内蒙古典型草原优势种蝗虫食物适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物群落结构与蝗虫食物适应性决定蝗虫的时空及营养生态位,人工饲喂和自然取食方法研究了优势种蝗虫取食特性,应用荧光定量PCR技术建立了蝗虫嗉囊内含物植物种类分析和食量测定的方法。研究结果如下:
     建立了草原蝗虫嗉囊提取和保存的标准和方法。根据6种优势种植物克氏针茅、羊草、糙隐子草、锦鸡儿、冷蒿、猪毛菜核糖体DNA(ribosome DNA, rDNA)的转录间隔区(Internal TranscribedSpacers,ITS)和5.8S的基因序列,设计了适于用SYBR Green I的特异性引物,建立了定量检测的标准曲线。以6种植物定量饲喂2种蝗虫,定量PCR检测蝗虫嗉囊内含物各植物ITS区的拷贝数,明确了ITS区拷贝数与食量的关系。
     植物群落结构影响蝗虫的群落组成,典型相关结果表明蝗虫综合因子与植物综合因子间紧密相关(r=0.955,P<0.05);优势种植物与优势种蝗虫密度密切相关,羊草为优势种的草地类型中羊草生物量损失率与毛足棒角蝗相对多度显著正相关(r=0.849,p<0.01);克氏针茅为优势种的草地类型和克氏针茅伴生杂类草的草地类型中,克氏针茅生物量损失率与亚洲小车蝗相对多度显著正相关(r=0.947,0.93,p<0.01)。荧光定量PCR检测证明毛足棒角蝗对于羊草有显著的取食偏好。毛足棒角蝗与亚洲小车蝗营养生态位宽度分别为0.224和0.207,亚洲小车蝗对毛足棒角蝗的生态位重叠数值为0.125,毛足棒角蝗对亚洲小车蝗的生态位重叠数值为0.115,存在食物竞争关系。
     依据蝗虫死亡率和食性参数两个指标研究亚洲小车蝗、毛足棒角蝗、鼓翅皱膝蝗密度及样地条件4因素3水平正交试验,结果表明:影响蝗虫死亡率的主要因素是样地条件,次要因素是蝗虫自身的虫口密度;影响蝗虫食性的最主要因素是样地条件,次要因素是与其营养生态位有竞争关系的其他蝗虫的虫口密度。
Temporal, spatial and trophic niches of grasshoppers are dependent on the structure of plantcommunity and food preference of grasshoppers. Articial and natural feeding experiments were used todetermine the feeding characters of grasshoppers, amount of ingested plants in grasshopper’s crop wereanalyzed using RT-PCR. The results are as follows.
     1) The standard and method of extracting and storage of grasshopper crop were established. Basedon the ITS of rDNA and5.8s gene sequences of six plants, Stipa krylovii, Leymus chinensis,Cleistogenes squarrosa, Caragana microphylia, Artemisia frigida, and Salsola collina, special primers,fit to SYBR Green I, were designed in those plants. Standard curve for quantitative detection of theamount of plants ingested by grasshopper was also established. The relationship of the copies of ITSand the weight of contents in crops was determined by feeding six kinds of host plants to Oedaleusasiaticus and Dasyhippus barbipes and analyzing plant contents in crops with RT-PCR.
     2) Grassland community structure could affect the community of grasshopper. Canonicalcorrelation analysis showed that there was a positive correlation (r=0.955,P <0.05) between thecomprehensive factor of grasshopper and the comprehensive factor of host plant. Density of dominantgrasshopper species depended on dominant host plant speices. There was positive correlations betweenbiomass loss of L. chinensis and relative abundance of D. barbipes in sample plot one, between biomassloss of S. krylovii and relative abundance of O. asiaticus in sample plots two and three. RT-PCR showedthat D. barbipes prefered Leymus chinensis. The width of trophic niches of D. barbipes and O. asiaticuswas0.224and0.207, respectively; the former overlapping the latter by0.115and the latter overlappingthe former by0.125, which suggests that there is food competition in these two grasshopper species.
     3) Orthogonal test was employed to analyze the effects of density of O. asiaticus, D. barbipes andAngaracris barabensis and sample plot structure on mortality and food ingestion of the grasshoppers.The results showed that the two most important factors that affected grasshopper mortality weregrassland structure and population density of grasshopper, and the two most important factors that affectfood ingestion of grasshoppers were grassland structure and population density of other grasshopperswith high level of trophic niche overlap.
引文
1.阿斯郎等.科尔泌草原的蝗虫及其防治.中国草地,1988,3:16-18.
    2.陈凤毛.真菌ITS区序列结构及其应用.林业科技开发,2007,21(2):5-7.
    3.陈素华,乌兰巴特尔,吴向东.内蒙古草地蝗虫生存与繁殖对气候变化的响应.自然灾害学报,2007,16(3):66-69.
    4.陈申芝.不同饲料对东亚飞蝗生长发育的影响,[硕士论文]山东:山东农业大学,2008.
    5.陈伟,符悦冠,吴伟坚.成虫取食不同植物对越北腹露蝗卵巢发育和生殖力的影响,热带作物学报,2004,26(3):19-22.
    6.陈永林.蝗虫和蝗灾.生物学通报,1991,(11):9-12.
    7.陈永林.蝗虫再猖獗的控制与生态学治理.中国科学院院刊,2000,5:341-346.
    8.陈之端,冯昊.植物系统学进展.北京:科学出版社,1998,121-124.
    9.董旭辉,羊向东,刘恩峰,王荣.冗余分析(RDA)在简化湖泊沉积指标体系中的应用——以太白湖为例.地理研究,2007,26(3):477-484.
    10.樊绮诗.定量PCR中常用参照系统.诊断学理论与实践,2003,2(3):178-180.
    11.冯光翰等.室外罩笼条件下几种草原蝗虫的食量测定.草地学报,1995.3(5):230-235.
    12.巩爱岐,王薇娟,张生合.青海湖滨区草地蝗虫发生与环境因素关联性的初步探讨.青海草业,2001,10(2):38-41.
    13.巩爱岐.论青海省草地鼠虫害的现状与防治对策.青海草业,1997,(3):22-25.
    14.古丽米热阿布里克木,王世贵.红褐斑腿蝗的食物消耗与利用及其对温度的依赖性.生态学杂志,2002,21(2):24-26.
    15.关敬群等.亚洲小车蝗食量测定.昆虫知识,1989,26(1):8-10.
    16.韩俊英,曾瑞萍.荧光定量PCR技术及其运用.国外医学遗传分册,2000.23(3):117-120.
    17.贺达汉,田真,金桂兰,郑哲民.荒漠草原蝗虫种群地位及时空变化的数量分析.宁夏农学院学报,1996,17(3):17-26.
    18.贺达汉,郑哲民.环境因子对蝗虫群落生态效应的数值分析.草地学报,1996,4(3):213-220.
    19.贺达汉.荒漠草原蝗虫时空生态位的研究.宁夏农学院学报,1997,18(2):1-9.
    20.胡玲玲,刘勇,徐洪富,郅伦山.桃蚜、萝卜蚜的种内密度和种间竞争效应.华东昆虫学报,2004,13(1):77-80.
    21.黄春梅.新疆巴里坤草原优势种蝗虫食性与蝗科中亚科分类系统关系的研究.昆虫分类学报,1995,17:128-134.
    22.黄辉,朱恩林.哈萨克斯坦蝗灾严重发生.世界农业,2001,266(6):46-47.
    23.黄留玉. PCR最新技术原理、方法及运用.北京:化学工业出版社,2005,131-157
    24.康乐,陈永林.草原蝗虫营养生态位的研究.昆虫学报,1994,37(2):178-189.
    25.康乐,李鸿昌,陈永林.内蒙古锡林河流域直翅目昆虫生态分布规律与植被类型关系的研究.植物生态学与地植物学学报,1989,13(4):341-149.
    26.康乐.放牧干扰下的蝗虫-植物相互作用关系.生态学报,1995,15(1):1-11.
    27.康乐等.草原蝗虫食料植物叶片表皮显微结构的研究.草原生态系统研究,1992.4:124-139.
    28.李广.亚洲小车蝗为害草场损失估计分析的研究.中国农业科学院,2007,58-59.
    29.李鸿昌,席瑞华,陈永林.内蒙古典型草原蝗虫食性的研究Ⅰ.罩笼供食下的取食特性.生态学报,1983,3(3):214-228.
    30.李鸿昌,陈永林.内蒙古典型草原蝗虫食性的研究(Ⅱ.优势种蝗虫在自然植物群落中的取食特性).草原生态系统研究(第1集),1985,54-169.
    31.李鸿昌等.典型草原三种蝗虫成虫期的食物消耗及利用的初步研究.生态学报,1987,7(4):331-538.
    32.李鸿昌等.内蒙古典型草原蝗虫食性的研究n.在自然植物群落内的取食特性.草原生态系统
    33.李绍文.生态生物化学(八):植食性昆虫对食物的选择.生态学杂志,1991,10(1):65-70.
    34.刘春来,文景芝,杨明秀,李永刚. rDNA-ITS在植物病原真菌分子检测中的应用.东北农业大学学报,2007.38(1):101-106.
    35.刘长仲.草地保护学第二分册草地昆虫学(第三版).中国农业出版社,2009,156.
    36.刘自远.气象因素对农田鼠类数量影响的典型相关分析.中国媒介生物学及控制杂志,2011,22(4):372-374.
    37.卢辉,余鸣,张礼生,等.不同龄期及密度亚洲小车蝗取食对牧草产量的影响.植物保护,2005,31(4):55-58.
    38.尼玛次吉,果珍,洛桑卓玛,巴桑.冬小麦品种数量性状的典型相关分.西藏农业科技,2011,33(3):30-33.
    39.钦俊德.诠释植食性昆虫是怎样选择食料植物的.生物学通报,2003,38(6):1-3.
    40.钦俊德等.东亚飞蝗的食性和食物利用以及不同食料植物对其生长和生殖的影响.昆虫学报,
    1957.7(2).143-164.
    41.邱星辉,李鸿昌.草原生态系统狭翅雏蝗种群的能量动态.生态学报,1993,13(1):1-8.
    42.邱星辉,李鸿昌.围栏禁牧对羊草草原和大针茅草原蝗虫丰富度的影响.应用生态学报,1997,8(4):403-406.
    43.全国农业技术推广服务中心.中国蝗虫预测预报与综合防治.中国农业出版社.2010,134.
    44.任艳芹,陈开宁.巢湖沉水植物现状(2010年)及其环境因子的关系.湖泊科学,2011,23(3):409-416.
    45.尚占环,姚爱兴,郭旭生.国内外生物多样性测度方法的评价与综述.宁夏农学院学报,2002,23(3):68-73.
    46.帅小蓉,夏友庆,朱勇.定量PCR技术的研究现状及应用概述.蚕学通报,2002,22(4):20-27.
    47.万秀莲,张卫同.草原毛虫幼虫的食性及其空间格局.草地学报,2005,13(1):84-88.
    48.王刚,王彬.浅议环境因素对豫北东亚飞蝗发生的影响.中国植保导刊,2011,31(2):36-38.
    49.王建波,张文驹,陈家宽.核rDNA的ITS序列在被子植物系统进化研究中的应用.植物分类学报,1999,37(4):407-416.
    50.王健立,李洪刚,冯志国,郑长英.西花蓟马与烟蓟马在紫甘蓝上的种间竞争.中国农业科学,2011,44(24):5006-5012.
    51.仵均祥.农业昆虫学(北方本).中国农业出版社,2002,75.
    52.徐坤,李国旗,李世忠.宁夏盐池县退化草地恢复过程中不同利用方式下植物群落多样性的对比研究.西北农业学报,2007,16(4):106-111.
    53.薛娴.RAPD标记和ITS序列探讨谷精草属下六个组的系统发育关系.北京:北京林业大学,2004.
    54.颜忠诚,陈永林.草原蝗虫的栖境选择:栖境选择与水平结构的关系.武夷科学,1998,14:251-257.
    55.颜忠诚,陈永林.内蒙古锡林河流域不同生境中蝗虫种类组成的分析.昆虫学报,1997,40(3):271-275.
    56.颜忠诚,陈永林.内蒙古草原蝗虫个体大小及生活型划分的探讨.生态学报,1997,17(6):666-670.
    57.张龙.国内外蝗害治理技术现状与展望.应用昆虫学报,2011,48(4):804-810.
    58.章晓波,徐洵.荧光探针研究新进展.生物工程进展,2002,20(2):14-15.
    59.赵成章,周伟,王科明,董小刚.黑河中上游草原蝗虫生态分布与生境的关系.兰州大学学报(自然科学版),2009,45(4):42-47.
    60.赵志礼,徐珞珊,董辉等.核糖体DNA ITS区序列在植物分子系统学研究中的价值.植物资源与环境学报,2000,9(2):50-54.
    61.赵忠孝.非洲蝗灾.世界科学,2005,(4):33-35.
    62.郑敬刚,董东平,赵登海,何明珠,李新荣.贺兰山西坡植被群落特征及其与环境因子的关系.生态学报,2008,28(9):4559-4567.
    63.郑淑华,郭慧清,赵萌莉,韩国栋,王堃.草甸草原草地基况与生物多样性关系的研究.中国草地学报,2007,2(4):9-14.
    64.陈洁,秦秋菊,孙文琰,等.温度对异色瓢虫实验种群的影响.植物保护学报,2008,35(5):405-409.
    65. Abdel-latief M, Hoffmann KH. The adipokinetic hormones in the fall armyworm, SPodopterafrugiperda: cDNA cloning, quantitative real time RT-PCR analysis, and gene specific localization.Insect Biochemistry and Molecular Biology,2007,37:999-1014.
    66. Abushama.F.T. Food-Plant selection by Poecilocerus hieroglyphicus (Klug)(Acrididae;Pyrgonorphinae) and some of recepters involved. Proceedings of the Royal Entomological Societyof London,1968.43(7-9):96-104.
    67. Ainouche.M.L, Bayer.R. On the origins of tetraploid Bromus species (section Bromus, Poaceae):insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome,1997,730-744.
    68. Alan N. Andersen, J. A. Ludwig, Lyn M. Lowe, D. C. F. Rentz. Grasshopper biodiversity andbioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park.Austral Ecology,2001,26:213–222.
    69. Alex.来自澳大利亚的治蝗报告.人与生物圈,2005,(3):48-54.
    70. Alexandre V. Latchininskii. Environmental factors governing population dynamics of rangelandgrasshoppers in east Siberia: A novel approach using GIS and Remote Sensing. Ph D. Dissertationproposal in Entomology, University of Wyoming,1996.
    71. Andrew J. Rominger, Tom E. X. Miller, Scott L. Collins. Relative contributions of neutral andniche-based processes to the structure of a desert grassland grasshopper community. CommunityEcology,2009,161:791-800.
    72. Angela G, Schilling. Evelyn M. Polymerase chain reaction-based assays for species-specificdetection of Fusarium culmorum, F. graminearum, and F. avemaceum. Phytopathology,1996,86(5):515-522.
    73. Anthony J. Resource utilization and community strueture in assemblages of arid grasslandgrasshoppers. Transactions of the American Entomological Society,1979,105:255-300.
    74. Arianne J. Cease, James J. Elser, Colleen F. Ford, Shuguang Hao, Le Kang, Jon F. Harrison. HeavyLivestock Grazing Promotes Locust Outbreaks by Lowering Plant Nitrogen Content. Science,2012,335(27):467-469.
    75. Bailey, C. G. Mukerji, M. K. Energy dynamics of Melanoplus bivittatus and M. femurrubrum(Orthoptera: Acrididae) in a grassland ecosystem. Canadian Entomologist,1977,109:4,605-614.
    76. Baldwin BG, Sanderson MJ, Porter JM, et,al. The ITS region of nuclear ribosomal DNA: Avaluable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden,1995,82:247-277.
    77. Beckerman A P.Counterintuitive outcomes of inter-specific competition between two grasshopperspecies along a resource gradient. Ecology,2000,81:948-957.
    78. Belovsky G E. Optimal foraging and community structure: the allometry of herbivore foodselection and competition. Evolutionary Ecology,1997,11:641-672.
    79. Biondi M.. Proposal for an ecological and zoogeographical categorization of the Meditteran eanspecies of the flea beetle genus Longitarsus Berthold. Chrysomelidae Biology,1996,3:13-15.
    80. Black VH, Barilla JR, Martin KO. Effects of age, adrenocorticotropin, and dexamethasone on amale-specific cytochrome P450localized in the inner zone of the guinea pig adrenal.Endocrinology,1989,124(5):2494-2498.
    81. Brusven.M A. and Mulkern.G.B. The use of epidermal charaeteristics for the identification ofPlants recovered in fragmentary condition from the crops of grasshoppers N Dak. ResolutionReprographics,1960,3:11.
    82. Bunyard B.A, Nichoison.M.S, Royse.D.J. A systematic assessment of Morchella using RFLPanalysis of the28s ribosomal RNA gene. Mycologia,1994,86:762-772.
    83. ChaPman.R.F.. The structure and wear of the mandibles in some African grasshoppers.Proceedings of Zoological Society of London,1964.142:107-121.
    84. Cho YK, Kim JT, Lee YS, Kim YA, Clinical evaluation of micro-scale chip-based PCR system forrapid detection of hepatitis B virus. Biosens. Bioelectron.2006,21:2161-2169.
    85. Cooke. D. E.L, Kenndx. D.M, Guy. D.C et al. Relatedness of Phytophthora as assessed by RAPDsof ribosomal DNA. Mycological Research.1996,100:297-303.
    86. Davey. P.M. Quantities of food enter by the Desert Locust. Schistocerca gregaria (Forsk) in relationto growth. Bulletin of Entomological Research,1954,45:539-551.
    87. David H. Branson, Gregory A. Sword. Grasshopper Herbivory Affects Native Plant Diversity andAbundance in a Grassland Dominated by the Exotic Grass Agropyron cristatum. RestorationEcology,2009,17(1):89-96.
    88. David H. Branson. Relationships between Plant Diversity and Grasshopper Diversity andAbundance in the Little Missouri National Grassland. Psyche: A Journal of Entomology,2010,2011:1-7.
    89. DNA/RNA Real-Time Quantitative PCR-Rev. B Applied Biosystemshttp://www.appliedbiosystems.comcn/chinese/pe~h2~addl. html.
    90. E. A. Bernays, N. Gonzalez, J. Angel, K. L. Bright. Food Mixing by Generalist Grasshoppers:Plant Secondary Compounds Structure the Pattern of Feeding. Journal of Insect Behavior,1995,8(2):161-180.
    91. Enserink M. Can the war on locusts be won? Science,2004,306(5703):1880-1882.
    92. Eva Knop, Bernhard Schmid, Felix Herzog. Impact of Regional Species Pool on GrasshopperRestoration in Hay Meadows. Restoration Ecology,2008,16(1):34-38.
    93. Galetto L., Bosco D., Marzaehi C. Universal and group-Specific real-time PCR diagnosis offlavescence doree (16Sr-V), bois noir (16S r-Xll) and apple Proliferation (16S r-X)phytoplasmas from field-collected plant hosts and insect vectors. Annals of Applied Biology,147:191-201.
    94. Gangwere.S.K. A combined short-cut technique to the study of food selection in Orthopteroidea.Turtox News,1969,47:121-125.
    95. Gangwere.S.K. A monograph on food selection in Orthoptera. Transactions of the AmericanEntomological Society,1961.87;67-230.
    96. Gangwere.S.K. A study of the feculae of Orthoptera. Their specificity and the role which the insetsmouthParts. Alimentary canal and food-habits play in their formaion. European Optical Society,1962,41:247-262.
    97. Gangwere.S.K. The mechanical handling of food by the alimentary canal of Orthoptera and allies.European Optical Society,1966.41;247-265.
    98. Gangwere.S.K. The structural adaptation of mouthparts in Orthoptera and allies. European OpticalSociety,1965.41;121-125.
    99. Gary E. Belovsky and Jennifer B. Slade. Dynamics of two Montana grasshopper populations:relationships among weather, food abundance and intraspecific competition. Oecologia,1995,101(3):383-396
    100. Guo Zhongwei, Li Hongchang, Gan Yaling. Grasshopper (Orthoptera: Acrididae) biodiversity andgrassland ecosystems. Insect Science,2006,13:221-227.
    101. Hansen, R.S.&Ueckert, D.N. Dietary similarity of some primary consumers. Ecology,1970,51:640-648.
    102. Harper GL, King RA, Dodd CS, Harwood JD, GlenDM, Bruford MW, Symondson WOC, Rapidscreening of invertebrate predators for multiple prey DNA targets. Molecular Ecology,2005,14:819-827.
    103. He Dahan. The occurrence and advance of research on locusts and grasshoppers in the Northerngrasslands of China.Entomological Research,1994,1:228-234.
    104. Holland PM, Abramson RD, Watson R, Gelfand DH. Detection of specific polymerase chainreaction product by utilizing the5'----3' exonuclease activity of Thermus aquaticus DNApolymerase. Proceedings of the National Academy of Sciences,1991,88(16):7276-80.
    105. Huh B, Ha YJ, Oh JT, Park EH, A rapid PCR assay for deteeting hepatitis B viral DNA usingGenSpector TMC-1000. Agricultural Chemistry and Biotechnology,49:143-147.
    106. Hutter S, Saminadin-Peter SS., StePhan W, Parseh J. Gene expression variation in Africanand European populations of Drosophila melanogasler. Genome Biology,2008,9:2.
    107. Isely.F.B. and Alexander.G. Analysis of insect food habits by crop examination. Science,1949,109:115-116.
    108. J.萨姆布鲁克D.W.拉赛尔.分子克隆.北京:科学出版社.2002,678-688.
    109. Joern A,Klucas G.Intra-and interspecific competition in adults of two abundant grasshopper(Orthoptera: Acrididae) from a sandhills grassland. environmental entomology,1993,22:352-361.
    110. Joern A. Grasshopper (Orthoptera: Acrididae) communities respond to fire, bison grazing andweather in North American tallgrass prairie: a long term study. Oecologia,2007,153:699-711.
    111. John W. High variability for control-region sequences in a marine mammal: Implication forconservation and biogeography of steller sea lions. Journal of Mammalian Ova Research,1996,77(1):95-108.
    112. Kang L. Y. Chen Multidimensional analysis of resource utilization in assemblages of rangelandgrasshoppers (Orthoptera:Acrididae).Entomologia Sinica,1994,3:264-282.
    113. Kaufmann. T. Biological studies on some Bavaria Acridoidea (Orthoptera).with special reference totheir feeding habits. Annals of the Entomological Society of America,1965,58:791-801.
    114. Kim EH, Lee DW, Han SH, Kwon SH, Rapid detection of avian influenza subtype H5N1usingquick real-time PCR. Korean Journal of Microbiology and Biotechnology,2007,43:23-30.
    115. Kirk A. VanDyke, Alexandre V. Latchininsky, Scott P. Schell. Importance of ecological scale inmontane grasshopper (Orthoptera: Acrididae) species structure in similar habitat between differingsoil textures and dominant vegetative canopy coverage. Journal of Orthoptera Research,2009,18(2):215-223.
    116. Klingeman WE, Braman SK, Buntin GD, Azalea growth in response to azalea lace bug(HeteroPtera: Tingidae) feeding. Journal of Economic Entomology,94:129-137.
    117. Lee DW, Kim EH, Yoo MS, Han SH. Ultra-rapid real-time PCR for the detection of humanimmunodeficiency virus (HIV). Korean Journal of Microbiology and Biotechnology,2007,43:91-99.
    118. Lee LG, Connell CR, Bloch W, Allelic diserimination by nick-translation PCR with fluorogenicProbes. Nucleic Acids Research,1993,21:37613766.
    119. M.Gottsehling, J.plotner. Secondary strueture models of the nuelear internal transcribed spacerregions and5.85rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. NucleicAcids Research,2004,32(1):307-315.
    120. Magalhaes T, Braekney DE, Beier JC, Foy BD. Silencing an Anopheles gambiae catalase andsulfhydryl oxidase increases mosquito mortality after a blood meal. Archives of insectbiochemistry and physiology,2008,68:134-143.
    121. Mason G, Caciagli P, Accotto GP, Noris E. Real-time PCR for the quantitation of Tomato yellowleaf curl Sardinia virus in tomato plants and in Bemisia tabaci. Journal of Virological Methods,2008,147:282-289.
    122. Mitchell, J. E. Pfadt, R. E. A role of grasshoppers in a shortgrass prairie ecosystem. EnvironmentalEntomology,1974,3:2,358-360.
    123. Morriso TB, Weis JJ and Wittwer CT. Quantification of low-copy transcripts by continuous SYBRGreen I monitoring during amplification. Biotechniques,1998,24:954-962.
    124. MulkemG.B. PriessK.P..et.al. Food habits and Preferences of grassland grasshoppers of the northcentral GreatPlains. North Dakota agricultural statistics,1969,481:1-32.
    125. Mulkern.G.B. Anderson J.F. and Brusven M.A. Biology and ecology of North Dakota grasshoppers.Ⅰ.Food habits and preferences of grasshoppers associated with alfalfa fields. ResolutionReprographics North Dakota Agriculture,1962,7:26.
    126. Mulkern.G.B. Food selection by grasshoppers. Annual Review of Entomology,1967.12:59-78.
    127. Musain M.A.,Mathur G.B.,Koonwall M.L.. Studies on Schistocerca gregaria(Forskal) Ⅻ. foodand feeding habits of the desert locust. Indian Journal of Entertainment,1946,8:141-46.
    128. Nazar R.N,Hu.X,Schmidt.J et al. Potential use of PCR amplified ribosomal intergenic sequences inthe detection and differentiation of Vertillium wilt pathogens. Physiological and Molecular PlantPathology,1991,39:1-11.
    129. Nelson.ML. and GangwereS.K. A key to grasshopper food plants based on anatomical features.The Michigan Botanist1981.20:111-126.
    130. Rinehart TA, Boyd DW. Rapid, high-throughput detection of azalea lace bug (Hemiptera: Tingidae)predation by Chrysoperla rufilabris (Neuroptera: Chrysopidae), using fluorescent-polymerase chainreaction primers. Journal of Economic Entomology,2006,99(6):2136-2141.
    131. Rogers, L. E.&Uresk, D. W. Food plant selection by the migratory grasshopper (Melano Plussanguinipes) within a cheatgrass community. Northwest Science,1974,48:230-234.
    132. Saponari M, Manjunath K, Yokomi RK. Quantitative detection of Citrus tristeza virus in citrus andaphids by real-time reverse transcription-PCR (TaqMan). Journal of Virological Method,2008,147:43-53.
    133. Sheldon, J.K.&Rogers, L.E. Grasshopper food habits within a shrub-steppe community.Oecologia,1978,32:85-92.
    134. Tyrkus.M. and Gangwere.S.K.. Studies on the feculae of selected Michigan Acrididae (Orthoptera).McMaster Institute of Environment and Health,1970,3:118-128.
    135. Tyrkus.M. The feasibility of use of caecal and diverticular coloration in field determination ofgrasshoppers diet. McMaster Institute of Environment and Health,1974,4:14-22.
    136. Ueckert.D.N.. seasonal dry weight composition in grasshopper diets on Colorado herbland. Annalsof the Entomological Society of America,1968,61:1539-1544.
    137. Uvarov,B.P.. Food and feeding behaviour in grasshoppers and locusts.1977,82-122.
    138. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for geneexpression analysis. BioTechniques,44:619-626.
    139. White.T.J, T.Bruns, S.Lee, and J. Taylor. Amplication and direct sequencing of fungal ribosomalRNA genes for phylogenetics.1990,315-322.
    140. Whitford, P. W.1949. Distribution of woodland plants in relation to succession and clonal growth.Ecology,30:199-208.
    141. Wilhelm J, Pingoud A,2003. Real-time polymerase chain reaction. Chembiochem,4(11):1120-1128.
    142. Williams L.H.. The feeding habits and food preference of Acrididae and the factors wich determinethem. Transactions of the Entomological Society of London,1954,105:423-454.
    143. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ. The LightCyeler: amicrovolume multisample fluorimeter with rapid temperalure control. Biotechniques,1997,22(1):176-181.
    144. Wynne-Edwards K E. Biparental care in Djungarian but not Siberian dwarf hamsters (Phodopus).Animal Behaviour,1995,50:1571-l585.
    145. Xue B. Coodwin. P..H and Annis S. L. Pathotype identification of Leptophaeria maculans withPCR and oligonucleitide primers from ribosomal internal transcribed spacer sequences.Physiological and Molecular Plant Pathology,1992,41:179-188.
    146. Zhang GE, LüZC, Wan FH, L vel GL, Real-time PCR quantification of Bemisia tabaci(Homoptera:Aleyrodidae)B-biotype remains in predator guts. Molecular Ecology Notes,2007b,7(6):947-954.
    147. Zhang GE, LüZC, Wan FH. Detection of Bemisia tabaci remains in predator guts using asequence-characterized amplified region marker. Entomologia Experimentalis ET Applicata,2007a,123(1):81-90.
    148. Μцщсн о,Л. Л.. ΛУΗΛ СССР Catantopinae,1952,1-591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700