格林—巴利综合征磁共振神经成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.比较正常腰丛神经的磁共振神经成像(MRN)测量数据和大体标本的差异。
     2.探讨磁共振神经成像(MRN)对格林-巴利综合症(GBS)的诊断价值。
     方法:
     1.对健康体检者30例(男19例,女11例)行腰丛神经MRN检查,测量右侧正常的L2-5神经根、神经节、神经干及股神经的短轴径线及神经肌肉信号比;解剖并测量尸体右侧腰丛神经L2-5神经根、神经节、神经干及股神经的形态、大小。比较所获得的MRN测量数据和尸体解剖测量数据。
     2.对临床诊断为GBS(28例)的患者及正常人(30例)行腰丛神经MRN检查。正常组观测右侧L4神经根、神经节、神经干及股神经的形态、大小及信号;GBS组观察神经及其周围的改变,测量右侧L4神经根、神经节、神经干及股神经的短轴径线及神经肌肉信号比,并检测GBS组的脑脊液蛋白-细胞值,比较所获得的MRN测量数据和GBS组测量数据,比较GBS组的脑脊液蛋白值与NMSR的相关关系。
     结果:
     1. MRN可清晰显示L2-5神经的走行,神经节呈圆或椭圆形膨大,大小约为3mm-6mm,神经根及干呈条状,边缘光滑,大小约为2 mm-5 mm,神经节信号高于神经根和干。所获得数据与尸体解剖测量数据之间有可比性,两者无显著的统计学差异。
     2. 80.9%的GBS腰丛神经周围有片状模糊高信号,神经根和节大小和信号无明显改变,25%神经干增粗,50%的神经干信号增高,边缘模糊。与正常右侧腰4神经比较,GBS的神经根、神经节、神经干大小无明显差异(t=1.74、1.24、1.68,P>0.05),股神经增粗(t=3.44,P<0.05);神经根及神经节的NMSR无增高(t=1.93、1.86,P>0.05),神经干及股神经NMSR增高(t=5.64、19.04,P< 0.05)。GBS脑脊液蛋白及神经干,股神经的NMSR相关检验均成正相关(rs=0.767、0.667,P<0.001)。
     结论:
     1.MRN可清晰显示腰丛神经及主要大分支,其测量值可反映腰丛神经改变,可用于腰丛神经疾病和发育异常的诊断标准。
     2.MRN显示GBS在神经周围有渗出病变,神经增粗不明显,神经干及股神经NMSR增高;GBS脑脊液蛋白的改变会引起神经干、股神经的NMSR的改变,MRN可作为GBS的诊断的重要手段。
Objective:
     1.To Compare the difference between the data of normal lumbar plexus nerve measured through Magnetic Resonance Neurography (MRN)with specimen.
     2.To investigate the value of diagnosis in patients with Guillain-Barre syndrome(GBS) using Magnetic Resonance Neurography(MRN).
     Methods:
     1.Volunteers or 30 healthy lumbar plexus nerve cases (19 males and 11 females)were selected, to measure the short shaft line and neuromuscular signal ratio of the right normal lumbar nerve root, ganglia, nerve and the femoral nerve stem, anatomy and measurements of the right lumbar plexus L2-5 nerve root, ganglia and nerve stem, femoral nerve morphology and size. And comparison of MRN measurement data and autopsy measurement data were conducted.
     2. MRN was performed to evaluate the lumbar plexus, in 28 patients with clinically diagnosed Guillain-Barre syndrome (GBS) and 30 healthy volunteers. The right L4 nerve root, ganglion, nerve trunk and femoral nerve morphology and signal intensity were evaluated in the healthy volunteers. The peripheral nerve and adjacent tissue changes were observed in patients with GBS. The morphology, size and signal of the right nerve root, ganglion and femoral nerve as well as the brachyaxis and nerve-muscle signal ratio were also measured. In addition, we measured the CSF protein content and cytology and compared the MRN measurements and data in the GBS group. The protein content in the GBS group and its relationship to the NMSR were also evaluated.
     Results:
     1.MRN could clearly show L2-5 nerve course, ganglion being circle or Oval enlargement, with the size about 3 mm-6mm; a nerve root and stem displayed strips and smooth edge, with the size about 2 mm-5 mm, nerve Festival signal is more than the nerve root and stem. There was no significant statistical difference with the comparability between the obtained data and autopsy ones.
     2.80.9% of the lumbar plexus in the GBS group had vague hyperintensities, whereas, the nerve root and ganglion size were normal. We also noticed nerve trunk thickening in 25% patients and 50% patients had increased nerve cord signal intensity and vague periphery in nerve trunks. Compared with normal L4 lumbar plexus, no significant changes of nerve root,nerve trunk and ganglion were observed in GBS group (t=1.74、1.24、 1.68, P>0.05) No significant changes of nerve root and ganglion NMSR were observed. (t=1.93、1.86, P>0.05). However, we also noticed the thickening of femoral nerve(t=3.44,P<0.05) and increased NMSR(t=5.64、19.04, P< 0.05) in the nerve truck and femoral nerve. The protein content, nerve trunk and nerve NMSR were positively correlated. (rs =0.767、0.667,P<0.001)。
     Conclusions:
     1.MRN can clearly show lumbar plexus and major branches; its measured value can reflect changes in lumbar plexus. It is possible for diagnostic criteria of the lumbar plexus nerve diseases and dysplasia.
     2. Exudation around the nerve and increased nerve trunk and nerve root NMSR were observed in GBS, while nerve thickening was not obvious in patients with GBS. The changes in the GBS protein content may lead to nerve trunk and femoral nerve NMSR changes. MRN may be useful in the diagnosis of GBS.
引文
[1] Howe F, Filler A, Bill B, et al. Magnetic resonance neurography[Review]. Magn Reson Med, 1992,28(2):328~338.
    [2] 陈伯华,夏玉军,周秉文,等.腰骶神经节的应用解剖及临床意义[J].中华骨科杂志,1994,14(4):213~215.
    [3] 曾南林,张小明,赵琼慧,等.尸体标本腹腔神经丛:磁共振图像后处理分析.中国医学影像技术[J].2006,22(8):1258~1261.
    [4] Filler AG, Maravilla KR , Tsumda JS. MR neurography and MR imaging for imaging diagnosis of disorders affecting the peripheral nerves and musculature [J]. Neurol Clin , 2004 , 22(3) :643~682.
    [5] Filler AG, Haynes J, Jordan SE, et al. Sciatica of nondisc origin and piriformis syndrome: diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment[J]. J Neurosurg Spine, 2005, 2(2):99~115.
    [6] 吕发金,谢鹏,牟君,等. 格林-巴利综合征腰丛神经磁共振神经成像研究[J]. 中国医学影像技术[J].2007, 23(10): 1457~1460.
    [1] 王维治,罗祖明.神经病学[M].第四版.北京:人民卫生出版社.2001,95~97.
    [2] 中华神经精神科杂志编委会. 格林-巴利综合征诊断标准. 中华神经精神科杂志,1994,27(6):380.
    [3] Byun WM , Park WK, Park BH , et al. Guillain – Barré syndrome:MR imaging findings of the spine in eight patients[J]. Radiology, 1998,208(1):137~141.
    [4] Gorson KC ,Ropper AH ,Muriello MA ,et al. Prospective evaluation of MRI lumbosacral nerve root enhancement in acute Guillain - Barre syndrome [J]. Neurology, 1996, 47(3): 813 ~817.
    [5] 王宇虹,张磊,张惊宇. 23 例格林-巴利综合征尸检例的脊神经根免疫组化分析[J]哈尔滨医科大学学报,2003,37(6):505~507.
    [6] Filler AG,Maravilla KR , Tsumda J S. MR neurography and MR imaging for imaging diagnosis of disorders affecting the peripheral nerves and musculature [J]. Neurol Clin , 2004,22(3) :643~682.
    [7] Filler AG, Haynes J, Jordan SE, et al. Sciatica of nondisc origin and piriformis syndrome:diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment[J]. J Neurosurg Spine, 2005,2(2):99~115.
    [8] Howe F, Filler A, Bill B, etal. Magnetic resonance neurography[Review]. Magn Reson Med, 1992,28(2):328~338
    [9] 吕发金,牟君,罗天友,等. 格林- 巴利综合症 MR 神经成像 1 例报告[B]. 重庆医科大学学报,2005,30(6):161~162
    [10] 史玉泉,周孝达,吕传真,等.实用神经病学[M].第 3 版.上海:上海科学技术出版社,2004,259~266.
    [11] Brinkmeier H,Aulkemeyer P,Wollinsky KH,et al.An endogenous pentapeptide acting as a sodium channel blocker in inflammatory autoimmune disorders of the central nervous system[J].Nat Med,2000,6(7):808~811.
    [12] Kieseier BC, Tani M,Mahad D, et a1.Chemokines and chemokine receptors in inflammatory demyelinating neuropathies:a central role for 1P-10[J].Brain 2002,125(Pt4):823~834.
    [13] 刘卫彬,阮少川,黄如训.视神经脊髓炎脑脊液改变的特点[J].中国神经精神疾病杂志,2002,28(5):357~359
    [14] 刘瑞春,张静,徐奋兰.复发性吉兰巴雷综合征的临床研究[J].脑与神经疾病杂志,2006,l4(3):165~167.
    [15] Selmaj K, Raine CS, Cross AH.Anti-tumor necrosis factor therapy abrogates autoimmune demyelination[J].Ann Neurol,1991,30(5):694~700.
    [16] Selmaj KW,Raine CS.Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro[J].Ann Neuro1,1988,23(4):339~346.
    [1]Thompson PD and Thomas PK .Clinical patterns of peripheral neuropathy[M]. In Peripheral Neuropathy, edn 4, Philadelphia: Elsevier Saunders 2005,1137~1161.
    [2]Dyck PJ et al. Pathologic alterations of nerves[M].In Peripheral Neuropathy, edn 4, Philadelphia: Elsevier Saunders, 2005,733~829.
    [3]Aagaard BD, Lazar DA, Lankerovich L, et al. High-resolution magnetic resonance imaging is a noninvasive method of observing injury and recovery in the peripheral nervous system[J]. Neurosurgery ,2003,53(1): 199~203.
    [4]Titelbaum DS, Frazier JL, Grossman RI, et al. Wallerian degeneration and inflammation in rat peripheral nerve detected by in vivo MR imaging[J]. AJNR Am J Neuroradiol,1989,10(4):741~746.
    [5]Stanisz GJ, Midha R, Munro CA, et al. MR properties of rat sciatic nerve following trauma[J]. Magnet Reson Med, 2001,45(3): 415~420.
    [6]Cudlip SA, Howe FA, Griffiths JR, et al. Magnetic resonance neurography of peripheral nerve following experimental crush injury, and correlation with functional deficit[J]. J Neurosurg, 2002,96(4): 755~775.
    [7]Bendszus M, Wessig C, Solymosi L, et al. MRI of peripheral nerve degeneration and regeneration: correlation with electrophysiology and histology[J]. Exp Neurol ,2004,188(1): 171~177.
    [8]Does MD and Snyder RE,Multiexponential T2 relaxation in degenerating peripheral nerve[J]. Magn Reson Med ,1996,35(2): 207~213.
    [9]Polak JF, Jolesz FA, Adams DF .Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation[J]. Invest Radiol,1988, 23(5): 365~369.
    [10]Bendszus M, Koltzenburg M, Wessig C,et al. Sequential MR imaging of denervated muscle: experimental study[J]. AJNR Am J Neuroradiol,2002,23(8): 1427~1431.
    [11]Wessig C, Koltzenburg M, Reiners K ,et al. Muscle magnetic resonance imaging of denervation and reinnervation: correlation with electrophysiology and histology[J]. Exp Neurol, 2004,185(2): 254~261.
    [12]Kikuchi Y, Nakamura T, Takayama S ,et al. MR imaging in the diagnosis of denervated and reinnervated skeletal muscles: experimental study in rats[J].Radiology, 2003,229(3): 861~867.
    [13]Hayashi Y, Ikata T, Takai H,et al. Effect of peripheral nerve injury on nuclear magnetic resonance relaxation times of rat skeletal muscle[J]. Invest Radiol,1997,32: 135~139.
    [14]Kullmer K, Sievers KW, Reimers CD,et al. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation[J].Arch Orthop Trauma Surg , 1998),117(4-5): 228~234.
    [15]Bendszus M and Koltzenburg M. Visualization of denervated muscle by gadolinium enhanced MRI[J]. Neurology, 2001, 57(9): 1709~1711.
    [16]Maravilla KR and Bowen BC, Imaging of the peripheral nervous system: evaluation of peripheral neuropathy and plexopathy[J]. AJNR Am J Neuroradiol, 1998,19(6): 1011~1023.
    [17]Chappell KE, Robson MD, Stonebridge-Foster A,et al. Magic angle effects in MR neurography[J]. AJNR Am J Neuroradiol, 2004,25(3): 431~440.
    [18]Grant GA, Britz GW, Goodkin R,et al. The utility of magnetic resonance imaging in evaluating peripheral nerve disorders[J]. Muscle Nerve, 2002,25(3): 314~331
    [19]Moore KR, Tsuruda JS, Dailey AT. The value of MR neurography for evaluating extraspinal neuropathic leg pain: a pictorial essay[J]. AJNR Am J Neuroradiol,2001,22(4): 786~794.
    [20]Jarvik JG, Yuen E, Haynor DR,et al. MR nerve imaging in a prospective cohort of patients with suspected carpal tunnel syndrome[J]. Neurology, 2002,58(11): 1597~1602.
    [21]Cudlip SA, Howe FA, Clifton A, et al. Magnetic resonance neurography studies of the median nerve before and after carpal tunnel decompression[J]. J Neurosurg ,2002,96(6): 1046~1051.
    [22]Britz GW, Haynor DR, Kuntz C,et al. Ulnar nerve entrapment at the elbow: correlation of magnetic resonance imaging, clinical, electrodiagnostic, and intraoperative findings[J].Neurosurgery, 1996,38(3): 458~465.
    [23]Koltzenburg M, Bendszus M. Imaging of peripheral nerve lesions[J]. Curr Opin Neurol,2004,17(5): 621~626.
    [24]Panegyres PK, Moore N, Gibson R, et al. Thoracic outlet syndromes and magnetic resonance imaging[J]. Brain,1993, 116 ( Pt 4): 823~841.
    [25]Dailey AT, Tsuruda JS, Goodkin R, et al. Magnetic resonance neurography for cervical radiculopathy: a preliminary report[J]. Neurosurgery, 1996,38(3): 488~492
    [26]Stoll G, Muller HW. Nerve injury, axonal degeneration and neural regeneration: basic insights[J]. Brain Pathol,1999,9(2): 313~325
    [27]Dailey AT, Tsuruda JS, Filler AG, et al. Magnetic resonance neurography of peripheral nerve degeneration and regeneration[J]. Lancet,1997,350(9086): 1221~1222
    [28]Filler A, Kliot M, Howe FA, et al. Application of magnetic resonance neurography in the evaluation of patients with peripheral nerve pathology[J]. J Neurosurg,1996,85(2): 299~309
    [29]Gorson KC, Ropper AH, Muriello MA, et al. Prospective evaluation of MRI lumbosacral nerve root enhancement in acute Guillain–Barré syndrome[J]. Neurology,1996, 47(3): 813~817
    [30]Byun WM, Park WK, Park BH, et al. Guillain–Barré syndrome: MR imaging findings of the spine in eight patients[J]. Radiology,1998,208(1): 137~141
    [31]Duggins AJ, McLeod JG, Pollard JD, et al. Spinal root and plexus hypertrophy in chronic inflammatory demyelinating polyneuropathy[J]. Brain, 1999,122(Pt7): 1383~1390
    [32]Kuwabara S, Nakajima M, Matsuda S, et al. Magnetic resonance imaging at the demyelinative foci in chronic inflammatory demyelinating polyneuropathy[J]. Neurology,1997,48(4): 874~877
    [33]Crino PB, Grossman RI, Rostami A. Magnetic resonance imaging of the cauda equina in chronic inflammatory demyelinating polyneuropathy[J]. Ann Neurol,1993,33(3): 311~313
    [34]Fee DB, Fleming JO. Resolution of chronic inflammatory demyelinating polyneuropathyassociated central nervous system lesions after treatment with intravenous immunoglobulin[J]. J Peripher Nerv Syst,2003,8(3): 155~158
    [35]Georgy BA, Snow RD, Hesselink JR. MR imaging of spinal nerve roots: techniques, enhancement patterns, and imaging findings[J]. AJR Am J Roentgenol, 1996,166(1): 173~179
    [36]Ellegala DB, Monteith SJ, Haynor D, et al. Characterization of genetically defined types of Charcot–Marie–Tooth neuropathies by using magnetic resonance neurography[J]. J Neurosurg, 2005,102(2): 242~245
    [1]Longa EZ, Weinstein PR, Carlson S, et a1. Reversible middle cerebral artery occlusion without craniotomy in rats[J]. Stroke, 1989, 20(1): 84-91.
    [2]沈思钰,蔡定芳,刘静,等.局灶性脑缺血神经行为及其相关性分析[J]. Chinese journal of behavioral medical stroke,2002,11(1):44-45.
    [3]Bederson JB,Pitts LH,Tsuji M,et a1.Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination[J]. Stroke, 1986, l7(3): 472-476.
    [4]Borlongan CV, Hida H, Nishino H. Early assessment of motor dysfunctions aids in successful occlusion of the middle cerebral artery[J]. Neuroreport, 1998, 9:3615-3621.
    [5]Chen-Fu Chang, Shinn-Zong Lin, Yung-Hsiao Chiang, et al. Intravenous Administration of Bone Morphogenetic Protein-7 After Ischemia Improves Motor Function in Stroke Rats[J].Stroke, 2003, 34(2):558-364.
    [6]Gonzalez CLR, Kolb B. A comparison of different model of stroke on behaviour and brain morphology [J].European Journal of Neuroscience, 2003, 18(7):1950-1962.
    [7]Omar A, Gharbawie, Claudia LR, et al. Skilled reaching impairments from the lateral frontal cortex component of middle cerebral artery stroke: a qualitative and quantitative comparison to focal motor cortex lesions in rats[J]. Behavioural Brain Research, 2005, 156(1):125-137.
    [8]Biernaskie J, Szymanska A, Windle V, et al. Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats[J].European Journal of Neuroscience, 2005,21(4):989–999,
    [9]Hsu JE, Jones TA. Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in rats[J]. European Journal of Neuroscience, 2005,22(8):2069–2080.
    [10]Ulrich PT, Kroppenstedt S, Heimann A.Laser-Doppler Scanning of Local Cerebral Blood Flow and Reserve Capacity and Testing of Motor and Memory Functions ina Chronic 2-Vessel Occlusion Model in Rats [J].Stroke, 1998,29(11):2412-2420.
    [11]Altumbabic M, Peeling J, Del Bigio MR. Intracerebral hemorrhage in the rat:effects of hematoma aspiration[J]. Stroke, 1998, 29(9): 19l7-1923
    [12]徐莉,李玲,陈景藻,等.康复训练对大鼠脑梗塞神经功能恢复的影响[J].中华物理医学与康复杂志, 2000, 22(2): 86-88.
    [13]Zhang Li, Chen Jieli, Li Yi, et a1. Quantitative measurement of motor and somatosensory impairments after mild (30 min) and severe (2h) transient middle cerebral artery occlusion in rats[J]. Journal of the Neurological Sciences, 2000, 174(2):141-146
    [14]Roof RL, Schielke GP, Ren X ,et al. A Comparison of Long-Term Functional Outcome After 2 Middle Cerebral Artery Occlusion Models in Rats [J].Stroke, 2001, 32(11): 2648-2657.
    [15]Hua Y, Schallert T, Keep RF, et a1. Behavioral tests after intracerebral hemorrhage in the rat[J]. Stroke, 2002, 33(10): 2478-2484.
    [16]Schabitz WR, Berger C, Kollmar R,et al. Effect of Brain-Derived Neurotrophic Factor Treatment and Forced Arm Use on Functional Motor Recovery After Small Cortical Ischemia[J].Stroke, 2004, 35(4):992-997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700