基于DNA序列的巴山松及其近缘种系统发育关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴山松(Pinus henryi Mast.)是我国秦巴山区特有种,主要分布于大巴山脉、巫山支脉以及云贵高原延伸的余脉上,但数量稀少,已被列为珍稀植物。
     分类上巴山松常作为油松或马尾松变种处理,个别专家将其认作独立种。在地理分布上,巴山松北与形态难以区分的油松相连,东与容易混淆的黄山松比邻,南与云南松交错,又与马尾松重叠分布(马尾松分布海拔更低)。形态特征的相似、分布的重叠以及杂交现象的存在都说明巴山松及其近缘种存在目前尚未清楚的复杂的种间关系。本研究用分子系统学方法为巴山松及与其近缘种(油松、马尾松、云南松、黄山松)的系统关系寻找证据。考虑到单个基因序列所提供的信息往往有限,而且利用编码的基因(演化速率往往较慢)在解决演化快的物种间的亲缘关系时效果往往较差,因此我们同时分析了基因组编码基因和演化速率较快的的非编码DNA序列,包括cpDNA(matK,rbcL,rpl20-rps18,trnV,rpoC2-rps2,psaB-prs14 and rrn5-trnN)、mtDNA(nad1,nad5,matR,SSU rRNA)和nDNA(ifg1934)基因组在内的12种DNA序列,以此来为巴山松及与其近缘种的关系及分类提供分子方面的证据。
     研究结果表明:(1)巴山松与油松、云南松、黄山松和马尾松等四种松树所处类群不同,因此作为油松或者马尾松变种的处理是不合适的,应视为独立种为宜。(2)在巴山松及其近缘种中,马尾松与其他松树的亲缘关系较远,而巴山松与黄山松、油松、云南松的之间的相互关系较近,其中油松和云南松的亲缘关系最近,巴山松、黄山松、云南松与油松分别向着不同的方向分化。(3)利用分子钟及其改进方法对巴山松及其近缘种的起源和分化时间进行了估测,发现马尾松是这几个近缘种中分化最早的一个类群,在2800万年前的渐新世(Oligocene epoch)的时候已经分化出来,但一直进化缓慢,因此拥有更多的祖先类型的基因组成。巴山松和黄山松分别在970万年前和690万年前中新世后期(Miocene epoch)分化出来,而油松和云南松则在最近的340万年前上新世(Pliocene epoch)才分化出来。松属植物分化时间较晚以及频繁的种间杂交可能是造成其种间关系不清的现象的主要原因。
Pinus henryi Mast.,an endemic pine in China,mainly distributes over Daba mountains,Wushan mountains and offshoots of YunGui plateau.Most forest of P.henryi has been destroyed by man and this species is listed as rare plant.
     P.henryi is often regarded as taxonomic variant species of P.tabuliformis or P.massoniana.Several experts argued that it should be independent species based on the differences of timber anatomy and chemical components.According to geographic distribution,P.henryi is linked together with P.tabuliformis in north,neighbors with P.hwangshanensis in east,crisscrosses with P.yunnanensis in south,and overlaps with P.massoniana(lower at altitude).Complicated relationships exist in P.henryi and its relative species due to similar morphic characteristics,overlapped distribution and extended hybridization in pines.Considered that less information would be supplied by single DNA fragment,the phylogeny and evolutionary history of P.henryi and it relative species were explored using twelve DNA fragments from chloroplast(matK, rbcL,rpl20-rps18,trnV,rpoC2-rps2,psaB-prs14 and rrnS-trnN),mitochondrial (nad1,nad5,matR,ssu rRNA)and nuclear genomes(ifg1934).
     The results indicated that:Firstly,according to the different charactistics compared with it relative species,P.henryi should be regarded as a seperate species rather than taxonomic variant species of P.tabuliformis or P.massoniana.Secondly, P.henryi as an independent species is close to P.hwangshanensis,P.tabuliformis and P.yunnanensis and far from P.massoniana,P.tabuliformis and P.yunnanensis have closer relationships than the others.Thirdly,using molecular dating approaches,we estimated that P.massoniana origined foremost at Oligocene epoch about 28 million years ago(MYA),and it owns more archaic genetic components because of its slow evolutionary rate;P.henryi and P.hwangshanensis diverged later at Miocene epoch about 9.7MYA and 6.9MYA relatively;and a divergence time of Pliocene epoch 3.4MYA is obtained for P.tabuliformis and P.yunnanensis.Late divergent time and frequent gene flow might contribute to phenomena of the shared genomes in P.henryi and it relatives.
引文
Adams K L , Palmer J D. Evolution of mitochondrial gene content : gene loss and transfer to the nucleus. Mo2 lecular Phylogenetics and Evolution,2003,29: 380-395.
    Ann, W J, Syring et al. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus Molecular Biology and Evolution,2007,24 (1): 90-101.
    Bains S, Corfield R M, Norris R D. Mechanisms of Climate Warming at the end of the Paleocene. Science, 1999,285:724-727.
    Bromham L, Penny D. The modern molecular clock. Nature Reviews Genetics, 2003,4: 216-224.
    Businsky R. Taxonomy and biogeography of Chinese hard pine,Pinus hwangshanensis W.YHsia. Botanische Jahrbucher,2003,125(1): 1-17.
    Chiang Y C, Hung K H, Schaal B A, Ge X J, Hsu T W, Chiang T Y. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology, 2006,(15):765-779
    Clegg M T, Cummings M P , Durbin M L. The evolution of plant nuclear genes. Proceedings of the National Academy of Sciences , USA,1997,92:7791-7798.
    Cowling R M, Rundel P W, Lamont B B et al. Plant diversity in Mediterranean-climate regions. Trends in Ecology and Evolution, 1996,11:362-366
    Demesure B , Sodzi N , Petit R J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology, 1995,4:129-131.
    Duff, R J and D L. Nickrent Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. American Journal of Botany ,1999,86(3):372.
    Eckert A J, B D Hall. Phylogeny, history biogeography,and patterns of diverisification for Pinus (Pinaceae): phylogenetic tests of lossil-based hypotheses. Molecular Phylogenetics and Evolution, 2006,40:166-182.
    Felsenstein J. Confidence limits on phylogenies : an approach using the bootstrap. Evolution, 1985,39:783-791.
    Fu L G et al. Flora of China. V4. Science Press,2001.
    Ge S, Sang T, Lu B R, Hong D Y. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceedings of the National Academy of Sciences, USA,1999,96:14400-14405.
    Geburek T H et al . Genetics of six enzyme systems in Henryi pine (Pinus henryi Mast.). Journal of Genetics and Breeding, 1990, 44: 269-276
    Gernandt, D S, A Liston, D Pinero. Phylogenetics of Pinus subsections cembroides and nelsoniae inferred from cpDNA sequences. Systematic Botany 2003,4: 657- 673.
    Golenberg E M, Giannasi D E, CleggM T et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature,1990,344:656-658.
    Gugerli F , Senn J , Anzidei M, Madaghiele A, Buchler U , Sperisen C , Vendramin G Chloroplast microsatellites and mitochondrial nadl intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine ( Pinus cembra) , Siberian stone pine ( Pinus sibirica) , and Siberian dwarf pine ( Pinus pumila) .Molecular Ecology,2001,10:1489-1497.
    Gutierres S, Combettes B, Paepe R D, Mirande M, Lelandais C, Vedel F, Che trit P. In the Nicotiana sylvestris CMSII mutant, a recombination-mediated change 5' to the first exon of the mitochondrial nadl gene is associated with lack of the NADH: ubiquinone oxidoreductase (complex I) NAD1 subunit. European Journal of Biochemistry,1999,261:361-370.
    Hall, T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series,1999,41:95- 98.
    Hamilton M B. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology ,1999,8:521-522.
    Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution ,1985,22:160-174.
    Hellwig F H. Centaureinae(Asteracae) in the Mediterrranean-history of ecogeographical radiation. Plant systmatics and Evolution, 2004,246:137-162.
    Hewitt G M. The genetic legacy of the Quaternary ice ages. Nature, 2000,405:907-913.
    Hilu K W, Liang H P. The matK gene: sequence variation and application in plant systematics. American Journal of Botany, 1997,84: 830-839.
    Hipkins V D, T sai C H, Strauss S H. Sequence of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from a gymnosperm,Douglas fir .PlantM olBiol,1990,15:505-507.
    Hudson G S, Mahon J D, Anderson P A et al. Comparisons of rbcL genes for the large subunit of ribulose 1,5-bisphosphate carboxylase from closely related C3 and C4 plant species J Biol Chem, 1990,265:808-814.
    Hyosig W, Susanne S, Renner. Horizontal gene t ransfer f romflowering plants to Gnetum.PNAS,2003,100(19):10824-10829.
    
    Jaramillo-Correa, J P, J Bousquet et al. Cross-species amplification of mitochondrial DNA sequence-tagged-site marker in conifers: the nature of polymorphism and variation within and among species in Picea. Theoretical and Applied Genetics ,2003,106:1353-1367.
    
    John Syring, Ann Willyard, Richard Cronn, Aaron Liston. Evolutionary relationships among Pinus(Pinaceae) subsections inferred from multiple low-copy nuclearloci. American Journal of Botany, 2005,92(12):2086-2100.
    Krijgsman W. The Mediterranean: Mare nostyum of earth sciences. Earth and Planetary Science Letters, 2002,205:1-12.
    Kumar S, Tamur K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinfo, 2004. 4:150-163.
    LePage B A. The evolution, biogeography and palaeoecology of the pinaceae based on fossil and extant representative .Acta Horticulturae, 2003,615:29-52.
    Mai D H. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution, 1989,162:79-91.
    Manos P S, Steele K P. Phylogenetic analysis of "higher" Hamamelidae based on plastid sequence data .Amer JBot,1997,84(4):1407-1419.
    Mark E, Mort, Douglas E, Soltis et al. Phylogenetic relationships andevolution of Crassulaceae inferred from matK sequence data. American Journal of Botany, 2001,88:76-91.
    Miksckche J P. Variation in DNA content of several gymosperms. Can.J. Genet. Cytol,1967,(19):717-722.
    Mitton J B, Kreiser B R, Latta R G. Glacial refugia of limber pine ( Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology ,2000,9:91-97.
    Mukai Y, Yamamoto N, Odani K et al. Structure and expression of a gene for the large subunit of ribulose 1,5-bisphosphate carboxylase /oxygenase from pine. Plant Cell Physiol,1991,32:273-282.
    Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford Univesity Press. 2000.
    Newton AC, Allnot TR, Gillies A C M et al. Molecular phylogeography, intraspecific variation and conservation of tree species. Trends in Ecology and Evolution,1999,14:140-145.
    Palmer J D. Mitochondrial DNA in plant systematics : applications and limitations. In : Soltis P S , Soltis D E ,Doyle J J eds. Molecular Systematics of Plants. New York : Chapman and Hall. 1992,36-49.
    Panero J L et al. Molecular evidence for multiple origins of woodiness and a New World biogeography connection of the Macaronesian Island endemic Pricallis. Proceedings of the National Academy sciences, USA, 1999, 96:13886-13891.
    Qiu Y L, Palmer J D. Phylogeny of early land plants : insights from genes and genomes. Trends in Plant Science, 1999,4:26-30.
    Ronquist F, Huelsenbeck J P. MRBAYES3: Bayesian phylogenetic inference undermixed models J. Bioinformatics,2003,19:1572-1574.
    Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology,2002, 37:121-147.
    Sanjur O I, Piperno D R, Andres T C, Wessel-Beaver L. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene : implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences,USA,2002,99: 535-540.
    
    Saylor L C. Karyotype analysis of genus pines:Silvae Genetica,1972, 21(5):155-163.
    Soltis P S, Soltis D E, Smiley C J. An rbcL sequence from a Miocene Taxodium(bald cypress). Proc Natl Acad Sci USA,1992,89:449-451.
    Song B H, X Q Wang, et al. Maternal lineages of Pinus densata, a diploid hybrid. Mol.Ecol,2002,11:1057-1063.
    Spicer R A et al. Constant elvation of southern Tibet over the past million years. Nature,2003,421:622-624.
    
    Suyama, Y H. Yoshimaru, et al. Molecular phylogenetic position of Japanese Abies (Pinaceae) based on chloroplast DNA sequences. Molecular Phylogenetics and Evolution,2000,16(2): 271-277.
    Svenning J C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 2003,6:646-653
    Swofford D L. PAUP 4.0b 10 : Phylogenetic Analysis Using Parsimony (*and other methods), Beta version CP. Sinauer Associates, sunderland, Massachusetts, USA.2002.
    Szikai M H, Lakary M. On the clinal varaiability in nuclear characteristics of Douglas fir, its possible causes and applications. Egypt. J.Genet. cytol, 1976,(5): 146-152.
    Taberlet P, Gielly L, Pautou G et al. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 1991, 17:1105-1109.
    Thompson J D, Higgins D G, Gibson T J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting , position specific gap penalties and weight matrix choice. Nucleic Acids Research ,1994, 22:4673-4680.
    Tiffney B H, Manchester S R. The use of geological and paleontological evidence in evaluating plant phylogeographi hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciencs, 2001,162:646-653.
    Wang X R, Szmidt A E, Lewandowski A. Evolutionary analysis of Pinus densata Masters, a putative tertiary hybrid 1. Allozyme variation. Theoretical and Applied Genetics, 1990a,80:635-640.
    
    Wang X R, Szmidt A E. Evolutionary analysis of Pinus densata (Masters), a putative tertiary hybrid. A study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics, 1990b,80:641-64.
    Wang X R, Y Tsumura, H Yoshimaru, K Nagasaka and A E szmidt. Phylogenetic relationships of Eurasian pines(Pinus, Pinaceae) based on chloroplast rbcL, matK, rp120-rps18 spacer, and trnV intron sequences. American Journal of Botany, 1999,86:1742-1753.
    Wang X Q (汪小全) , Hong D Y (洪德元). Progress in molecular systematics of plants in recent five years. Acta Phyto Sin (植物分类学报) ,1997,35:465- 480.
    WH Li, D Graur. Fundamentals of molecular evolution. Sinauer Associates Sunderland, Mass, 1991.
    Wolfe K H, Li W-H , Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial ,chloroplast , and nuclear DNAs. Proceedings of the National Academy of Sciences , USA.1987, 84:9054-9058.
    Wu H, and Hu Z H. Comparative anatomy of resin ducts of the Pinaceae. Trees: Structure and Function, 1997,11:135-143.
    Xiao Quan Wang, David C, Tank, Tao Sang. Phylogeny and divergence times in Pinaceae:evidence from three genomes. Molecular Biology and Evolution,2000, 17(5):773-781.
    Yoshinaga K, Kubota Y, Ishii T et al. Nucleotide sequence of atpB, rbcL, trnR, dedB and psa I chloroplast genes from a fern Angiopteris lygodiifolia: a possible emergence of Spermatophyta lineage before the separation of Bryophyta and Pteridophvta. PlantMolB iol,1992,18:79-82.
    Yoshihisa Suyama, Hiroshi Yoshimaru, and Yoshihiko Tsumura. Molecular Phylogenetic Position of Japanese Abies (Pinaceae) Based on Chloroplast DNA Sequences.Molecular Phylogenetics and Evolution,2000,2(16):271-277.
    Zachos J C,Wara M W,and Bohaty S et al.A Transient Rise in Tropical Sea Surface Temperature during the Paleocene-Eocene Thermal Maximum.Science,2003,302:1551-1554.
    安培钧,赵砺.巴山松木材解剖特性与种的确立问题.西北林学院学报,1992,7(1),1-9.
    安培钧.巴山松木材物理力学性质的研究.西北林学院学报,1992,7(2):1-5.
    #12
    陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析.林业科学,2000,(3):6-51.
    方正,马鹏,刘静艳.大巴山区巴山松林的初步研究.植物生态学与地植物学学报,1991,15(3):264-273.
    桂君,谭晓风.植物分子分类与鉴定综述.生命科学研究,1998,2(4):253-257.
    郭军战等.巴山松天然群体同工酶遗传变异性分析.西北林学院学报,1998,13(4):44-49.
    郭军战等.油松、巴山松天然群体GOT同工酶变异性分析.河北林学院学报,1996,11(增刊):12-15.
    郭亚龙,葛颂.线粒体nadl基因内含子在稻族系统学研究中的价值-兼论Porteresia的系统位置.植物分类学报,2004,42(4):333-344.
    贺新强等.中国松杉类植物濒危等级划分的比较.生物多样性,1996,4(1):45-51.
    胡雅琴,肖娅萍.rbcL、mat基因在植物系统进化分析中的应用.中学生物教学,2002,12:1-3.
    湖北省植物所.湖北植物志(1卷).武汉:湖北人民出版社,1976,11-13
    黄瑶,李朝銮,马诚等.叶绿体DNA及其在植物系统学研究中的应用.植物学通报,1994,11(2):11-25.
    蒋达和.叶绿体基因组的结构研究进展.生物化学与生物物理进展,1990,17(1):10-14.
    寇静,廉振民.线粒体DNA序列特点及在蟋蟀类昆虫系统学研究中的应用.延 安大学学报(自然科学版),2006,25(1):56-59.
    李长喜,徐化成.巴山松和油松地理分界和分类关系的数值分析.林业科学,1989,25(1):14-21.
    李健仔,李思光,罗玉萍等.叶绿体DNA分析技术及其在植物系统学研究中的应用.江西科学,2002,20(3):183-189.
    李军.巴山松种子园建立和经营.陕西林业科技,2004,(03):91-94.
    李炜.DNA分析与基因组序列和植物系统学研究.生物技术通报,2006,2:43-49.
    李新富,田恒山,陈夭虎.巴山松的调查研究.湖北林业科技,1984,(4):1-7.
    李易.基因进化的同义与非同义替代计算及统计检验的比较分析.曲靖师范学院学报,2006,6(25):1-8.
    毛绳绪,刘悦翠.油松和巴山松相对干形的比较.西北林学院学报,1989,4(2):94-99.
    莫日根,哈斯阿古拉,姜金安.叶绿体DNA种内多样化.内蒙古大学学报,1998,29(4):574-579.
    曲式曾等.几种松属木材和精油成分及巴山松的分类问题.西北林学院学报,1990,5(2):1-9.
    石福臣,陆兆华,李立芹.中国东北落叶松属植物rbcL基因的序列分析及系统演化.植物研究,2001,21(3):371-374.
    田欣,李德铢.DNA序列在植物系统学研究中的应用.云南植物研究,2002,24(2):170-184.
    王关林,方宏筠.植物基因工程原理与技术.北京:科学技术出版社,1998:370-375.
    吴中伦.中国松树的分类与分布.植物分类学报,1956,5(3):153-154.
    薛智德.油松、马尾松和巴山松的形态与解剖.陕西林业科技,1989,(1):19-23.
    杨雪.巴山松及其近缘物种的进化遗传学研究-基于cpSSR和AFLP标记.中国优秀硕士论文集,2006.
    张存旭,鄢志明.巴山松育苗造林技术.西林业科技,1994,(2):9-10.
    张存旭,张方秋,邱明光.陕西南郑巴山松分类学地位的研究.西北林学院学报,1995,10(1):38-42.
    张存旭,张方秋.黎坪巴山松调查研究初报.陕西林业科技,1988,(4):18-21.
    张存旭.巴山松天然群体酯酶同工酶遗传变异的初步分析.西北林学院学报,1991,6(2):89-92.
    张存旭.巴山松研究进展.陕西林业科技,1996,1:11-14.
    张方.巴山松的的原始育种材料研究.西北林学院学报,1990,5(2):1-9.
    张方秋.巴山松的原始育种材料研究.西北林学院学报,1990,5(2):64-79.
    张仰渠.陕西森林.西安:陕西科学技术出版社,1989.
    张志勇,杨俊波,李德铢.由5个DNA片断推断极度濒危植物五针白皮松的系统位置.植物学报,2003,45(5):530-535.
    赵凯.鱼类线粒体DNA(mtDNA)及其在分子系统学中的应用.青海大学学报(自然科学版),2006,24(2):49-53.
    中科院中国植物志编辑委员会.中国植物志(7卷).北京:科学出版社,1978,249-251.
    邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.
    《巴山松育苗造林》推广项目协作组.巴山松育苗造林推广总结.油印本,1993,1-6.
    《四川植物志》编辑委员会.四川植物志(2卷).成都:四川人民出版社,1983,109-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700