Ecology and Evolution,16(11):646~655.
    Dunkerley D L.1997. Banded vegetation: survival under drought and grazing pressure based on asimple cellular automation model. Arid Environment,35(3):419~428.
    Elton C S.1958. The Ecology of Invasion by Animals and Plant, Chapman and Hall, London,143~153.
    Fiter A H, Graves J D.1998. Root product i on, turnover and res pirat ionunder two gras ssland typesalong an alt i tudinal gradient: Influence of temperature and solar radiation. Oecologea,114:20~30.
    Frank D A, McNaughton S J.1991. Stability increase with diversity in plant communities: empiricalevidence from the1988Yellow stone drought. Oiko,62:360~362.
    Frost I, Rydin H.2000. Spatial pattern and size distribution of the animal-dispersed Quercus robur intwo spruce-dominanted forests. Ecoscience,7:38~44.
    Fenner M, Thompson K.2005. The Ecology of Seeds. Cambridge: Cambridge University Press.
    Gardner M R and Ashby W R.1970. Connectance of large dynamic (cybernetic) systems: criticalvalues for stability. Nature,228:784.
    Getzin S, Dean C, He F, Trofymow, Wiegand K, Wiegand T.2006. Spatial pattern and competition oftree species in a Douglas-fir chronosequence on Vancouver Island. Ecography,29:671~682
    Godron M.1972. Some aspects of heterogeneity in grasslands of cantal. Statistical Ecology,3:397~415
    Goodman D.1975. The theory of diversity-stability relationship in ecology. Quarterly Review ofBiology,50:237~266.
    Grandpre L and Y Bergeron,1997. Diversity and stability of understory communities followingdisturbance in the southern boreal forest. Journal of Ecology,85:777~784.
    Greig-Smith P. Quantitative Plant Ecology. Oxford: Blackwell.1983:54~104.
    Grime J P,1998. Benefits of plant diversity to ecosystem: immediate, filter and founder effects.Journal of Ecology,86:902~910.
    Grimm V, Schmidt E, Wissel C.1992. On the appliation of stability concept in ecology. EcologicalModelling,63:143~161.
    Guo Y, Li G, Hu Y, Kang D, Wang D, et al.2013. Regeneration of Betula albosinensis in Strip Clearcutand Uncut Forests of the Qinling Mountains in China. PLoS ONE8(3): e59375.
    Hairston N G, J D Allan and R K Colwell.1968. The relationship between species diversity andstability: an experimental approach with protozoa and bacteria. Ecology,49:1091~1101.
    Hastings A,1968. The invasion question. Journal of Theoretical Biology,121:211~220.
    Hastings A,1988. Food web theory and stability. Ecosystem,69:1665~1668.
    Holling C S.1973. Resilience and stability of ecological systems. Annual Review of Ecology andSystematics,4: l~23.
    Hooper D U,Chapin Iii F S,Euel J J,Hector A.2005. Effects of biodiversity on ecosystemfunctioning:a consensus of current knowledge.Ecological Monographs,75:3~35
    Hoshino D, Nishimura N,Yamamoto S.2001.Age,size structure and spatial pattern of major treespecies in an old-growth Chamaecyparis obtusa forest,Central Japan.Forest Ecology and Management,152:31~43
    Houle G.1988. The soil seed bank of granite outcrop plant communities. Oiko,52:87~93.
    Howlett R, Dhan R.2000. Nature insight biodiversity. Nature,405:207.
    Hubbell S P.2001. The unified neutral theory of biodiversity and biogeography. Princeton: PrincetonUniversity Press,1~151.
    Huston M A.1994. Biological Diversity: the Coexistence of Species on Changing Landscapes. NewYork: Cambridge University Press
    Huston M, Smith T.1987. Plant succession: life history and competition. American Naturalist,130:168~198.
    IPCC. Climate change.2001. The scientific basis, contribution of Working Group1to the ThirdAssessment Report of the IPCC. Cambridge: Cambridge University Press.
    Kneeshaw D K, Bergeron Y.1998. Canopy gap characteristics and tree replacement in thesoutheastern boreal forest. Ecology,79:783~794
    King A N, Pjmm S I.1983.Complexity,diversity and stability:are conciliation of t heoretical andempirical results.American Naturalist,122:229~239
    Kneeshaw DD, Bergeron Y.1998. Canopy gap characteristics and tree replacement in the southeasternboreal forest.Ecology,79:783~794
    Kneeshaw DD, Burton PJ.1997. Canopy and age structures of some old sub-boreal Picea stands inBritishColumbia.Journal of Vegetation Science,8(5):615~626
    Koyama T.1984. Regeneration and coexistence of two Abies species dominating subalpine forests incentral Japan. Oecologia,62:156~161.
    Kershaw K A,Looney J H H.1985. Quantitative and Dynamic Plant Ecology,London:EdwardArnold
    Lertzman K P, Sutherland G D, Inselberg A, Saunders SC.1996.Canopy gaps and the landscapemosaic in a coastal temperate rain forest. Ecology,77(4):1254~1270
    Laurence D M, A Joshi, D J Borash.2000. Does population stability evolve? Ecology,81:1273~1285.
    Lemmans I. Simulation and future pretection of succession in a Swedish broad-leaved forest. ForestEcology and Management,48:305~319
    Legendre P, Fortin MJ.1989.Spatial pattern and ecological analysis.Plant Ecology,80(2):107~138
    Liu G H, Li W, Li E H, Yuan L Y, Davy A J.2006. Landscape-scale variation in seedbanks offloodplain wetlands with contrasting hydrology in China. Freshwater Biology,51(10):1862~1878
    Lonsdale W M.1988.Interpretating seed survivorship curves. Oikos,52:361~364.
    Loreau M,2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos,91:3~17.
    Lovelock J E.1990. Hands up for Gaia hypothesis. Nature,344:100~102.
    Lovelock J E.1992. Gaia as seen through the atmosphere. Atmosphere Environment,6:579~580.
    Lamont B B, Fox J E D.1981. Saptial pattern of six sympatric leaf varants and two size classes ofAcacia aneura in a semi-arid region of Western Australia. Oikos,37:73~79.
    MacArthur R,1955. Fluctuations of animal populations, and a measure of community stability.Ecology,36:533~537.
    MacArthur RH.1962. Some generalized theorems of natural selection. Proceedings of the NationalAcademy of Sciences,48:1893~1897
    Marks PL.1974. The role of pin cherry (PrunuspensylvanicaL.) in the maintenance of stability innorthern hardwood ecosystems. Ecological Monographs,44:73~78
    Margalefr.1975. Diversity, stability and mutuality in natural ecosystems. In: DobbenW.H.LOWE-MCCONNELLR.H.Leds unifying concepts in ecology. Wageningen: Centre for AgriculturalPublishing and Documentation,151~160.
    May R M,1972. Will a large complex system be stable? Nature,238:413~414.
    May R M.1973. Stability and Complexity in Model Systems. Princeton: Princeton University Press,447
    Martini A M Z, Santos F A M D, Prado P I, Jardim J G.2007. Community structure of vascular plantsin treefall gaps and fire-disturbed habitats in the Atlantic rainforest, southern Bahia, Brazil. RevistaBrasileira de Botanica,30(2):303~313
    McCann K S,2000. The diversity-stability debate. Nature,405:228~233.
    McGrady-Steed J, P M Harris and P J Morin.1997. Biodiversity regulates ecosystem predictability.Nature,390:162~165.
    McNaughton S J,1988. Diversity and stability. Nature,333:204~205.
    McNaughton S J.1977. Diversity and stability of ecological communities: a comment on the role ofempiricism in ecology. American Naturalist,111:515~525.
    McNaughton S J.1977. Diversity and stability of ecological communities: a comment on the role ofempiricism in ecology. American Naturalist,111:515~525.
    Michale E.1985. Seed ecology. London and New York: Chapman and Hall.57~116.
    Miyadokoro T, Nishimura N,Yamamoto S.2003.Population structure and spatial patterns of majortrees in a subalpine old-growth coniferous forest,central Japan.Forest Ecology and Management,182:259~272
    Naeem S and S B Li,1997. Biodiversity enhances ecosystem reliability. Nature,390:507~509.
    Naeem S.1998. Species redundancy and ecosystem reliability. Conservation Biology,12:39~45.
    Naeem S, L J Thompson and S P Lawler.1994. Declining biodiversity can alter the performance ofecosystem. Nature,368:734~736.
    Nakamura T.1985. Forest succession in the subalpine region of Mt, Fuji, Japan.Vegetation,64:15~27.
    Nakashizuka T.1991. Population dynamics of coniferous and broad-leaved trees in a Japanesetemperatemixed forest.Journal of Vegetation Science,2(3):413~418
    Norby R J.1994. Issues and perspectives for investigating root responsesto elevated atmosphericcarbon dioxide. Plant and Soil,165:9~20.
    Nathan R, Muller-Landau H C.2000. Spatial patterns of seed dispersal, their determinants andconsequences for recruitment. Trends in Ecology and Evolution,15:278~285.
    Oliver C D, Larson B C.1990. Forest Stand Dynamics. NewYork: McGraw-Hill, Inc.,1~140
    Odum E P.1983.Basic ecology. Sauders Collage Publishing. Hiladelphia.46~50.
    Pickett S T A, White P S.1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic,NewYork,472
    Pianka E R.1972. R and K selection or b and d selection? American Naturalist.106:581~588
    Pimm S L.1984.Th ecomplexity and stability of ecosystems.Nature,307:3221~3226.
    Poorter L, Bongers F,van Rompaey R S A R, Klerk M.1996. Regeneration of canopy tree species atfive sites in West African moist forest.Forest Ecology and Management,84:61~69
    Pregitzer K S, King J S, Burton J.2000. Response of tree fine roots to temperature. New Phytol,147(1):105~115.
    Primm S L, Raven P.2000. Biodiversity:extinction by numbers. Nature,403:321~326.
    Primm S L.1984. The complexity and stability of ecosystem. Nature,307:321~326.
    Putman RJ.1995. Community Ecology. London: Capman&Hall.
    Qu Z X. Wen Z X. Zhu K G.1952. An analytical study of the forest of the spirit valley, Nanking. Actabotanica Sinica,2(1):18~45.
    Rapport D J and Whitford W G.1999. How ecosystem respond to stress. Bioscience,49:193~202.
    Rapport D J,Whitford W G.1999. How ecosystem respond to stress. Bioscience,49:193~202.
    Richards J H, Galdwell M M.1987. Hydraulic lift: Substantial nocturnal water transport between soillayers by Artemisia tridentate roots. Oecologia,73:486~489.
    Ritter E, Dalsgaad L, Einborn K S.2005. Light, temperature and soil moisture regimes following gapformation in a semi-natural beech-dominated forest in Denmark. Forest Ecology and Management,206:15~33.
    Sang W, Chen L, Ma K. Research on succession model foroak of Mongolian Oak-Korean Pine(Quercus mongolica-Pinus koraiensis) forest. Acta Botanica Sinica,41(6):658~668.
    Robinowitz D, Repp J K.1980.Seed rain in a North American tall grass prairie. Journal of AppliedEcology,17:793~802.
    Simpson R L, Lerck M A, Parker V T.1989. Seed banks: General concepts and methodological issues.Ecology of Soil Seed Banks. New York: Academic Press,3~8.
    Sennhauser E B.1991. The concept of st ability in connection with the gallery forest s of the Chacoregion. Vegetation,94:1~13.
    Sansevero J B,Prieto P V,de Moraes L F D. Rodrigues P J P.2009. Natural regeneration inplantationsof native trees in lowland Brazilian Atlantic forest:community,structure,diversity and dispersalsyndromes.Restoration Ecology,19:379~389.
    Schulze E D, Galdwell M M, Canadell J, Mooney H A, Jackson R B, Parson D, Scholes R, Sala O E,Trimborn P.1988. Downward flux of water through roots. Oecologia,115:460~462.
    Sennhauser E B.1991. The concept of stability in connection with the gallery forests of the Chacoregion. Vegetation,94:1~13
    Sennhauser E B.1991.The concept of stability in connection with the gallery forests of the Chacoregion. Vegetation,94:1~13.
    Shrugart H H, West D C. Development of an Appalachian deciduous forest succession model and itsapplication to assessment of the impact of chestnut blight. Journal of Environmental management,5:161~179.
    Silvertown J W.1982. Introduction to plant population ecology. London and New York:Longman.20~22
    Spies T A, Franklin J F.1989. Gap characteristics and vegetation response in coniferous forests of thePacific Northwest. Ecology,70(3):543-545.
    Stoll P, Bergius E.2005. Pattern and process:Competition causes regular spacing of individuals withinplant populations. Journal of Ecology,83:395-403.
    Taylor A H, Huang J.2004.Canopy tree development and undergrowth bamboo dynamics inold-growth Abies-Betula forest in southwestern China. Forest Ecology and Management,200:347~360.
    Taylor A H,Qin Z.1996. Structure and dynamics of subalpine forests in the Wang Lang NaturalReserve, Sichuan, China. Vegetation,124:25~38.
    Taylor A H, Halpern C B.1991.The structure and dynamics of Abies magnifica forests in the southernCascade Range,USA. Journal of Vegetation Science,2(2):189~200.
    Taylor AH, Qin Z.1988.Tree replacement patterns in subalpine Abies-Betula forests, Wolong NaturalReserve, China. Vegetation,78:141~149
    Taylor AH,Qin Z.1988. Regeneration Patterns in Old-Growth Abies-Betula Forests in the WolongNatural Reserve, Sichuan, China. Journal of Ecology,76:1204~1218.
    Tilman D M and Downing J A.1994. Biodiversity and stability in grasslands. Nature,367:363~365.
    Tilman D,1994. Competition and biodiversity in spatially structured habitats. Ecology,75:2~16.
    Tilman D,1996. Biodiversity: population versus ecosystem stability. Ecology.77(2):350~363.
    Tilman D.2000. Causes, consequences and ethics of biodiversity. Nature,405:208~211.
    Tilman D, Kareivn P.1997. Spatial Ecology. Princeton, New Jersey, USA: Princeton University Press.
    Tilman D.2001. Functional diversity. In:Encyclopedia of Biodiversity(3). New York: AcademicPress,109~120.
    Veblen TT.1986. Age and size structure of subalpine forests in the Colorado Front Range.Bulletin ofthe Torrey Botanical Club,113(3):225~240
    Vivanco L,Austin AT.2008. Tree species identity alters forest litter decomposition throughlong-termplant and soil interactions in Patagonia,Argentina.Journal of Ecology,96:727~736
    Watt AS.1947. Pattern and process in the plant community. Journal of Ecology,35:1~22
    Walker BH.1992.Biodiversity and ecological redundancy.Conservation Biology,6:18~23.
    Werner PA. A seed trap for determining patterns of seed deposition in terrest rial plants. CanadianJournal of Botany,1975,53:810~813.
    Wiegand T, Moliney K A.2004. Rings, circles and null-models for point pattern analysis in ecology.Oikos,104:209~229.
    Williamson M, Fitter A.1996. The varying success of invaders. Ecology,77(60):1661~1666.
    Wittebolle L, Marzorati M, Clement L, Ballor A, Daffonchio D, Heylen K, Vos PD, Verstraete W,Boon Nico.2009. Initial community evenness favours functionality under selective stress. Nature,458(10):1038.
    Woodward FI.1994. How many species are required for a functional ecosystem? In:Schulze ED andMooney HA ed Biodiversity and Ecosystem Function. Berlin: Spring-Verlag,271~291.
    Wu X P, Zheng Y, Ma K P.2002. Population distribution and dynamics of Quercus liaotungensis,Fraxinus rhynchophylla and Acer mono in Dongling Mountain, Beijing. Acta Botanica Sinica,44(2):212~223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700