巴山松及近缘物种的进化遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴山松(Pinus henryi Mast.)是我国秦巴山区特有种,主要分布于大巴山脉、巫山支脉以及云贵高原延伸的余脉上,但数量稀少,已被列为珍稀植物。
     分类上巴山松常作为油松或马尾松变种处理,个别专家将其认作独立种。在地理分布上,巴山松北与形态难以区分的油松相连,东与容易混淆的黄山松比邻,南与云南松交错,又与马尾松重叠分布(马尾松分布海拔更低)。形态特征的相似、分布的重叠以及杂交现象的存在都说明巴山松及其近缘种存在目前尚未清楚的复杂的种间关系。本研究从分子系统学角度出发,运用cpSSR(叶绿体微卫星)和AFLP两种分子标记技术对巴山松及其近缘物种黄山松、马尾松、油松和云南松等五种松树的遗传多样性、遗传分化和系统发育关系进行分析,探讨该五种松树复杂的种间关系,为科学地保护和利用我国的特有的松树资源提供理论参考。
     研究结果表明:(1)五种松树都表现出较高水平的遗传多样性与种间分化。但cpSSR比AFLP标记提供了更多的种内种间分化,而展示的遗传多样性相对要少。在对不同的方法指标对比研究后,我们认为将cpSSR的单倍型关系考虑在内,能够更有效地分析植物居群遗传分化造成的地理结构,但解释时必须谨慎。而对于显性标记AFLP,传统的平方根法会低估遗传参数,而Lynch和Milligen的方法因样本量的限制也可能高估遗传多样性,Bayesian法被认为是最精确的方法,提供了与分子方差分析(AMOVA)近似的遗传分化值。(2)巴山松作为一个独立的种是成立的,并且巴山松与黄山松亲缘关系最近。进一步分析表明,巴山松与黄山松、云南松与油松分别向着两个方向分化,马尾松拥有更多祖先基因组成分,占据着中间类型。而个体聚类图则显示马尾松、黄山松、云南松和油松这四种松树种间关系极为复杂,难以区分。松属植物这种种间关系不清的现象可能与分化时间较晚以及频繁的种间杂交有关。
     另外,本研究以巴山松及其近缘种为例,利用cpSSR和AFLP两种分子标记对其取样策略和统计方法进行分析,揭示它们对遗传多样性和亲缘关系确定的影响。结果表明,居群取样个体数和基因位点数差异对遗传多样性影响并不显著,但它们和系统树构建方法对近缘种亲缘关系的确定有一定的影响。
Pinus henryi Mast., an endemic species in QinBa mountains of China, mainly distributes over Daba mountains, Wushan mountains and offshoots of YunGui plateau. Most forest of Pinus henryi have been destroyed by man and this species is listed as rare plant.
     Pinus henryi is often regarded as taxonomic variant species of P. tabuliformis or P. massoniana. Several experts argued that it should be independent species based on the differences of timber anatomy and chemical components. According to geographic distribution, P. henryi is linked together with P. tabuliformis in north, neighbor with P. taiwanensis in east, crisscross with P. yunnanensis in south, and overlap with P. massoniana (lower at altitude). Complicated relationships exist in Pinus henryi and its relative species due to similar morphic characteristics, overlapped distribution and extended hybridization in pines. Making use of amplified fragment length polymorphism (AFLP) and chloroplast simple-sequence repeat (cpSSR) markers, we analyzed molecular Phylogenetics, gene diversity and genetic differentiation in these five Eurasian pines. The study would identify phylogenetic relationship of P. henryi and its relative species, and imply for protecting and utilizing the special pine resources in China.
     The results were as follows: Firstly, high genetic differentiation and median gene diversity with cpSSRs markers were found both at population and species level while median differentiation and higher gene diversity with AFLPs data. Although the Infinite Allele Model were preferred at most chloroplast gene loci, other models should not be rejected according to the similar support rates. Measures of subdivision that consider similarity between haplotypes offered better information of plant geographic structure than the standard ones. Among several methods analyzed in AFLPs, Sequare root method provided downwardly biased estimates of the genetic parameters, while Lynch and Milligen method over-estimated genetic diversity due to limited samples. Thus Bayesian statistics was the most accurate and popular method in those data with the dominant markers and its value of species differentiation (θ~B = 0.1035 ) was close to the parameter given by Analysis of Molecular Variance (AMOVA).
     Secondly, it was evident that P. henryi was an independent species and close to P. taiwanensis using both cpSSRs and AFLPs data with high bootstrapping supports. P. henryi and its relatives shared more common genetic components given by AFLPs than those offered by cpSSRs results, which suggested that late divergent time or frequent gene flow might contribute to phenomena of the shared genomes.
     In addition, taking P. henryi and its relative species for example, sampling strategy and statistical methods were analyzed by chloroplast microsatellites (cpSSR) and AFLP markers. The results showed some differences with present views. It was phylogenetic relationships rather than genetic diversity that was notablely affected by sample sizes/loci and methods of phylogenetic trees construction.
引文
Arnold M. Natural hybridization and evolution. Oxford University Press. 1997.
    Avise, J C. Phylogeography. Cambridge: Havard University Press. 2000.
    Barton NH. Trends in Ecology and Evolution. Speciation, 2001, 16(7): 325
    Boys J, Cherry M, Dayanandan S. Microsatellite analysis reveals genetically distinct populations of red pine (Pinus redinosa, Pinaceae). American Journal of Botany, 2005, 92(5): 833-841
    Bucci G, Anzidei M, Madaghiele A. Detection of haplotypic variation and natural hybridization in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Molecular Ecology, 1998, 7:1633-1643
    Businsky R. Taxonomy and biogeography of Chinese hard pine, Pinus hwangshanensis W.Y.Hsia. Botanische Jahrbucher, 2003, 125(1): 1-17.
    Chiang Y.-C., Hung K.-H., Schaal B. A., Ge X.-J., Hsu T.-W. and Chiang T.-Y. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology, 2006, (15): 765-779
    Copeland N G, Jenkins N A, Gilbert D J. A genetic linkage map of the mouse: Current applications and future prospects. Science, 1993, 262: 57-66.
    Cornuet J M, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 1996, 144: 2001-2014.
    Di Rienzo A, AC Peterson, JC Garza, AM Valdes, M Slatkin, NB Freimer. Mutational processes of sample-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences, 1994, 91: 3166-3179
    Diaz V, Mufiiz L M, Ferrer E. Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic variation in Nicaraguan populations of Pinus oocarpa. Molecular Ecology, 2001, 10:2593-2603
    Duchesne P and L Bernatchez. AFLPOP: A computer program for simulated and real population allocation based on AFLP data. Molecular Ecology Notes, 2002, 3: 380-383.
    Dungey HS. Pine hybrids-A review of their use performance and genetics. Forest ecology and management, 2001, 148:243-258
    Eckert A J and B D Hall. Phylogeny, history biogeography, and patterns of diverisification for Pinus (Pinaceae): phylogenetic tests of lossil-based hypotheses. Molecular Phylogenetics and Evolution, 2006, 40:166-182.
    Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39: 783-791.
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum approach. J Mol Evol, 1981,17:368-376.
    Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. 2005.
    Fu LG. Flora of China. V4. Science Press. 2001.
    Geburek TH. Genetics of six enzyme systems in Henryi pine (Pinus henryi Mast.). Journal of Genetics and Breeding, 1990, 44:269-276
    Gernandt DS, Geada Lopez G, Ortiz Garcia S, Liston A. Phylogeny and classification of Pinus, Taxon, 2005, 54(1): 29-42
    Gillet. Elizabeth M. Minimum sample sizes for sampling genetic marker distributions.Final Compendium of the Research Project Development, optimisation and validation of molecular tools for assessment of biodiversity in forest trees in the European Union DGⅫ Biotechnology FW IV Research Programme Molecular Tools for Biodiversity. Gillet, E.M. (ed.). 1999. Institut fur Forstgenetik und Forstpflanzenzuchtung, Universitat Gottingen, 1999.
    Gillet EM. Which DNA marker for which purpose? Univsersitat Gattingen. 1999.
    Gomez A. Complex population genetic structure in the endemic Canary Islandpine revealed using chloroplast microsatellite markers. Theoretical and Applied Genetics, 2003,107:1123-1131.
    Gugerli F. Chloroplast microsatellites and mitochondrial nad 1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cerebra), Siberian stone pine (Pinus sibiriea), and Siberian dwarf pine (Pinus pumila). Molecular Ecology, 2001, 10:1489-1497
    Hamrick J L, Godt M J. Allozyme diversity in plant species. In brown A.H.D. C[egg MT, Kahler AL, Wier BS (eds.) Plant population, breeding and genetic resources, Sinauer, Associates. Inc., Sunderland, MA. 1989, 43-63
    Hamrick J. L., Godt M. J. W., Murawski D. A. and Loveless M. D. Correlation between species traits and allozyme diversity: implication for conservation biology. In:Falk D. A. and Holsinger K. E. (eds.), Genetics and Conservation of Rare Plants. Oxford University Press, New York. 1991.
    Hamrick J L, Godt M J W. Effects of life history traits on genetic diversity in plant species. In: Silvertown J, Franco M, Harper J L. Plant Life Histories. Cambridge: Cambridge Univerisy Press, 1997, 102-118
    Hazan J, Dubay C, Pankowiak M C. A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers, genomics, 1992, 12: 183-189.
    Holder M, Lewis P O. Phylogeny estimation: traditional and Bayesian approaches. Nature, 2003, 4: 275-284.
    Holsinger, K E, Lewis P O, D K Dey. A Bayesian method for analysis of genetic population structure with dominant marker data. Molecular Ecology, 2002, 11: 1157-1164.
    Holsinger K E, Lewis P O. Hickory: A Package for Analysis of Population Genetic Data. Department of Ecology and Evolutionary Biology, University of Connecticut, USA. 2003.
    Kaundun S.S., and Matsumoto S. Heterologous nuclear and chloroplast microsatellite amplitication and variation in tea, Camellia sinensis, Genome, 2002, 45(6): 1041-1048
    Lefebvre V, Goffinet B, Chauvet J C. Evaluation of Genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet, 2001, 102:741-750
    Li W H. Evolutionary change of restriction cleavage sites and phylogenetic inference. Genetics, 1986, 113: 187-213.
    Lynch M, Milligan B G. Analysis of population genetic structure with RAPD markers. Molecular Ecology, 1994, 3:91-99
    Marshall HD. Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (Pinus contorta). Theoretical and Applied Genetics, 2002, 104:367-378
    Mayr E. Population, Species and Evolution. Cambridge: Harvard University Press. 1970.
    Miller M P. Tools for population genetic analyses(TFPGA)1.3 A Windows(?) program for the analysis of allozyme and molecular population genetic data. 1997.
    Navascues M, Emerson B C. 2005. Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Molecular Ecology, 14:1333-1341
    Naydenov KD. Dissimilar patterns of Pinus heldreichii Christ. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochemical Systematics and Ecology, 2005, 33:133-148
    Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 1973, 70:3321-3323
    Nei M. Estimation of average heterozygosity and genetic distance form a small number of individuals. Geneitics, 1978, 89:583-590
    Nei M. Molecular evolutionary genetics. New York: Columbia University Press.1987.
    Nei M., F. Tajima and Y. Tateno. Accuracy of estimated phylogenetic trees from molecular data. Ⅱ. Gene frequency data. J. Mol. Evol. 1983, 19:153-170
    Nei M, Tajima F. DNA polymorphism detectable by restriction endoncleases. Genetics, 1985, 97: 145-163.
    Newton C. Applications of DNA markers in BC tree improvement programs. FGC extension note. 2004.
    Parducci L., Szmidt A.E., Madaghiele A., Anzidei M., and Vendramin G.G. Genetic variation at chloroplast microsatellites (cpSSRs) in Abies nebrodensis (Lojac.) mattei and three neighboring Abies species, Theor. Appl. Genet., 2001, 102: 733-740
    Petit, RJ, J Duminil, S Fineschi, A Hampe, D Salvini and GG Vendramin. 2005, Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 14:689-701
    Pritchard J K, M Stephens and P Donnelly. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
    Ribeiro M.M., Plomion C., Petit R., Vendramin G.G., and Szmidt A.E. Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.), Theor. Appl. Genet., 2001, 102:.97-103
    Ribeiro M M, Mariette S, vendramin G G, Szmidt AE, Plimion C and Kremer A. Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Molecular Ecology, 2002, 11: 869-877
    Richardson B A, Brunsfeld J, Klopfenstein N B. DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of white bark pine (Pinus albicaulis). Molecular Ecology, 2002, 11: 215-227
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987,4:406-425.
    Semerikov V.L., Lascoux M. Nuclear and Cytoplasmic variation within and between eurasion Larix (Pinaceae) species. American Journal of Botany, 2003, 90(8): 1113-1123
    Sjogren P. and Wyoni P. I.. Conservation genetics and detection of rare alleles in finite populations. Conservation Biology, 1994, 8(1): 267-270.
    Smim1ns M P, Zhang L-P, Webb, C.T, Miller K. A Penalty of using anonymous dominant markers(AFLPs, ISSRs and RAPDs)for phylogenetic inference. Molecular phylogenetics and evolution, 2007,42:528-542
    Smith J S C. Zabeau M, Wright S. Maize-Genetics-Cooperation-Newsletter. 1993, 67:62-64
    Sokal R R and Michener C D. A statistical method for evaluating systematic relationships. University ofKansa Sci. Bull., 1958, 28: 1409-1438.
    Steward C N, Excoffier L. Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). Journal of Evolutionary Biology, 1996, 9:153-171
    Swofford D L. PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 1998.
    Vaxevanidou, Zafeiro, Gonzalez-Martinez, Climent J, Gil L. Tree populations bordering on extinction: A case study in the endemic Canary island pine. Biological Conservation, 2006, 129, 451-460
    Vekemans X, Beauwens T, Lemaire M, and Roldan-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 2002, 11: 139-151.
    Vekemans X. AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Genetique et Ecologic Vegetale, Universite Libre de Bruxelles, Belgium. 2002.
    Vendramin G G. L Lelli, P Ross et al. A set of primers for the amplication of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology, 1996, 5: 595-598.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, and Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23(21): 4407-4414
    Wang X-R, Szmidt A E, Lewandowski A. Evolutionary analysis of Pinus densata Masters, a putative tertiary hybrid 1. Allozyme variation. Theoretical and Applied Genetics, 1990a, 80: 635-640.
    Wang X-R and Szmidt A E. Evolutionary analysis of Pinus densata (Masters), a putative tertiary hybrid. A study using species-specific chloroplast DNA markers. Theoretical and Applied Genetics, 1990b, 80: 641-64.
    Weising K., and Gardner R.C. A set of conserved PCR primers for analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms, Genome, 1999, 42:9-19
    Weissenbach J, Gyopay J, Dib C. A second generation linkage map of the human genome. Nature, 1993, 359: 794-801.
    Wu J, Krutovshii K, Strauss S H. Nuclear DNA diversity, population differentiateon and phylogenetic relationships in the California closed-cone pines based on RAPF and allozyme markers. Genome, 1999, 42: 893-908
    Ye TZ. Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA. Genome 2002, 45: 530-540
    Yet F C, Yang R, Boyle T. POPGENE version 1.31: Microsoft Window-based Freeware for Population Genetic Analysis. Available at http://www.ualberta.ca/~fyeh. 1999.
    Zabeau M,Vos P. European Patent Application. 1992
    Zabeau.M,Vos P. Selective reseiction fragment amplication:A general methord for DNA fingerprinting European Patent Appllication Number: 94202629.7
    Zhivotovsky, L A. Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology, 1999, 8: 907-913.
    安培均,赵砺.巴山松木材解剖特性与种的确立问题.西北林学院学报,1992,7(1):1-9.
    陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析.林业科学,2000,(3):46-51.
    车永和,李立会,何蓓如.冰草属植物遗传多样性取样策略基于醇溶蛋白的研究.植物遗传资源学报,2004,5(3):216-211.
    法兰克汉R,巴卢J D,布里斯科D A.保育遗传学导论(黄宏文,康明译).北京:科学出版社,2005.
    范义荣,毛迎春,李兰英,戴建良,刘世芳.黄山松群体酶基因遗传变异的研究.东北林业大学学报,1999,27(3):14-19.
    郭军战,毕春霞,李周歧.油松、巴山松天然群体GOT同工酶变异性分析.河北林学院学报,1996,11(增刊):12-15.
    郭军战,毕春霞,刘淑明.1998,巴山松天然群体同工酶遗传变异性分析.西北林 学院学报,13(4):44-49.
    郭雄明,薛霞,陈华.扩增片段长度多态性(AFLP)研究进展.中国比较医学杂志,2006,(16)6:369-372.
    根井正利,库马著(吕宝忠,钟扬,高莉萍译,赵寿元,张建之校).分子进化与系统发生.北京:高等教育出版社,2002,76-163.
    贺新强,林金星,胡玉熹,王献溥,李法曾.中国松杉类植物濒危等级划分的比较.生物多样性,1996,4(1):45-51
    黄启强,王莲辉.马尾松天然群体同工酶遗传变异.遗传学报,1995,22(2):142-151.
    黄瑶,李朝銮,马诚等.叶绿体DNA及其在植物系统学研究中的应用.植物学通报,1994,11(2):11-25.
    金燕,卢宝荣.遗传多样性的取样策略.生物多样性,2003,11(2):155-61
    金志明,金小红,金培林.探讨长白松的起源问题.吉林林业科技,1998,5:27-29
    蒋达知.叶绿体基因组的结构研究进展.生物化学与生物物理进展,1990,17(1):10-14.
    雷泽勇.彰武松主要特性及起源的研究.硕士论文,沈阳农业大学.2002.
    罗世家,邹惠渝,梁师文.黄山松与马尾松基因渐渗的研究.林业科学,2001,37(6):118-122.
    李斌,顾万春.松属植物遗传多样性研究进展.遗传,2003,25(6):740-748.
    李长喜,徐化成.巴山松和油松地理分界和分类关系的数值分析.林业科学,1989,25(1):14-21.
    李军.巴山松种子园建立和经营.陕西林业科技,2004,3:91-94.
    李靖炎.削偶合今法的提出.动物学研究,1992,13(4):387~396.
    李健仔,李思光,罗玉萍,万璐.叶绿体DNA分析技术及其在植物系统学研究中的应用.江西科学,2002,20(3):183-189.
    李涛,赖旭龙,钟扬.利用DNA序列构建系统树的方法.遗传,2004,26(2):205-210.
    李毳,柴宝峰,王孟本.华北地区油松种群遗传多样性分析.植物研究,2006,1:98-102.
    马小飞.高山松杂种的核基因进化模式初探.硕士论文,东北大学.2003.
    莫日根,哈斯阿古拉,姜金安.叶绿体DNA种内多样化,内蒙古大学学报,1998,29(4):574-579.
    祁仲夏,宋文芹,金刚,陈瑞阳.稻属基因组间相关性的AFLP分析.南开大学学报,2001,34(3):74-80.
    曲式曾,张付舜,陈友地.几种松属木材和精油成分及巴山松的分类问题.西北林学院学报,1990,5(2):1-9.
    沈银柱.进化生物学.北京:高等教育出版社,2002.
    宋葆华.高山松的二倍体杂种起源:来自三个基因组的证据.博士论文,中国科学院植物研究所.2003.
    孙允东,王建民,郝小静,韩海霞.AFLP和SSR技术简介及比较.山东畜牧兽医,2002,6:32-33.
    王关林,方宏筠.植物基因工程原理与技术.北京:科学技术出版社,1998:370-375.
    王化坤,娄晓鸣,章镇.叶绿体微卫星在植物钟质资源中的应用.2006,14(3):92-98.
    王红梅,张正英,陈玉梁.SSR标记技术及其在植物遗传学中的应用.西北师范大学学报(自然科学版),2003,39(1):113-116.
    王莹,赵华斌,郝家胜.分子系统学的理论、方法及展望.安徽师范大学学报自然科学版,2005,3,28(1):84-88.
    吴中伦.中国松树的分类与分布.植物分类学报,1956,5(3):153-154.
    夏铭.遗传多样性研究进展.生态学杂志,1999,18(3):59-65.
    薛智德.油松、马尾松和巴山松的形态与解剖.陕西林业科技,1989,(1):19-23.
    虞泓.云南松及其近缘种生态遗传与进化研究.博士后论文,中国科学院植物研究所.1999.
    虞泓,葛颂,黄瑞复,姜汉侨.云南松及其近缘种的遗传变异与亲缘关系.植物学报,2000,42(1):107-110.
    杨娟,李珊,曹东伟,刘占林,赵桂仿.金钱槭属植物AFLP反应体系的建立与分析,西北植物报,2005,11:35-39.
    张存旭.巴山松天然群体酯酶同工酶遗传变异的初步分析.西北林学院学报,1991,6(2):89-92
    张存旭,张方秋,邱光明.陕西南郑巴山松分类学地位的研究.西北林学院学报,1995,10(1):38-42.
    张存旭.巴山松研究进展.陕西林业科技,1996,1:11-14.
    张方秋.巴山松的原始育种材料研究.西北林学院学报,1990,5(2):64-79.
    张富民.横断山区紫乌头复合体的物种形成初探.博士论文,中国科学院植物研究所.2002.
    张含国,王辉,肖彦利,张春凤.红皮云杉等位酶群体遗传的多样性分析.东北林业大学学报,2002,30(6):21-25.
    张军丽,王峥峰,李鸣光,王伯荪.植物种群研究中的分子标记及其应用,应用生态学报,2000,11(4):631-636.
    张小雷,崔银秋,吕慧英,周惠.系统发育分析在古DNA研究中的应用.吉林大学学报,2005,43(5):696~701.
    周世良,FUNAMOTO Tsuneo,文军.六道木属六道木组种间关系的AFLP分析和黄花六道木中国新记录的认定,云南植物研究,2004,26(4):405-412.
    周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,2005,131-143.
    赵茹,程舟,陆伟峰,卢宝荣.基于分子标记的野生大豆居群遗传多样性估算与取样策略.科学通报,2006,51(9):1042~1048
    邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.
    中国科学院中国植物志编辑委员会.中国植物志(7卷).北京:科学出版社,1978,249-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700