杉木人工林生态系统长期生产力的定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木是我国特有的优良速生用材树种,已有一千多年的栽培历史,因其易繁殖、生长快、材质优、产量高、好管理而深受群众的钟爱。杉木林是我国南方集体林区主要经营的森林类型之一,其栽培范围遍及我国整个亚热带多个省(区),栽培面积约占全国人工林面积的1/4。但由于多代连栽,出现了杉木人工林地力衰退,生产力下降等生态问题,为此,对杉木人工林生物量和生产力变化过程的研究,可为杉木林的长期生产力的维持和可持续发展,提供科学依据,对杉木林的长期经营具有实践指导意义
     本文采用空间一致和时间连续的定位研究方法,利用湖南会同杉木林生态系统国家野外科学观测研究站20多年的实测数据,对两个世代杉木人工林速生阶段(7—11a生)、杆材阶段(14—18a生)和成熟阶段(20a生)的生物量和生产力、林下植被、死地被物层和凋落物生物产量进行了对比研究,揭示了杉木连栽两代的代际效应,主要研究结果如下:
     1.7a生第2代杉木林的平均单株生物量为13.17 kg,变动范围为11.75—14.69 kg;林分生物量平均为31.10 t·hm-2,变动范围为27.03—38.48 t·hm-2;年平均净生产力为4.44 t·hm-2·a-1,变动范围为3.86—5.50 t·hm-2·a-1。与相同环境同龄第1代杉木林比较,其平均单株生物量下降2.46 kg,下降幅度为15.74%,林分生物量第2代较第1代下降14.18 t·hm-2,净生产力下降2.04 t·hm-2·a-1,下降幅度均达31.47%,干材经济系数下降幅度达40%。
     2.11a生第1代杉木林单株生物量为37.54 kg,第2代为34.73 kg,下降了7.49%。第1、2代杉木林分生物量分别为85.60和71.45 t·hm-2,第2代比第1代减少了16.53%。第1代杉木林的平均生产力为7.78t·hm-2·a-1,第2代为6.49 t·hm-2·a-1,下降1.29 t-hm-2·a-1。两代杉木林生物量均以树干最大,分别占林分生物量61.09%和58.22%,其他组分生物量排列顺序依次为树根>树叶>树枝。
     3.14a生第2代杉木林单株生物量、林分生物量和生产力分别为42.07 kg、97.18 t-hm-2和6.95 t·hm-2·a-1,第1代则分别为45.22 kg、104.45t·hm-2和7.47 t·hm-2·a-1,第2代比第1代分别下降3.15 kg、7.27 t·hm-2和0.52 t·hm-2·a-1。
     4.18a生第1代杉木单株生物量为63.51 kg,第2代为62.75 kg,第2代较第1代下降1.20%;第1代林分生物量和生产力分别为146.70 t·hm-2和11.88 t·hm-2·a-1,第2代为144.96 t·hm-2和9.49 t·hm-2·a-1,第2代较第1代下降1.19%和20.1%。
     5.20a生杉木单株生物量第1代为90.69 kg,林分生物量为209.50t·hm-2,生产力为10.78 t·hm-2·a-1,第2代分别为86.56 kg、199.94 t.hm-2、9.21 t·hm-2·a-1,第2代较第1代分别下降4.55%、4.56%、14.56%。干材经济系数第2代较第1代下降17.12%。
     6.杉木连栽生物量和生产力的代际效应:7a生第1、2代单株和林分生物量分别为15.63、13.06kg和45.38、37.90 t·hm-2,第2代比第1代下降16.44%和16.48%;11a生第1、2代分别为37.45、31.11 kg和108.73、90.31 t·hm-2,第2代比第1代下降16.93%和16.94%;14a生第1、2代分别为45.22、42.07kg和104.45、97.18 t·hm-2,第2代比第1代下降7.0%和6.96%;18a生第1、2代分别为63.51、62.75kg和146.70、144.96 t·hm-2,第2代比第1代下降1.20%和1.19%。20a生第1、2代分别为90.69、86.56kg和209.50、199.94 t·hm-2,第2代比第1代下降了4.55%和4.56%。
     7-11a生第1代杉木林的生产力是第2代的1.15倍;14-18a生第1代是第2代的1.25倍;18-20a生第1代是第2代的1.17倍。
     林分生物量分配格局虽然有波动,但总体上为第2代杉木林的枝、叶、树皮生物量高于第1代林,尤其是根的生物量是第1代林的2-4倍,而树干材第2代林比第1代少20%,表明第2代杉木林的干材经济利用系数小于第1代。
     7.两代杉木林从生长发育的速生阶段(7a-11a生)到杆材阶段(14a—18a生)过程中,林下植被生物量均呈现出波动性的变化状态,且规律不一致。在速生阶段,林下植被生物量第1代随林龄的加大而增加,第2代则随林龄的加大而减少;林分在杆材阶段,林下植被生物量第1代随林龄的加大而减少,第2代则随林龄的加大而增加。
     杉木林下死地被物层生物量,两代杉木林均表现出随林龄的加大而增加。代际间的表现为:7a生林分的死地被物层生物量第2代较第1代低,但11a、14a、18a生的林分,却为第2代高于第1代的2—3倍。
     杉木林凋落物的平均生物量第1代为4479.31 kg·hm-2,第2代为1109.86 kg·hm-2,,第1代为第2代的4倍,这主要是与两代杉木林生长差异有关外,还与同一林龄的连栽林分密度紧密相连,第2代杉木林的密度低于第1代,林木个体间竞争相对较弱,自然整枝没有第1代强烈。
     8.在连栽两代杉木人工林生态系统中,生物量均以林木层(杉木层)占据绝对优势地位,第1代杉木层生物量可占系统总生物量的97.21%—97.90%,第2代占91.76%—96.02%;林下植被层第1代占0.28%—0.55%,第2代占1.21%—2.88%;死地被物层第1代占1.55%—2.27%,第2代占0.18%—5.92%。表明林地空间位置为经营目的树种所有。
Chinese fir (Cunninghamia lanceolata (lamb.) Hook) is a native fast-growing timber species in China with the characteristics of easy to breeding, fast-growth, excellent timber quality and high productivity, and has been planted and cultivated for more than 1000 years. Chinese fir plantation is one of the most managed forest types in Southern China and is cultivated almost subtropical regions in the country. The planted area of this species accounts for about one fourth of the total plantation areas in the nation. Because of over successive rotations of this species with multiple generations on the same sites in the past years, many studies have reported apparent yield decline and soil fertility degradation in Chinese fir plantations. Thus, it is necessary and important to study the changes of biomass production and net primary productivity (NPP) of Chinese fir plantations over successive rotations. The results from such projects will provide valuable information and references for sustainable management of the Chinese fir plantations in order to maintain long-term soil fertility and stand productivity for the forest ecosystems.
     In the present study, the biomass and NPP of two successive rotation generations of Chinese fir plantations were examined at Huitong Ecosystem Research Station of the Central South University of Forestry and Technology in Huitong County, Hunan Province, one of the National Field Stations for Scientific Observation and Experiment in China, using a chronosequence approach on the same forested small watersheds. Additionally, biomass partitioning in Chinese fir tree, understory vegetation ground dead vegetation, and little-fall layers was investigated and compared at fast-growing stage (7-11 year-old), timbering stage (14-18 year-old) and mature stage (20 year-old) in the two rotation stands. The major results showed:
     1. The mean individual tree biomass, stand biomass and NPP of a 7-year-old stand in second rotation of Chinese fir plantations were 13.17 kg (ranging 11.75-14.69 kg),31.10 t·hm-2 (ranging 27.03-38.48 t·hm-2), and 4.44 t·hm-2·a-1 (ranging 3.86-5.50 t·hm-2·a-1), respectively. The mean individual tree biomass, stand biomass and NPP was lower 2.46 kg (reduced by 15.74%),14.18 t·hm-2 (31.47%), and 2.04 t·hm-2·a-1 (31.47%) in the second rotation when compared to first rotation. In addition, the wood economic coefficient (wood biomass/total tree biomass) was reduced by 40% in the second rotation compared to the first rotation.
     2. For a 11-year-old stand, the mean individual tree biomass was declined by 7.49% in second rotation (34.73 kg) than first rotation (37.54 kg). The stand biomass and NPP were reduced by 16.5 and 16.6% in the second rotation (71.45 t·hm-2 and 6.49 t·hm-2·a-1) than the first rotation (85.60 t·hm-2 and 7.78 t·hm-2·a-1). The stem had the highest proportion of the total stand biomass, and it accounted for 61.1 and 58.2% of the total stand biomass in the two rotations, respectively. The biomass of other organs was in an order:root> leaf> branch.
     3. The mean individual tree biomass, stand biomass and NPP of a 14-year-old stand of the first and second successive rotations were 45.22 kg, 104.45 t·hm-2 and 7.47 t·hm-2·a-1, and 42.07 kg,97.18 t·hm-2 and 6.95 t·hm-2·a1, respectively. It meant the mean individual tree biomass, stand biomass and NPP decreased 3.15 kg,7.27 t·hm-2 and 0.52 t·hm-2·a-1 in second rotation compared to first rotation, respectively.
     4. The mean individual tree biomass of a 18-year-old stand was reduced by 1.2% in second rotation (62.75 kg) compared to first rotation (63.51 kg). The stand biomass and NPP were reduced 1.19%(144.96 and 146.70 t·hm-2) and 20.1%(9.49 and 11.88 t·hm-2·a-1), respectively, in second rotation when compared to first rotations.
     5. The mean individual tree biomass, stand biomass and NPP of a 20-year-old stand were declined by 4.55,4.56 and 14.56% in second rotation (86.56 kg,199.94 t·hm-2,9.21 t·hm-2·a-1) compared to first rotation (90.69 kg,209.50 t·hm-2 and 10.78 t·hm-2·a-1). The wood economic coefficient was lower by 17.12% in the second rotation stands than the first rotation stands.
     6. The generation effects of biomass production between the two successive rotations showed that mean individual tree biomass and stand biomass of a 7-year-old stand were declined by 16.44%(13.06 and 15.63kg) and 16.48%(37.90 and 45.38t·hm-2) in second rotation compared to the first rotation; by 16.93 and 16.94%(31.11 and 37.45 kg, and 90.31 and 108.73 t·hm-2) of a 11-year-old stand; by 7.0 and 6.96%(42.07 and 45.22kg, and 97.18 and 104.45t·hm-2) of a 14-year-old stand; by 1.20 and 1.19%(62.75 and 63.51kg, and 144.96 and 146.70t·hm-2) of a 18-year-old stand; and by 4.55% and 4.56%(86.56 and 90.69kg, and 199.94 and 209.50t·hm-2) of a 20-year-old stand.
     The generation effects of NPP between the two successive rotations showed that NPP was 1.15 times higher in first rotation than in second rotation for 7-11 year-old stands, and 1.25 times and 1.17 times higher for 14-18 and 18-20 year-old stands, respectively.
     Generally speaking, the proportion of branch, leaf and bark components in the total stand biomass was slightly higher in second rotation than first rotation stands. Particularly, the percentage of root biomass in the total stand biomass was 2-4 times higher in second rotation than first rotation stands. But the ratio of wood biomass in the total stand biomass in second rotation was 20% less than that in first rotation stands, meaning the wood economic coefficient was lower in second rotation than first rotation of Chinese fir plantations.
     7. Different dynamic patterns of understory vegetation biomass were found in the fast-growing stage (7-11 years) and timbering stage (14-18 years) for the two successive rotations. Understory vegetation biomass increased with stand aged in first rotation, but decreased in send rotation during the fast-growing stage. In contrast, understory vegetation biomass decreased with increasing stand ages in first rotation, but increased in send rotation during the timbering stage.
     The dead vegetation biomass on the forest floor increased with increasing stand ages in the two successive rotations of Chinese fir plantations. The ground dead vegetation biomass of a 7-year-old stand was lower in second rotation than that in first rotation. However, the ground dead vegetation biomass in 11-,14-, and 18-year-old stands was higher in second rotation than that in first rotation stands.
     The average amount of little-fall was 4479.31 kg·hm-2 in first rotation, which was about 4 times as that in second rotation (1109.86 kg·hm-2). The difference was mainly derived from the dissimilar growth rate between the two rotation stands. In addition, the difference of stand density between the two rotation stands also made contribution to the difference of little-fall amount between the two rotation stands. The stand density was lower in second rotation stands was lower than that in first rotation. As a consequence, the competition of resources (such as light, water and nutrient elements) among the individual tree was weaker in second rotation compared to first rotation, and the natural pruning phenomenon was less in second rotation than first rotation stands.
     8. The biomass of tree stratum had the highest proportion of the total biomass in the two successive rotations of Chinese fir plantation ecosystem. The Chinese fir tree stratum accounted for 97.2-97.9% of the total biomass in first rotation, and 91.8-96.0% in second rotation. Understory vegetation stratum accounted for 0.28-0.55% and 1.21-2.88% in first and second rotations. The ground dead vegetation stratum accounted for 1.55-2.27% and 0.18-5.92% in first and second rotations, respectively. The results indicated that the Chinese fir as the planted tree species occupied almost spatial area in the forests.
引文
[1]西北林学院主编.简明林业词典[M].北京:科学出版社.1981:137
    [2]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,(2):1-12
    [3]东北林学院主编.森林生态学[M].北京:中国林业出版社,1981:160-167
    [4]苏智先,王仁卿主编.生态学概论[M].济南:山东大学出版社,1989
    [5]刘世荣,温远光等著.杉木生产力生态学[M].北京:气象出版社,2005:1-5
    [6]IPCC.2003. Good practice guidance for land use, land-use change and forestry. [EB/OL]. [2004-05-01].http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglu lucf.html
    [7]IPCC.2006. IPCC guidelines for national greenhouse gas inventory. [EB/OL]. [2006-12-15]. http://www.ipcc-ggip.iges. or.jp/public/2006gl/index.html
    [8]FAO. The state of food and agriculture:Forest policy dilemmas. FAO, Rome.1994
    [9]FAO. State of the world's forest. FAO, Rome.1995
    [10]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263(14):185-191
    [11]Shilong Piao, Jingyun Fang, Philippe Ciais, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1015
    [12]Dixon, R K, Brown S, Declourt, R A. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190
    [13]Houghton R A. Balancing the global carbon budget[J]. Annu. Rev. Earth Planet. Sci.,2007,35:313-347
    [14]Helmut Lieth. Primary Production:Terrestrial Ecosystems[J]. Human Ecology, 1973, 1(4):303-332
    [15]Schimel D S. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature,2001,414:169-172
    [16]Baskin Y. Ecosystem function of biodiversity[J]. Bioscience,1994, 44(10):657-660
    [17]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,(1):71-92
    [18]潘维俦,李利村,高正衡,等.杉木人工林生态系统中生物产量及其生产力的研究[J].中南林科技,1978,(2):2-14
    [19]朱守谦,杨世逸.杉木生产结构及生物量的初步研究[J].贵州农学院农业科技资料,林业研究报告专辑(一),1978,(5):1-9
    [20]冯宗炜,张家武,邓仕坚.我国亚热带湖南桃源杉木人工林生态系统生物量的研究[J].杉木人工林生态学研究论文集.中国科学院林业土壤研究所,1980,173-188
    [21]俞新妥,陈存及,林祖思.福建杉木人工林生态系统生物产量的初步研究[J].福建林学院林业科技资料,1979,(1):46-68
    [22]黄全,李意德,赖巨章,等.黎母山热带山地雨林生物量研究[J].植物生态学与地植物学报,1991,15(3):197-206
    [23]李意德,曾庆波,吴仲民,等.尖峰岭热带山地雨林生物量的初步研究[J].植物生态学报,1992,16(4):293-300
    [24]冯志立,郑征,张建侯,等.西双版纳热带湿性季节雨林生物量及其分配规律研究[J].植物生态学报,1998,22(6):481-488
    [25]郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报,2000,24(2):197-203
    [26]张祝平.鼎湖山森林群落的生物量和初级生产力的研究[J].中国科学院鼎湖山森林生态系统定位研究站编,热带亚热带森林生态系统研究(第5集).北京:科学出版社,1989:63-73
    [27]邱学忠,谢寿昌,荆桂芬.云南哀牢山徐家坝地区木果石栎林生物量的初步研究[J].云南植物研究,1984,6(1):85-92
    [28]卢琦,李治基,黎向东.栲树林生物生产力模型[J].广西农学院学报,1990,9(3):55-64
    [29]杜国坚,洪利兴,姚国兴.浙江西北部次生常绿阔叶林主要群落类型地上部分生物量的测定和分析[J].浙江林业科技,1987,7(5):5-12
    [30]陈章和,王伯荪,张宏达.南亚热带常绿阔叶林的生产力[M].广州:广东高等教育出版社,1996
    [31]陈启常.青冈林生产力研究[M].杭州:杭州大学出版社,1992
    [32]谌小勇,彭元英,康文星.亚热带常绿阔叶林黄杞、木荷群落生物量和生产力的研究[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:68-72
    [33]陈大珂,周晓峰,赵惠勋,等.天然次生林四个类型的结构、功能及演替[J]东北林学院学报,1982,(2):1-19
    [34]张成林,周晓峰.天然次生白桦林生物量的研究[J].森林生态系统定位研究(周晓峰主编).哈尔滨:东北林业大学出版社,1991:428-435
    [35]田大伦,张昌剑,罗中甫,等.天然檫木混交林的生物量及营养元素分布Ⅰ.生物生产量及生产力[J].中南林学院学报,1990,10(2):121-128
    [36]刘茜,刘煊章,张昌剑.天然次生白栎林生物量和营养元素含量的研究[J].林业科学,33(专刊2):157-166
    [37]陈楚莹.杉木火力楠混交林的研究[J].中国南方混交林研究(王宏志主编)北京:中国林业出版社,1993:127-138
    [38]徐英宝,陈红跃.马尾松藜蒴栲混交林生产力的研究[J].中国南方混交林研究(王宏志主编).北京:中国林业出版社,1993:220-225
    [39]姚延祷.京西山区油松侧柏人工混交林生物量及营养元素循环的研究[J]北京林业大学学报,1989,11(2):30-46
    [40]庄孟能,叶章善,马祥庆.杉木拟赤杨混交林林分结构和生产力[J].福建林学院学报,1994,14(4):339-343
    [41]刘彦春,张远东,刘世荣,等.川西亚高山针阔混交林乔木层生物量、生产力随海拔梯度的变化[J].生态学报,2010,30(21):5810-5820
    [42]冯林,杨玉珙.兴安落叶松原始林三种林型生物产量的研究[J].林业科学,1985,21(1):86-91
    [43]田大伦,潘维俦.马尾松林杆材阶段生物产量和径级分化及密度效应初探[J].植物生态学与地植物学报,1986,10(4):294-301
    [44]姜志林,赵珊.火炬松人工林生物量的研究[J].下蜀森林生态系统定位研究论文集(姜志林等主编).北京:中国林业出版社,1992:10-15
    [45]马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989,11(4):1-10
    [46]彭少麟,李鸣光,陆阳.鼎湖山马尾松种群生物生产量初步研究[J].热带亚热带森林生态系统研究(第5集)(中国科学院鼎湖山森林生态系统定位站编).北京:科学出版社,1989:75-82
    [47]刘世荣,柴一新,蔡体久.落叶松人工林生态系统净初级生产力的格局与过程[J].森林生态系统定位研究(周晓峰主编).哈尔滨:东北林业大学出版社,1991:419-427
    [48]谌小勇,项文化,钟建德.湿地松人工林生物量的密度效应[J].森林生态系 统定位研究(刘煊章主编).北京:中国林业出版社,1 993:53-59
    [49]项文化,谌小勇,蔡宝玉.湿地松人工林生物量的时变特征[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:60-67
    [50]汪企明.江苏省湿地松人工林生物量的初步研究.植物生态学与地植物学学报,1990,14(1):1-12
    [51]肖瑜.巴山松天然林生物量和生产力研究[J].植物生态学与地植物学报,1990,16(3):227-223
    [52]刘煊章,蔡宝玉.马尾松、湿地松林产量结构比较[J].林业资源管理,1993,(5):28-31
    [53]刘茜.不同龄组马尾松人工林生物量及生产力的研究[J].中南林学院学报,1996,16(4):47-51
    [54]李文华.西藏暗针叶林概论[J].自然资源,1982,(2):1-16
    [55]陈章水,方奇.新疆杨元素含量与生物量研究[J].林业科学研究,1988,(5):35-40
    [56]周世强,黄金燕.四川红杉人工林分生物量和生产力的研究[J].植物生态学与地植物学报.1991,15(1):9-16
    [57]陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J].植物生态学与地植物学报,1986,10(1):17-25
    [58]温远光.广西英罗港5种红树植物群落的生物量和生产力[J].广西科学,1999,6(2):142-147
    [59]陈炳浩,陈楚莹.沙地红皮云杉森林群落生物量和生产力的初步研究[J].林业科学,1980,16(4):269-278
    [60]彭少麟.小良热带人工桉林第二代萌生林生物量和生产力研究[J].桉树,1993,(3):21-28
    [61]温远光,和太平,李信贤,等.广西合浦窿缘桉海防林生物量和生产力的研究[J].广西农业生物科学,2000,19(1):1-5
    [62]温远光,梁宏温,招礼军,等.尾叶桉人工林生物量和生产力的研究[J].热带亚热带植物学报,2000,8(2):123-127
    [63]刘煊章,康文星.杜仲、黄柏、凹叶厚朴林分生物量的研究[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:49-52
    [64]文仕知.黧蒴栲林生物产量及生产力研究[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:42-52
    [65]方向京,李贵祥,张正海.滇东北不同退耕还林类型生物量及水土保持效益分析[J].水土保持研究,2009,16(5):229-232
    [66]高嵩.退耕还林生物量监测及固碳释氧效益初步研究[J].甘肃林业科技,2008,33(3):43-45
    [67]尹刚强,田大伦,方晰,等.湖南会同四种退耕还林模式幼林生物量的研究[J].中南林业科技大学学报,2010,30(7):9-14
    [68]卢义山,张金池,冯福生,等.苏北海堤防护林主要造林树种生物量研究[J].沿海防护林体系功能及其效益(康立新,王述礼主编).北京:科学技术文献出版社,1994:222-227
    [69]吴泽民,高健,吴文友.城市森林及其结构研究[J].城市森林生态研究进展(何兴元、宁祝华主编).北京:中国林业出版社,2002:49-57
    [70]管东生,陈玉娟.广州城市森林的硫贮量和净生产量中的硫量及其环境意义[J].城市森林生态研究进展(何兴元、宁祝华主编).北京:中国林业出版社,2002:171-175
    [71]高述超,田大伦,闫文德,等.长沙城市森林生物量的结构特征[J].中南林业科技大学学报,2010,30(12):56-65
    [72]吴中伦主编.杉木[M].北京:中国林业出版社,1984
    [73]俞新妥.中国杉木研究[J].福建林学院学报,1988,8(3):203-220
    [74]谌小勇,田大伦,彭元英,等.我国杉木人工林生物产量研究概况.森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:10-17
    [75]徐凤翔.杉木地上部产量结构变化规律的研究[J].南林科技,1978,(1):8-15
    [76]张家武.杉木人工林生物量测定方法的比较.杉木人工林生态学研究论文集.中国科学院林业土壤研究所,1980:209-217
    [77]张家武,陈楚莹,邓仕坚,等.估测杉木林现存量的数学模式的比较[J].东北林学院学报,1984,(4):13-19
    [78]李炳铁.杉木人工林生物量调查方法的初步探讨[J].林业资源管理,1988,(6):57-60
    [79]钱志能.杉木枝叶生物量估测方法研究[J].林业科技通讯,1991,(3):12-15
    [80]谌小勇.杉木单株生物量测定中转换参数的研究.森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:28-36
    [81]温远光,秦武明,韦盛章.用蓄积量估测森林生物量的初步尝试[J].林业科技通讯,1989,(7):7-10
    [82]彭元英.杉木材积与生物量之间关系的探讨.森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993:37-41
    [83]佐藤大七郎,堤利夫著;丁宝永,聂绍全译.陆地植物群落的物质生产[M].北京:科学出版社,1986
    [84]北京林业大学主编.测树学[M].北京:中国林业出版社,1990:150-163
    [85]潘维俦.森林生物量调查.70-80年代初国外林业技术水平文集(营林部分),1983:128-135
    [86]古炎坤,陈北光,冯耀华.广东西江地区杉木人工林地上部分生物量和生产力的研究[J].华南农业大学学报,1987,8(1):41-50
    [87]许春霞.北界杉木人工林生物量及生产力的调整研究[J].河南农学院论文选编,1982:79-95
    [88]冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊,1984,8(2):93-100
    [89]温远光,梁乐荣,黎洁娟.广西不同生态地理区域杉木人工林的生物生产力[J].广西农学院学报,1988,7(2):55-66
    [90]孔秀荣,刘志刚.杉木人工林乔木层的生物量和生产力的研究[J].广西农学院学报,1983,(2):29-40
    [91]潘维俦,李利村,高已衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林科技,1979,(4):1-14
    [92]李敦法,陈惠启.两个不同年龄杉木人工林生物产量的初步研究[J].黄冈林业科技,1980,(2):7-12
    [93]陈修官.20年生杉木人工林干物质积累及相对生长模型[J].防护林科技,2007,(4):28-40
    [94]彭元英.杉木人工林最佳林分产量结构的探讨[J].中南林学院学报,1989,9(增刊):149-153
    [95]罗云裳.广东西江地区杉木人工林生物量与立地因子相关研究[J].林业科学,1989,25(2):147-150
    [96]佟金权.不同地位指数不同密度杉木人工林生产力的比较[J].福建农林大学学报(自然科学报),2008,37(4):369-373
    [97]盛炜彤,惠刚盈,罗方任.大岗山杉木人工林主伐年龄的研究[J].林业科学研究,1991,4(2):113-121
    [98]叶培忠,陈岳武.杉木自然类型的研究[J].林业科学,1964,9(4):297-310
    [99]广西林科所等.杉木地理种源和类型造林对比试验初报[J].广西林业科学,1977,(3):52-59
    [100]李晓储,吴玉斌,李阳春,等.杉木不同种源地上干材与生物量的地理变异[J].华东森林经理.1990,4(3):11-17
    [101]张运根.杉木不同优良品种早期生长对比试验[J].福建林业科技,2009,36(4):22-25
    [102]浙江省杉木科研协作组.第一次杉木种源试验幼林阶段初报[J].浙江林业科技,1983,(3):3-8
    [103]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981,1(1):1-21
    [104]叶镜中,姜志林,周本琳,等.福建省洋口林场杉木林生物量的年变化动态[J].南京林学院学报,1984,(4):1-9
    [105]谢柞剑.宜昌地区杉木人工林生物量及其生产力的调查研究.湘北林勘,1985,(2):1-18
    [106]邓士坚,王开平,高虹.杉木老龄人工林生物产量和营养元素含量的分布[J].生态学杂志,1988,7(1):13-18
    [107]林生明,徐士根,周国模.杉木人工林生物量的研究[J].浙江林学院学报,1991,8(3):288-294
    [108]张家武,冯宗炜.桃源县丘陵地区杉木造林密度与生物量的关系.杉木人工林生态学研究论文集.中国科学院林业土壤研究所,1980:201-208
    [109]黄惜河.西江地区杉木人工林生物量和营养元素含量及其分配的研究.中南林业调查规划,1988,(1):13-21
    [110]惠刚盈,刘景芳,童书振.杉木造林密度试验Ⅰ.密度对幼林生物量的影响[J].林业科学研究,1988,1(4):413-416
    [111]应金花,何宋明,范少辉,等.一代杉木人工林(29年生)林分生物量结构[J].福建林学院学报,2001,21(4):339-342
    [112]童书振,盛炜彤,张建国.杉木林分密度效应研究[J].林业科学研究,2002,15(1):66-75
    [113]陈柳英.大径杉木人工复层林的经营模式[J].亚热带农业研究,2007,3(2):87-90
    [114]涂育合.杉木不同经营密度的林下植被变化[J].西北林学院学报,2005,20(4):52-55
    [115]盛炜彤.不同密度杉木人工林林下植被发育与演替的定位研究[J].林业科学研究,2001,14(5):463-471
    [116]叶镜中,姜志林.苏南丘陵杉木人工林的生物量结构[J].生态学报,1983,3(1):7-13
    [117]叶镜中,姜志林.苏南丘陵区杉木根系的生态特性[J].南京林产工业学院学报,1980,(1):43-52
    [118]温远光.不同立地杉木人工林根系的研究[J].广西农学院学报,1986,(1):70-81
    [119]龚垒.杉木幼树冠层结构与生物量关系的初步研究[J].生态学报,1984,4(3):248-257
    [120]冯宗炜,陈楚莹.杉木幼林群落生物量的研究[J].生态学报,1983,3(2):119-129
    [121]姚茂和,盛炜彤,熊有强.杉木林林下植被及其生物量的研究[J].林业科学1991,27(6):644-647
    [122]闫文德,田大伦,何功秀.湖南会同第2代杉木人工林乔木层生物量的分布格局[J].林业资源管理,2003,(2):5-7
    [123]侯振宏,张小全,徐德应,等.杉木人工林生物量和生产力研究[J].中国农学通报,2009,25(5):97-103
    [124]盛炜彤主编.人工林地力衰退研究[M].北京:中国科学技术出版社,1992
    [125]陈代喜,莫泽莲.人工林地力衰退研究进展[J].广西林业科学,2000,29(3):115-118
    [126]张昌顺,李昆.人工林地力的衰退与维持研究综述[J].世界林业研究,2005,18(1):17-21
    [127]Julian Evans. Long-term productivity of forest plantation-status in 1990. IUFRO,19th World Congress,1990,(1):165-180
    [128]Webb L J, Tracy J G, Haydock K P. A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta. Journal of Appled Ecology,1967, (4):13-25
    [129]Keeves. A Some evidence of loss of productivity with successive rotations of Pinus radiata in southeast of Australia. Australian Forestry,1966, (30):51-63
    [130]Boardman R. Productivity under successive rotations pine. Australian Forestry, 1978,41(3):177-179
    [131]Chu Chou D S. Effects of root residues on growth on Pinus radiate seedlings and a mycorrhizal fungus[J]. Annals of Applied Biology,1978, (90):407-416
    [132]McColl J. Symbotic nitrogen fixation by Daviesia mimoisedes under Eucalyptus. IUFRO, Symposium on Forest Site and Continuous Productivity, USDA, Foe. Rep. PNW-163,1983,122-129
    [133]冯宗炜,陈楚莹,李昌华,等.湖南会同杉木人工林生长发育与环境的相互关系[J].南京林产工业学院学报,1983,(3):19-23
    [134]张其水,俞新妥.连栽杉木林生长状况的调查研究[J].福建林学院学报,1992,12(3):334-338
    [135]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397
    []36]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报,1992,12(3):264-275
    [137]杨玉盛,叶德生,俞新妥,等.不同栽杉代数林分生物量的研究[J].东北林业大学学报,1999,27(4):9-12
    [138]刘煊章,田大伦,康文星,等.第二代杉木幼林生物量的定位研究[J].林业科学,1997,33(专刊2):61-66
    [139]田大伦,项文化,闫文德,等.速生阶段杉木人工林产量结构及生产力的代际效应[J].林业科学,2002,38(4):14-18
    [140]赵萌,方晰,田大伦.第2代杉木人工林地土壤微生物数量与土壤因子的关系[J].林业科学,2007,43(6):7-12
    [141]秦国宣,方晰,田大伦,等.湖南会同第2代杉木人工林地土壤酶活性[J].中南林业科技大学学报,2008,28(2):1-7
    [142]Deborah S. page-Dumroese, Martin Jurgensen, Thomas Terry. Maintaining Soil Productivity during Forest or Biomass-to-Energy Thinning Harvests in the Western United States[J]. WEST. J.APPL.FOR.2010,25(1):5-11
    [143]Grigal D F. Effects of extensive forest management on soil productivity. Forest Ecology and Management,2000,138:167-185
    [144]Brix H. Effects of thinning and nitrogen fertilization on growth of Douglas-fir: Relative contribution of foliage quantity and efficiency[J]. Can.J.For.Res.1983, 13:167-175
    [145]Binkley D, P Reid. Long-term responses of stem growth and leaf area to thinning and fertilization in a Douglas-fir plantation. Can.J.For.Res.1984, 14:656-660
    [146]Binkley D, H Burnham, H L Allen. Water quality impacts of forest fertilization with nitrogen and phosphorus[J]. For. Ecol. and Manag.1999,121:191-213
    [147]Blackburn W H, R W knight, J C Wood, et al. Stormflow and sediment loss from intensively managed forest watersheds in east Texas[J]. Water Res. Bull.1990, 26:465-476
    [148]Block R, K C J van Rees, D J Pennock. Quantifying harvesting impacts using soil compaction and disturbance regimes at a landscape scale[J]. Soil Sci. Soc.Am.J.2002,66:1669-1676
    [149]Bock M D, K C J van Rees. Forest harvesting impacts on soil properties and vegetation communities in the Northwest Territories. Can.J.For.Res.2002, 32:713-724
    [150]高智慧.不同栽培管理水平杉木人工林生物产量的初步研究[J].浙江林业科技,1986,(2):25-30
    [151]马祥庆,何智英,俞新妥.不同林地清理方式对杉木人工林地力的影响[J].林业科学,1995,31(6):485-490
    [152]陈国瑞.炼山对二代5年生杉木幼林生长的影响[J].福建林业科技,2005,32(4):56-59
    [153]黄云玲.炼山对不同立地5年生杉木幼林生长的影响[J].江西林业科技,2006,(1):7-10
    [154]黄跃延.立地管理措施对7年生2代杉木林生长的影响[J].福建林业科技,2009,36(4):26-29
    [155]马祥庆,杨玉盛,林开敏,等.不同林地清理方式对杉木人工林生态系统的影响[J].生态学报,1997,17(2):176-183
    [156]Bruce D, Wensel L C. Modeling forest growth:approaches, definitions and problems. In proceeding of IUFRO conference:Forest growth modeling and prediction,1987, (1):1-8
    [157]Gower J C. A comparison of some methods of cluster analysis[J]. Biometrics, 1967,23:626-637
    [158]唐守正,李希菲,孟昭和.林分生长模型研究的进展[J].林业科学研究,1993,6(6):672-679
    [159]姚晓红.林分生长数据的时序分析探讨[J].北京林业大学学报,1990,12(4):10-16
    [160]吴承祯,洪伟.林木生长的多维时间序列分析[J].应用生态学报,1990,10(4):395-398
    [161]Gregoire T G, Reynolds M R. Accuracy testing and estimation alternatives[J]. For. Sci.1988,34:302-320
    [162]王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63
    [163]Battaglia M., Sands, P.J. Application of sensitivity analysis to model of Eucalyptus globulus plantation productivity[J]. Ecological modeling,1998, 111:237-259
    [164]Almeida A C, P J Sands, J Bruce, et al. Use of a spatial process-based model to quantify forest plantation productivity and water use efficiency under climate change scenarios[C].18th World IMACS/MODSIM Congress, Cairns, Australia 13-17 July 2009.http
    [165]罗云建,张小全,王效科,等.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129-134
    [166]Almeida A C, Landsberg J J, Sands P J, et al. Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations[J]. Forest Ecology and Management,2004,193:167-177
    [167]Constable J V H, Friend A L. Suitability of process-based tree growth models for addressing tree response to climate changes[J], Environmental Pollution, 2000,110:47-59
    [168]Landsberg J J. Modeling forest ecosystems:state-of-the art, challenges and future directions[J]. Canadian Journal of Forest Research.2003,33:385-397
    [169]Mitchell T D, Cater T R, Jones P D, et al. A comprehensive set of climate scenarios for Europe and the globe:the observed record(1900-2000)and 16 scenarios(2000-2010). University of East Anglia.2004.
    [170]刘雯雯,项文化,田大伦,等.区域尺度杉木生物量通用相对生长方程整合分析[J].中南林业科技大学学报,2010,30(4):7-14
    [171]杜纪山,唐守正.林分断面积生长模型研究评述[J].林业科学研究,1997,10(6): 599-606
    [172]Landsberg J J, R H Waring. "A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning"[J]. Forest Ecology and Management.1997,95:209-228
    [173]L.J. Espray, P.J. Sands, C. W. Smith. "Understanding 3-PG using a sensitivity analysis"[J]. Forest Ecology and Management.2004,193:235-250
    [174]Sands P J.2004, "3 PGpjs vsn 2.4-a User-Friendly Interface to 3-PG, the Landsberg and Waring Model of Forest Productivity. Technical Report. No.140", CRC Sustainable Production Forestry, Hobart.
    [175]Sands P J, Landsberg J J. Parameterisation of 3-PG for plantation grown Eucalyptus globulus[J]. Forest Ecology and Management.2002,163:273-292
    [176]Almeida A C, Landsberg J J, Sands P J, et al. Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations[J]. Forest Ecology and Management,2004,193:167-177
    [177]Shinozaki K, Yoda K, Hozumi K, et al. A Quantitative Analysis of Plant Form-the Pipe Model Theory. Ⅰ basic Analyses[J]. Japanese Journal of Ecolgy,1964, 14(3):97-105
    [178]Waring R H P, P E Schroeder, R Oren. Appilication of the pipe model theory to canopy leaf area[J]. Journal of Forestry Research,1982,12:556-560
    [179]惠刚盈.杉木出材量预测方法[J].林业科技通讯,1989,228(5):32-33
    [180]胥辉.两种生物量模型的比较[J].西南林学院学报,2003,23(2):36-39
    [181]吕勇.杉木人工林生长率模型的研究[J].林业科学,2002,38(1):146-149
    [182]Hafley, W.L. and Schreuder, H.T. Statistical distributions for fitting diameter and height data in even-aged stands[J]. Can. J. For. Res.1977,7:481-487
    [183]吴载璋,吴锡麟.福建杉木人工林生长模型的研究[J].福建林业科技,2004,31(4):11-14
    [184]李际平,吕勇.会同杉木人工林全林整体生长模型[J].林业科学,1997,33(专刊2):133-138
    [185]何宗明,林思祖,俞新妥,等.杉木人工林自然生长模型的研究[J].福建林学院学报,1997,17(3):231-234
    [186]Joe Landsberg, Nicholas C. Coops. Modeling forest productivity across large areas and long periods[J]. Natural Resource Modeling,1999,12(4):383-410
    [187]Landsberg J J, R H waring, N C Coops. Performance of the forest productivity model 3-PG applied to a wide range of forest types[J]. Forest Ecology and Management,2003,172:199-214
    [188]Jackson R B, H A Mooney, E.-D. Schulze. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proc. Natl. Acad. Sci. USA.1997, 94:7362-7366
    [189]田大伦主编.杉木林生态系统定位研究方法[M].北京:科学出版社,2004:22-30
    [190]田大伦,盘宏华,康文星,等.第二代杉木人工林生物量的研究[J].中南林学院学报,1998,18(3):11-16
    [191]谌小勇,彭元英,张昌剑,等.亚热带两类森林群落产量结构及生产力的比较研究[J].中南林学院学报,1996,16(1):1-7
    [192]潘维俦,田大伦,文仕知,等.森林生态系统物质循环研究中的生物地球化学方法和实验技术[J].中南林学院学报,1984,4(1):18-28
    [193]俞新妥,张其水.杉木连栽林地土壤生化特性及土壤肥力研究[J].福建林学院学报,1989,9(3):263-271
    [194]Chapin F S III. Nitrogen and Phosphorus nutrition and nutrition cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forests. Canadian Journal of Forest Research,1983,13(5):773-781.
    [195]Chastain R A Jr, Currie W S, Townsend P A. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. Forest Ecology and Management,2006,231(1-3):63-77.
    [196]褚建民,卢琦,崔向慧,等.人工林林下植被多样性研究进展.世界林业研究,2007,20(3):9-13
    [197]袁正科,田育新,李锡泉,等.缓坡梯土幼林林下植被覆盖与水土流失.中南林学院学报,2002,22(2):21-24
    [198]刘苑秋,罗良兴,杨国平,等.退化红壤重建森林林下植被恢复及其环境影响分析.江西农业大学学报,2004,26(5):695-699
    [199]Fabiao A, Martins M C, Cerveira C, et al. Influence of soil and organic residue management on biomass and in a Eucalyptus globules Labill. plantation. Forest Ecology and Management,2002,171(1-2):87-100.
    [200]Kume A, Satomura T, Tsuboi N, et al. Effects of understory vegetation on the ecophysiological characteristics of and overstory pine, Pinus densiflora. Forest Ecology and Management,2003,176(1-3):195-203.
    [201]Taylor A H, Jang S W, Zhao L J, et al. Regeneration patterns and tree species coexistence in old-growth Abies-Picca forests in southwestern China. Forest Ecology and Management,2006,223(1-3):303-317.
    [202]吴鹏飞,朱波.桤柏混交林林下植被结构及生物量动态.水土保持通报,2008,28(3):44-48
    [203]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响.北京林业大学学报,2007,29(3):60-66
    [204]段劫,马履一,贾黎明,等.抚育间伐对侧柏人工林及林下植被生长的影响.生态学报,2010,30(6):1431-144 1
    [205]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究.植物生态学与地植物学丛刊,1985,9(4):245-255
    [206]方奇.加强土壤和地被物管理对杉木生态系统生物量能量利用与养分循环的影响.林业科学,1990,26(3):201-208
    [207]姚茂和,盛炜彤,熊有强.林下植被对杉木林地力影响的研究.林业科学研究,1991,4(3):246-252
    [208]张先仪,邓宗付,李旭明.间伐杉木林下植被演替和水土保持影响的研究.北京:中国科学技术出版社,1992,168-180
    [209]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究.生态学报,1997,17(4):377-385
    [210]盛炜彤.关于提高杉木人工林生产力的几个问题.浙江林业科技,1986,6(1):9-15
    [211]杨承栋,焦如珍,屠星南,等.发育林下植被是恢复杉木人工林地力的重要途径.林业科学,1995,31(3):275-283
    [212]林开敏,黄宝龙.杉木人工林林下植物物种β多样性的研究.生物多样性,2001,9(2):157-161
    [213]涂育和.杉木不同经营密度的林下植被变化.西北林学院学报,2005,20(4):52-55
    [214]姚茂和,盛炜彤,熊有强.杉木林林下植被及其生物量的研究.林业科学,1991,27(6):644-648
    [215]熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植被发育及生物量研究.林业科学研究,1995,8(4):408-412
    [216]林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型.林业科学,2001,37(专刊):99-105
    [217]范少辉,马祥庆,傅瑞树,等.不同栽植代数杉木林林下植被发育的比较研究.林业科学研究,2002,15(2):169-174
    [218]田大伦,康文星,文仕知.杉木林生态系统学.北京:科学出版社,2003
    [219]田大伦.杉木林生态系统功能过程.北京:科学出版社,2005
    [220]方海波,田大伦,康文星.杉木人工林间伐后林下植被生物量的研究.中南林学院学报,1998,18(1):5-9
    [221]方海波,田大伦,康文星.杉木人工林间伐后林下植被养分动态的研究.中南林学院学报,1998,18(2):1-5
    [222]闫文德,田大伦,焦秀梅.会同第二代杉木人工林林下植被生物量分布及动态.林业科学研究,2003,16(3):323-327
    [223]刘煊章,田大伦,文仕知,等.第二代杉木人工林林下地被物生物量和养分积累的定位研究Ⅰ.林下地被物生物量动态.林业科学,1997,33(专刊2):19-25
    [224]Martin W. Microbial populations of leaf litter in relation to environmental conditions and decomposition.Ecology,1963,44:370-377
    [225]Maguire D A.Branch mortality and potential litter fall from Douglas fir trees in stands of varying density.Forest Ecology and Management,1994,70:41-53
    [226]高志红,张万里,张庆费.森林凋落物生态功能研究概况及展望.东北林业大学学报,2004,32:79-81
    [227]韩学勇,赵凤霞,李文友.森林凋落物研究综述.林业科技情报,2007,39:12-13
    [228]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展.江西农业大学学报.2000,22:405-410.
    [229]Bergelson J. Life after death:site preemption by the remains of Poa annua. Ecology,1990,71:2157-2165
    [230]官丽莉,周国逸,张德强,等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究.植物生态学报,2004,28:449-456
    [231]Roberts D W. A dynamical perspective on vegetation theory. Vegetatio,1987, 69:27-33
    [232]温远光,韦炳二,黎洁娟.亚热带森林凋落物量及其动态研究.林业科学, 1989,6:542-547
    [233]温肇穆.杉木林乔木层凋落物及其在分解过程中化学成分的变化.广西农业生物科学,1990,9:1-10
    [234]马祥庆,刘爱琴,何智英,等.杉木幼林生态系统凋落物及其分解作用研究.植物生态学报,1997,21(6):564-570
    [235]张家城,盛炜彤.杉木人工林树上宿存枯死枝、叶在冠层与在枯枝落叶层分解的比较研究.林业科学,2001,37(6):2-10
    [236]何宗明,陈光水,刘剑斌.杉木林凋落物产量、分解率与储量的关系.应用与环境生物学报,2003,9:352-356
    [237]刘爱琴,林开敏,范少辉.不同栽植代数杉木林凋落物特性的比较.应用与环境生物学报,2004,10:585-590
    [238]盛炜彤,范少辉,等著.杉木林长期生产力保持机制研究.北京:科学山版社2005,19-20
    [239]张德强,叶万辉,余清发.鼎湖山演替系列中代表性森林凋落物研究.生态学报,2000,20:938-944
    [240]Sykes J M, Bunce R O H. Fluctuations in litterfall in a mixed deciduous woodland over a three year period 1966-1968.Oikos,1970,21:326-329.
    [241]Liu C J,Westman C J,Berg B,et al.Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia.Global Ecology and Biogeography,2004,13:105-114
    [242]张新平,王襄平,朱彪,等.我国东北主要森林类型的凋落物产量及其影响因素.植物生态学报,2008,32:1031-1040.
    [243]李明佳,王铸豪.鼎湖山普通植物气候学.热带亚热带森林生态系统研究.1984,2:1-11
    [244]田大伦,赵坤.杉木人工林生态系统凋落物的研究Ⅰ.凋落物的数量、组成和动态变化.中南林学院学报,1989,9(增刊):38-44
    [245]廖军,王新根.森林凋落物研究进展.江西林业科技.2000,1:31-34
    [246]李雪峰,韩士杰,李玉文.东北地区主要森林生态系统凋落量的比较.应用生态学报,2005,16,783-788
    [247]林波,刘庆,刘彦,等.森林凋落物研究进展.生态学杂志,2004,23:60-64
    [248]刘胜祥,黎维平.植物学.北京:科学出版社,2007
    [249]John T, Marcia J L. Litterfall and forest floor dynamics in Eucalyptus pilularis forests. Austral Ecology,2002,27,192-199
    [250]Deborah L. Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica,2005,37,561-570
    [251]Thuille A, Schulze E D. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology,2006,12,325-342
    [252]Bray J R, Gorham E. Litter production in forests of the world. Advances in Ecological Research,1964,2,101-157
    [253]Clark D A, Brown S, Kichlighter W K, et al. Net primary production in tropical forests:an evaluation and synthesis of existing field data. Ecological Applications,2001,11,371-384
    [254]刘庆.川西亚高山人工林针叶与天然林凋落物的比较研究.中国科学院成都植物研究所硕士学位论文,2001
    [255]黄承才,张骏,江波,等.浙江省杉木生态公益林凋落物及其与植物多样性的关系.林业科学,2006,42:7-12
    [256]王凤友.森林凋落物的研究概况.生态学进展.1989,15:82-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700