致轴索型GBS空肠弯曲菌的wla基因簇序列对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:空肠弯曲菌(Campylobacter jejuni, C. jejuni)是世界范围内导致细菌性腹泻的主要病原菌之一,部分吉兰-巴雷综合征(Guillain-Barre syndrome, GBS)是发生于C.jejuni感染后的周围神经疾病。根据不同的神经生理学和病理学特点,GBS被分为急性炎症性脱髓鞘性多发性神经病(AIDP)、急性运动轴索性神经病(AMAN)、和Miller-Fisher综合征(MFS)等几种亚型。现有大量研究表明空弯表面的脂寡糖(LOS)成分和周围神经的神经节苷脂之间的分子模拟导致免疫损伤是空弯感染后GBS的主要发病机制。Wla基因簇编码的多种蛋白参与了细菌表面LOS的生物合成。
     本研究从基因突变的角度出发,选择华北地区具有致AMAN型GBS特性的三株空肠弯曲菌菌株,对其LOS合成相关的wla基因簇序列进行测定,以了解华北地区致轴索型GBS的空弯菌株核酸序列特征,并同GenBank中的空弯菌株相应序列进行对比分析,寻找基因突变和变异与致病性的关系,及菌株的基因地域特点。
     方法:1细菌培养选取分离自华北地区AMAN型GBS病人的C.jejuni菌株。血清分型为pennerO:19型,pennerO:2型,pennerO:5型。采用李春岩院士的培养方法培养C.jejuni。
     2 DNA提取应用promega公司的Wizard基因提取试剂盒,提取C.jejuni基因组DNA。
     3 PCR扩增参考以往文献,进行PCR扩增,经电泳证实PCR产物。
     4测序和拼接PCR产物经电泳证实后,由上海生物公司测序。以已知序列为模版,利用末端重复序列拼接测序结果得到wla基因簇完整序列。
     5进化分析应用Mega version 4软件,计算3株C.jejuni的wla基因簇序列同GeneBank中已知全基因组序列的6株C.jejuni相应位点的遗传距离并构建进化树。
     6序列对比应用NCBI数据库的BLAST,将得到的3株C.jejuni的wla基因簇序列与空肠弯曲菌NCTC11168菌株相应序列进行对比分析,找出存在的突变。
     结果:1拼接后得到的3株菌的wla基因簇全长约13kb,其中lulei株与NCTC11168株相似,编码11个开放读码框,qiaoyuntao株和zhanxing株wla基因簇编码12个开放读码框。在wlaK和wlaI之间,qiaoyuntao株和zhanxing株比lulei株多出wlaJ。三株菌wla基因簇的GC含量都在29.7%左右。
     2 lulei株、qiaoyuntao株和zhanxing株的wla基因簇分别与RM1221株、NCTC11168株、81-176株相似程度最高,但在zhanxing株中,基因的相似程度有差异,其中wlaC、wlaD、wlaE、wlaG、wlaH、wlaI与81-176同源性最高,从wlaM到wlaJ,这四个相邻的ORF与NCTC11168株相似度最高。以基因簇中的单个基因为单位的进一步分析结果显示,这9株C.jejuni的聚类关系并不一致,本地菌株在一些基因中存在聚类现象。
     3本研究菌株与NCTC11168菌株序列分析结果表示菌株之间核苷酸序列同源性达98%以上。三株细菌wla基因簇的基因存在不同程度的突变。lulei株共有134个碱基变化,导致30个氨基酸突变,wlaB、wlaE、wlaL及wlaM表达中断;qiaoyuntao株共有24个碱基改变,导致3个氨基酸突变,wlaG、wlaK、wlaM的表达中断; zhanxing株共有221个碱基改变,导致37个氨基酸突变,wlaB、wlaG、wlaK表达中断。在这些突变中,lulei株与zhanxing株共有7个相同的氨基酸突变。
     结论:对三株致GBS空肠弯曲菌wla基因簇的序列测定和进化分析得到菌株的序列特征及与其他菌株的亲缘性。以基因簇中的单个基因为单位构建进化树的结果显示,本地菌株在wlaK、wlaM以及其它一些基因中存在聚类现象,这些基因中可能具有本地菌株基因特征。与NCTC11168的对比分析发现三株菌的wla基因簇存在多处突变,导致了一些氨基酸突变及基因的表达中断,这些突变可能导致菌株LOS的结构发生变化,使菌株获得致GBS的能力。lulei株与zhanxing株的wlaC共有6个相同的氨基酸突变,可能使所编码蛋白的二级结构及三级结构发生有意义的改变,影响到蛋白功能,成为本地菌株高致病性以及华北地区GBS高发病率的分子生物学基础。本试验中发现的菌株基因特征及突变为研究本地菌株的地域性特点及致GBS的基础提供了思路和方向
Objective : Campylobacter jejuni (C.jejuni) is the predominant cause of bacterial gastroenteritis in the world and Guillain-Barre syndrome (GBS) is a peripheral neuropathy happened after C.jejuni infection. According to different pathological and physiological representation, GBS can be classified into acute demyelinating pattern (AIDP), acute motor axonal neuropathy (AMAN) and Miller-Fisher syndrome (MFS). Many researches indicate that molecular mimicry of Campylobacter jejuni lipo-oligosaccharides (LOS) with gangliosides in nervous tissue is considered to be involved in the pathogenesis of C.jejuni-induced GBS.
     In this reseach, the wla gene clusters of three C.jejuni isolates from north China which have been proved can cause AMAN type GBS were cloned and sequenced. The nucleotide sequences were analyzed and compaired with the known sequences of C.jejuni strains in Genbank to find out the relevance between the sequence character and ability to cause GBS as also as the markers for local GBS associated C.jejuni.
     Methods:1 Bacteria culture: The C,jejuni strains used were isolated from stools of AMAN patients from North China.The serotypes are respectively Penner O:19, Penner O:2, Penner O:5. Growth condition was following the procedure of Li CY et al.
     2 DNA isolation: DNA was isolated using the Wizard Genomic DNA Purification Kit (Promega).
     3 PCR: PCR reactions were performed as described previously. All PCR products were analyzed by agarose gel electrophoresis.
     4 Sequence and assemblte: All the PCR products sequenced by Shanghai Sangon Biological Engineering Technology Corporation. Sequencing results were spliced and assembled into a complete sequence by the terminals overlapped each other with the known genome sequence as template.
     5 Evolutionary analysis: The evolutionary distances from nucleotide sequences were estimated for the wla clusters sequences of the three C.jejuni strains and the corresponding sequence of 6 C.jejuni stains whose genome sequence have published in GeneBank and the phylogenetic tree was constructed using Mega version 4 software.
     6 Sequence alignment: DNA sequences of wla cluster were compared with C.jejuni NCTC 11168 by BLAST of NCBI database to find out the mutations.
     Result:1 The wla cluster total length of the three strains spanned about 13kb and lulei strain contained 11 complete ORFs just as NCTC11168, while qiaoyuntao and zhanxing strains contained 12 ORFs, having one more ORF named wlaJ in the cluster between wlaK and wlaI. All the wla clusters of three C.jejuni possessed a G+C content around 29.7%.
     2 Lulei strain, qiaoyuntao strain and zhanxing strain separately has the highest similarity with RM1221, NCTC11168 and 81-176 strains. In the 12 ORF of zhanxing strain wla cluster, four adjacent genes spanning 4.4kb, wlaM, walL, wlaK and wlaJ, have the highest similarity with NCTC11168. And six adjacent genes from wlaC to wlaI except wlaF are most similar with 81-176 strain. When single gene is compared, the three local strains show homogeneous in some genes.
     3 The sequence comparison of NCTC11168 and our strains displayed more than 98% identity. The Alignment with the related sequence of NCTC 11168 showed that there were some mutations in the wla gene clusters of the three C.jejuni stains. Lulei strain contained 134 nucleotide mutations, 30 amino acid mutations and the express of wlaB, wlaE, walL, wlaM stopped midway; qiaoyuntao strain contained 24 nucleotide mutations, 3 amino acid mutations and the express of wlaG, wlaK, walM stopped midway; zhanxing strain contained 221 nucleotide mutations, 37 amino acid mutations and the express of wlaB, wlaG, walK stopped midway. In these mutations, lulei strain and zhanxing strain had 7 identical amino acid mutation.
     Conclusion : The character of gene structure and similarity can be revealed from complete wla gene cluster sequencing of the three stains of C.jejuni and the results of phylogenetic analysis with other C.jejuni stains. When single gene was compared, local strains showed homogeneous in the wlaK, wlaM and some other genes. The nucleotides mutations found in the three C.jejuni stains lead to some amino acid mutation and truncated expression products, and there were also 6 same amino acid mutation in lulei strain and zhanxing strain which may affect the secondary and tertiary structure to change the function of those proteins. And the changes may result in the ability to causing GBS. Our study established the foundation for exploring the biologically characteristic of local GBS-associated C.jejuni stains.
引文
1 Altekruse SF, Stern NJ, Fields PI, et al Campylobacter jejuni an emerging food borne pathologen. Emerg Infect Dis, 1999, 5:28~35
    2 Andrew D. Sails, Swaminathan B, Fields PI, et al Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J Clin Microbiol, 2003, 41: 4733–4739
    3 C Y Li, P Xue, W Q Tian, et al Experimental Campylobacter jejuni infection in the chicken: animal model of axona Guillain-Barre syndrome. J Neurol Neorosurg Psychiatry, 1996, 61:279-284
    4 Feng Shi, Yuen Yuen Chen, Trudy M Wassenaar, et al Development and Application of a New Scheme for Typing Campylobacter jejuni and Campylobacter coli by PCR-Based Restriction Fragment Length Polymorphism Analysis. J Clin Microbiol, 2002, 5:1791~1797
    5 Fouts DE, Mongodin EF, Mandrell RE, et al MajorStructural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species. PLoS Biol, 2005, 3(1):e15
    6 Friedman CR, Neimann J, Wegener HC, et al Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. Washington (DC):(2000) ASM Press 121–138
    7 Fry BN, Korolik V, ten Brinke JA, et al The lipolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology, 1998, 144:2049~2061
    8 Gilbert M, Karwaski MF, Bernatchez S, et al The genetic bases for the variation in the lipooligosaccharide of the mucosal pathogen, Campylobacter jejuni Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem, 2002, 277:327–337
    9 Godschalk PC, Heikema AP, Gilbert M, et al The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. J Clin Invest, 2004, 114:1659-1665
    10 Godschalk PC, Kuijf ML, Li J, et al Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barre and Miller Fisher Syndromes. Infect Immun, 2007, 75:1245-54
    11 Griffin JW, Li CY, Ho TW, et al Guillain-Barré syndrome in northern China The spectrum of neuropathological changes in clinically defined cases Brain, 1995, 18:577-95
    12 Griffin JW, Li CY, Ho TW, et al Pathology of the motor-sensory axonal Guillain-Barré syndrome Ann Neurol, 1996, 39:17-28
    13 Griffin JW, Li CY, Macko C, et al Early nodal changes in the acute motor axonal neuropathy pattern of the Guillain-Barré syndrome. J Neurocytol, 1996, 25:33-51
    14 Guerry P, Szymanski CM, Prendergast MM et al Phase Variation of Campylobacter jejuni 81-176 Lipooligosaccharide Affects Ganglioside Mimicry and Invasiveness In Vitro. Infect Immun, 2002, 70:787–793
    15 J. Parkhill, B. W. Wren, K. Mungall et al, The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 2000, 403: 665-8
    16 Parker CT, Horn ST, Gilbert M, et al Comparison of Campylobacter jejuni lipooligosaccharide biosynthesis loci from a variety of sources. J Clin Microbiol, 2005, 43:2771–2781
    17 Wood AC, Oldfield NJ, O'Dwyer CA, et al Cloning, mutation and distribution of a putative lipopolysaccharide biosynthesis locus in Campylobacter jejuni. Microbiology, 1999, 145: 379-88
    18 Yuki N, Koga M, Bacterial infections in Guillain-Barre and Fisher syndromes. Current Opinion of Neurology, 2006, 19:451-7
    19 Yuki N, Usuki K, Koga M, et a1 Arbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre ′syndrome. Proc Natl Acad Sci USA, 2004, 101:11404~11409
    20 Van der Mech FGA,Van Doorn PA, Meulstee J, et al Diagnostic and Classification Criteria for the Guillain-Barré syndrome. J Eur Neurol, 2001, 45(3):133~139
    21 Li CY, Xue P, Tian WQ, Liu RC, et al Experimental Campylobacter jejuni infection in the chicken: an animal model of axonal Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry, 1996, 61(3): 279-284
    22 Ulla-Maija Nakari, Katja Laaksonen, Maija Korkeila, et al Comparative Typing of Campylobacter jejuni by Heat-Stable Serotyping and PCR-Based Restriction Fragment Length Polymorphism Analysis. J Clin Microbiol, 2005, 43(3):1166–1170
    1 van Belkum A, van den Braak N, Godschalk P, et al A Campylobacter jejuni gene associated with immune-mediated neuropathy. Nature Medicine, 2001, 7:752–753
    2 Peggy C R, Godschalk, Astrid P Heikema, et al The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. The Journal of Clinical Investigation, 2004, 114:1659-1665
    3 Ho TW, Willison HJ, Nachamkin I, et al Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré syndrome. Annals of Neurology, 1999, 45:168–173
    4 Gilbert M, P C Godschalk, M F Karwaski, et al Evidence for acquisition of the lipooligosaccharide biosynthesis locus in Campylobacter jejuni GB11, a strain isolated from a patient with Guillain-Barre syndrome, by horizontal exchange. Infection and Immunity, 2004, 72:1162–1165
    5 Fry B N, V Korolik, J A ten Brinke, et al The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology, 1998, 144:2049–2061
    6 Jacobs BC, Endtz H, van der Meché FG, et al Serum anti-GQ1b IgG antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller Fisher syndrome. Annals of Neurology, 1995, 37:260–264
    7 Yuki N, Yoshino H, Sato, et al Acute axonal poly -neuropathy associated with anti-GM1 antibodies following Campylobacter enteritis. Neurology, 1990, 40:1900–1902
    8 St Michael F, Szymanski C M, Li J, et al The structures of the lipooligosaccharide and capsule polysaccharide ofCampylobacter jejuni genome sequenced strain NCTC 11168. Europy Journal of Biochemistry, 2002, 269: 5119–5136
    9 Phongsisay V, Perera VN, Fry BN, et al Exchange of lipooligosaccharide synthesis genes creates potential Guillain-Barre syndrome-inducible strains of Campylobacter jejuni. Infection and Immunity, 2006, 74:1368-72
    10 Watanabe H, K Shindo, Y Nakamura, et al A case of Guillain-Barre syndrome after Campylobacter jejuni enterocolitis: anti-ganglioside antibody levels with or without Guillain-Barre syndrome. Rinsho Shinkeigaku, 2001, 41:625–627
    11 Aspinall, McDonald AG, Pang H, et al Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of O antigen chains from the serostrain and two bacterial isolates from patients with the Guillain-Barré syndrome. Biochemistry, 1994, 231:510-578
    12 Gilbert M, Brisson JR, Karwaski MF, et al Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. The Journal of Biological Chemistry, 2000, 275:3896-3906
    13 Mishu B, Ilyas AA, Koski CL, et al Serologic evidence of previous Campylobacter jejuni infection in patients with the Guillain-Barré syndrome. Annals of Internal Medicine, 1993, 118:947-953
    14 Yuki N, Susuki K, Koga M, et al Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barre′ syndrome. PNAS, 2004, 101:11404–11409
    15 Parker CT, Horn ST, Gilbert M, et al Comparison of Campylobacter jejuni Lipooligosaccharide Biosynthesis Loci from a Variety of Sources. Journal of Clinical Microbiology, 2005, 43:2771–2781
    16 Nachamkin I, Liu J, Li M, et al Campylobacter jejuni from patients with Guillain-Barré syndrome preferentially expresses a GD(1a)-like epitope. Infect Immun, 2002, 70:5299–5303
    17 Yuki N, Taki T, Takahashi M, et al Penner's Serotype 4 of Campylobacter jejuni Has a Lipopolysaccharide That Bears a GM1 Ganglioside Epitope as well as One That Bears a GDla Epitope. Infection and Immunity, 1994, 62: 2101-2103
    18 Salloway S, Mermel LA, Seamans M, et al Miller- Fisher Syndrome Associated with campylobacter jejuni Bearing Lipopolysaccharide Molecules That Mimic Human Ganglioside GD3. Infection and Immunity, 1996, 64:2945–2949
    19 Eleni E, Magira, Miltiadis Papaioakim, et al Differential Distribution of HLA-DQ_/DR_ Epitopes in the Two Forms of Guillain-Barre′ Syndrome, Acute Motor Axonal Neuropathy and Acute Inflammatory Demyelinating Polyneuropathy (AIDP): Identification of DQ_ Epitopes Associated with Susceptibility to and Protection from AIDP. Journal of Immunology, 2003, 170: 3074–3080
    20 Peggy C.R., Godschalk PC, Jacobs BC, et al Coinfection with two different Campylobacter jejuni strains in a patient with the Guillain-Barre syndrome. Microbes and Infection, 2006, 8:248-53
    21 Godschalk PC, Kuijf ML, Li J, et al Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barre and Miller Fisher Syndromes. Infection and Immunity, 2007, 75:1245-54
    22 Hendrixson DR, A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Molecular Microbiology, 2006, 61:1646-59
    23 Yuki N, Koga M, Bacterial infections in Guillain-Barre and Fisher syndromes. Current Opinion of Neurology, 2006, 19:451-7
    24 Gilbert M, Karwaski MF, Bernatchez S, et al The genetic bases for the variation in the lipooligosaccharide of the mucosal pathogen, Campylobacter jejuni Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. Journal of Biology Chemistry, 2002, 277:327–337
    25 Guerry P, Szymanski CM, Prendergast MM, et al Phase Variation of Campylobacter jejuni 81-176 Lipooligosaccharide Affects Ganglioside Mimicry and Invasiveness In Vitro. Infection and Immunity, 2002, 70:787–793
    26 Moran AP, Annuk H, Prendergast MM, Antibodies induced by ganglioside-mimicking Campylobacter jejuni lipooligosaccharides recognise epitopes at the nodes of Ranvier. Journal of Neuroimmunology, 2005, 165:179–185
    27 Ropper AH, The Guillain-Barre syndrome. New England Journal Medicicen, 1992, 326: 1130-6
    28 Erin C Gaynor, Shaun Cawthraw, Georgina Manning, et al The Genome-Sequenced Variant of Campylobacter jejuni NCTC 11168 and the Original Clonal Clinical Isolate Differ Markedly in Colonization, Gene Expression, and Virulence-Associated Phenotypes. Journal of Bacteriology, 2004, 186: 503-517
    29 J?rgen Engberg, Irving Nachamkin, Vivian Fussing, et al Absence of Clonality of Campylobacter jejuni in Serotypes Other Than HS:19 Associated with Guillain-Barré Syndrome and Gastroenteritis. The Journal of Infectious Diseases, 2001, 184:215-220
    30 Xiang SL, Zhong M, Cai FC, et al The sialic acid residue is a crucial component of C jejuni lipooligosaccharide ganglioside mimicry in the induction Guillain–Barre′ syndrome. Journal of Neuroimmunology, 2006, 174:126–132
    31 Prokhorova TA, Nielsen PN, Petersen J, et al Novel surface polypeptides of Campylobacter jejuni as traveller's diarrhoea vaccine candidates discovered by proteomics. Vaccine, 2006, 24:6446-55
    32 Pawelec DP, Korsak D, Wyszynska AK, et al Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS Microbiol Lett, 2000, 185:43-9
    33 Burr DH, Rollins D, Lee LH, et al Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine, 2005, 23:4315-21
    34 Lee LH, Burg E 3rd, Baqar S, et al Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infection and Immunity, 1999, 67:5799-805
    35 Guerry P, Pope PM, Burr DH, et al Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infection and Immunity, 1994, 62:426-32
    36 Wyszynska A, Raczko A, Lis M, et al Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter. Vaccine, 2004, 22(11-12):1379-89
    37 Baqar S, Applebee LA, Bourgeois AL, et al Immunogenicity and protective efficacy of a prototype Campylobacter killed whole-cell vaccine in mice. Infect ion and Immunity, 1995, 63(9):3731-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700