动物源食品中兽药残留多组分定量/确证方法的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界人口急剧膨胀的今天,合理的使用兽药可以提高畜禽产量,但是兽药的不合理使用无疑会导致动物体内药物的滞留或蓄积,并以残留的方式进入人体及生态系统。兽药残留对人类及环境的危害主要是慢性、远期和累积性的,如致癌、发育毒性、体内蓄积、免疫抑制、致敏和诱导耐药菌株等。动物性食品中的兽药残留已成为公认的农业和环境问题,因此,在食品安全这个全球关注的热点问题中,如何快速、准确地检测畜禽产品中残留的兽药问题就成为了重中之重的问题。与药品分析不同,残留分析的特殊性和复杂性在于痕量、动态的待测物存在于复杂的生物样品中,在于将分析手段与兽药的理化性质、体内过程、存在状态以及药理毒理相结合,在于样品基质和待测组分的不确定性,所以分离和检测是残留分析的两个基本方面,高分辨率和高灵敏度是其发展的两大精髓,人们在努力改进残留分析效能的同时更注重提高分析效率、降低分析成本和减少环境污染。
     食品中兽药残留分析存在的困难包括:样品基质背景复杂、前处理过程繁琐,需要耗费较多的时间、被测成分浓度较低、分析仪器的定性能力受到限制、仪器检测灵敏度不够等一系列问题。如何解决这些问题,满足目前越来越严格的法规的要求,是许多科技工作者研究的方向。选择简洁、有效的样品处理方法,可以得到事半功倍的效果。液相色谱-串联质谱技术的发展,为分析鉴定难挥发、热不稳定化合物的结构提供了非常有用的数据。
     本课题深入探索研究简便、快速、低廉和有效的快速溶剂萃取和超声提取的样品前处理技术及快速、灵敏的多组分同时分析的液相色谱串联质谱联用技术,建立了动物性食品中15种氨基苷类、6种呋喃类及水产品中孔雀石绿其相关化合物残留定量确证方法,本研究可为此三大类药物的残留监控提供技术支持和理论依据,对动物源食品安全评价具有指导意义和参考价值。
     1.动物性食品中氨基苷类药物多残留分析方法研究
     氨基苷类药物(Aminoglycosides, AGs)在临床主要用于对革兰氏阴性菌、绿脓杆菌等感染的治疗,其不合理使用易在动物组织中造成残留。已报道文献主要采用了传统的液液提取方法,新的样品前处理方法报道较少,且对于氨基苷类多残留的定量确证方法主要采用七氟丁酸酐作为离子对使之在反相色谱柱上有保留,样品前处理过程比较繁琐,如何建立一种能同时检测动物性食品中多组份氨基苷类药物残留的高效、快捷、灵敏的分析方法就显得尤为重要。本研究建立了快速溶剂萃取及高效液相色谱串联质谱法检测动物性食品包括猪、鸡、牛、羊的肌肉和肝脏,鸡蛋和牛奶中15种氨基苷类包括安普霉素、链霉素、双氢链霉素、大观霉素、庆大霉素C1、妥布霉素、巴龙霉素、潮霉素B、核糖霉素、春雷霉素、阿米卡星、新霉素B、奈替米星、卡那霉素A、西索米星。样品采用乙腈/三氟乙酸(TCA)溶液快速溶剂法(ASE)提取,ASE的最佳条件是萃取温度为70℃,萃取压力为1500psi,两次循环静态提取,每次提取时间为10min,合并萃取液,减压蒸馏除去有机层后,用氨水调pH值为7.0,CBA弱阳离子交换柱净化,利用一种亲水作用色谱柱即链霉素专用质谱柱(ST柱),流动相只需加少量的更易挥发的三氟乙酸离子对试剂,15种氨基苷类药物得到了很好的保留,成功解决了极性强的化合物色谱保留差的问题,根据添加回收实验获得本方法的灵敏度为15种目标化合物在不同样品中最低检测限为10μg/kg,最低定量限为20μg/kg。对比已有的文献报道,本方法涉及的药物范围更宽(包括了氨基苷类抗菌和抗虫药物),采用的前处理方法提取效率更高、重现性好、可操作性强,改进了分析检测手段,为难挥发、热不稳定、极性强的化合物分析方法提供了有价值的技术参考。
     2.动物性组织中呋喃苯烯酸钠和硝呋烯腙药物分析方法研究
     呋喃苯烯酸钠和硝呋烯腙属于呋喃类药物,禁止用于饲料添加剂,但是这两种化合物的残留检测方法报道极少,定量确证方法同时检测呋喃苯烯酸钠和硝呋烯未见报道,本研究建立了超声提取动物性食品包括猪、牛、羊的肌肉、肝脏、肾脏和脂肪组织,鸡肌肉和肝脏,鱼肌肉和皮及鸡蛋和牛奶中呋喃苯烯酸钠和硝呋烯腙残留的LC-MS/MS定量确证方法。优化了溶剂及用量的选择、超声提取的时问、温度的选择,提取完毕后氮气吹干溶剂,50%乙腈/水复溶,正己烷去脂,HLB柱净化,质谱条件优化的结果是采用正离子扫描硝呋烯腙(m/z 361.1>222.1)和负离子扫描呋喃苯烯酸钠(m/z 257.8>213.9),本方法在猪、牛、羊、鸡肌肉和鸡蛋、牛奶中的CCα为NIT 0.07-0.24μg/kg, NFS 0.08-0.28μg/kg,在肝脏和肾脏样品中的CCa为NIT0.21-0.66μg/kg, NFS为0.31-0.61μg/kg; NIT的CCβ在猪、牛、羊、鸡肌肉和鸡蛋、牛奶中为0.18-0.48μg/kg,在肝脏和肾脏样品中为0.41-0.84μg/kg, NFS在各组织中为0.21-0.81μg/kg。对比已有的文献报道,本研究首次报道了动物性食品中呋喃苯烯酸钠和硝呋烯腙残留检测的定量确证方法,采用超声提取,方法简便可行,利于推广使用。
     3.动物可食性组织中硝基呋喃类药物分析方法研究
     硝基呋喃类药物代谢物的残留检测方法报道虽然很多,但大都是需要过夜衍生,前处理繁琐耗时,本研究通过前处理方法技术的摸索,建立了动物性食品包括猪、牛、羊的肌肉、肝脏、肾脏和脂肪组织,鸡肌肉和肝脏,鱼肌肉和皮以及鸡蛋和牛奶中硝基呋喃类药物代谢物3-氨基-2-恶唑酮(3-amino-2-oxalidinone, AOZ)、5-吗啉甲基-3-氨基-2-嗯唑烷基酮(5-morpholinomethyl-3-amino-2-oxalidinone, AMOZ)、1氨基-乙内酰脲(1-amino-hydantoin, AHD)和氨基脲(semicarbazide, SEM)的LC-MS/MS定量确证方法。组织样品采用ASE提取,溶剂为甲醇/三氯乙酸,再用邻硝基苯甲醛超声衍生1h,调pH值7.4后,用乙酸乙酯提取,HLB净化,分析物采用高效液相色谱/串联质谱定性检测。结果表明,4种硝基呋喃类药物代谢物在不同样品中最低检测限为0.1μg/kg,最低定量限为0.5μg/kg。对比已有的文献报道,虽然关于硝基呋喃类药物代谢物在各动物性食品中的残留检测方法报道很多,但本研究突破传统的液液提取及过夜衍生的方法,采用快速溶剂提取游离的和结合态的代谢物后进行超声衍生,大大缩短了分析时间且提高了萃取效率,为硝基呋喃类药物残留分析提供另一个技术支撑。
     4.水产品中孔雀石绿、无色孔雀石绿、结晶紫和无色结晶紫分析方法研究
     孔雀石绿和无色孔雀石绿禁止用于水产品,如何建立一种能同时检测水产品中孔雀石绿、无色孔雀石绿、结晶紫和无色结晶紫残留的高效、快捷、灵敏的分析方法就显得尤为重要。本研究建立了快速溶剂萃取鲫、鳗鱼、三文鱼、蟹、虾及贝样中孔雀石绿、无色孔雀石绿、结晶紫和无色结晶紫多残留LC-MS-MS方法。各组织样品采用McIlvaine buffer (pH 3)/乙腈作为提取溶剂,采用快速溶剂萃取法,并优化萃取参数,结果表明,目标化合物在不同样品中最低检测限为0.007-0.05μg/kg,最低定量限为0.02-0.11μg/kg。对比已有的文献报道,虽然关于孔雀石绿的残留检测方法报道非常多,但由于这类化合物稳定性差,前处理上仍存在回收率偏低的问题,本研究通过添加稳定性试剂,采用快速溶剂萃取,缩短了分析提取的时间,大大提高了回收率,重现性更好,为实现自动化操作提供科学依据。
     本课题通过对样品前处理及色谱质谱条件优化或建立新的提取方法,建立了动物源食品中极性大的常用药物和三大类禁用药物多残留定量确证方法,分离分析技术的改进和创新大大提高了这几种药物残留分析的灵敏度,且前处理可操作性更强,对于分析人员和仪器更绿色环保。最终更有利于方法的推广,为保障人类和动物健康提供有力技术支撑。
At today of world population growing rapidly, using rationally of veterinary can improve the production of livestock and poultry, but using irrationally of veterinary in animals will undoubtedly result in the residues or accumulation of drugs, and lead to the drugs going into the human body and ecological systems. Veterinary residues are harmful to humans and the environment which are mainly chronic, long-term and cumulative, such as cancer, developmental toxicity, accumulating in the body, immune suppression, such as sensitization and induction of drug-resistant strains. Veterinary residues in food have become recognized as agricultural and environmental issues, therefore, in food safety it is a hot issue of global concern on how to detect veterinary residues in livestock products quickly and accurately. And analysis of different drugs, residue analysis is that the particularity and complexity of the trace, dynamic analytes present in complex biological samples, analytical tools and veterinary drugs lies in the physical and chemical properties, in vivo process, existing state and toxicology combination is that the sample matrix and the uncertainty component to be tested. So the separation and detection are two basic aspects of residue analysis, high resolution and high sensitivity is the essence of its development. People devote to the methods which were improved the effectiveness of residue analysis at the same time, the analysis efficiency, at the same time to reduce costs and environmental pollution.
     The difficulties in the analysis of veterinary residues include:the complex background of the sample matrix, the cumbersome pretreatment sample and the trace concentration of measured component, the limited qualitative ability of the instruments, and a series of sensitivity problem. Many scientists take up the researches how to solve these problems in order to meet the current requirements of increasingly stringent regulations. Choosing simple, effective method of sample preparation can be a multiplier effect. Liquid chromatography-tandem mass spectrometry technology for the analysis and identification the structures of nonvolatile, thermally unstable compounds, provides very useful data.
     Based on this aspect, this study aims to explore analysis methods for determination of aminoglycosides, nitrofurans, malachite green and gentian violet and its related metabolites and amitraz in foods of animal origin, and investigate various kinds of parameters deeply. Accelerated solvent extraction will be firstly combined with LC-MS/MS. The optimized ASE method reduces the use of solvents and extraction time compared to traditional liquid-liquid extractions. It generates less hazardous waste and was more benign to the environment. Our study will provide technical support for monitoring, and it also has a great value for evaluation on animal food safety.
     1. Development of a method for simultaneous quantification and confirmation of aminoglycosides in the foods of animal origin
     A simple and especially rapid method-using accelerated solvent extraction (ASE) has been developed for the quantitative determination of fifteen aminoglycosides in muscle and liver of porcine, chicken and bovine, egg and milk. Using accelerated solvent extraction (ASE) instrument, parameters such as extraction temperature (40-90℃) and pressure (500-2500psi) were investigated and the selected extraction (70℃,1500psi for 10min in two cycles) was most effective.finally for liquid chromatography tandem mass spectrometry analysis. The analytes were separated by a specialized column for aminoglycosides, and eluted with 0.01% trifluoroacetic acid and acetonitrile. High correlation coefficients (r>0.999) of calibration curves for the analytes were obtained within linear from 10 to 1000μg/kg. Meanwhile, using sisomicin as internal standard, reasonable recoveries (71.4-93.9%) of the 15 aminoglycosides spiked in meat were demonstrated with excellent relative standard deviation (RSD). This is a quantitative method with simple pretreatment, rapid determination and high sensitivity, and it can be applied in the determination and quantification of multi-aminoglycosides. Contrasting with the reported literatures, this method involves a wider range of drugs (including the amino-glycosides and insect antimicrobial drugs), using the pre-treatment to extract efficient, reproducible, easy to operate, improve analysis tests, difficult for volatile, thermally unstable, polar compounds analysis methods provide a valuable technical reference.
     2. Development of a method for simultaneous quantification and confirmation of nitrovin and sodium nifurstyrenate in the foods of animal origin
     A specific and sensitive method based on liquid chromatography-tandem mass spectrometry using an electro-spray ionization source has been developed for the determination of nitrovin and sodium nifurstyrenate residues in the muscle and liver of porcine and chicken and in the muscle of fish, egg and milk.. This method includes the procedures as following:extraction using acetonitrile as extraction solvent by ultrasound-assisted extraction, defattening with n-hexane and final clean-up with solid phase extraction (SPE) on Oasis HLB cartridges. The analytes were analyzed by reversed-phase LC-MS/MS, in multiple reaction monitoring (MRM) mode, under negative scan mode acquiring two diagnostic product ions for confirmation of sodium nifurstyrenate, and positive mode for nitrovin. The sensitivity results are that the averaged decision limits (CCa; a 1%) ranged from 0.09μg/kg to 0.26μg/kg while the detection capability (CCβ;β5%) ranged from 0.33μg/kg to 0.97μg/kg. Meanwhile, reasonable recoveries (71%-110%) spiked in the tissues such as muscles and livers showed excellent relative standard deviation (RSD). This is a quantitative method with simple pretreatment, rapid determination and high sensitivity, and it can be applied in the determination and quantification of nitrovin and sodium nifurstyrenate residues in complex foods from animals. Contrasting with the reported literatures, this is the first report about the quantitative and confirmation method for nitrovin and sodium nifurstyrenate residues in animal food using ultrasonic extraction, which is simple and feasible, and easy to make more widespread.
     3. Development of a method for simultaneous quantification and confirmation of metabolites of nitrofurans in the foods of animal origin
     A rapid method-using accelerated solvent extraction (ASE) and ultra-sound derivatised has been developed for the quantitative determination of 4 nitrofurans (3-amino-2-oxalidinone, AOZ; 5-morpholinomethyl-3-amino-2-oxalidinone, AMOZ; 1-amino-hydantoin, AHD; semicarbazide, SEM)in muscle and liver of porcine, chicken and bovine, egg and milk. The procedure consisted of an methanol/TCA extraction conducted at elevated temperature (90℃) and pressure (1500psi), after further clean-up, the extraction solution was concentrated and finally for LC-MS/MS analysis. The LOD was 0.1μg/kg and LOQ was 0.5μg/kg. Recoveries were in the range of 73.7%-111.2%, with RSD less than 15%. The simple method reduced the time for sample pretreatment, and met the requirement for nitrofurans residue analysis. Contrasting with the reported literatures, there are a lot of literatures on the determination of metabolites of nitrofuran drugs residues in various animal food. This research break through the traditional methods of liquid-liquid extraction and overnight derivatization, using accelerated solvent extraction of free and the conjugated metabolites and derivatization with the ultrasound method, greatly reducing the analysis time and improving the extraction efficiency. The method can provide another technical support for the analysis of nitrofuran drug residues in intricate matrix.
     4. Development of a method for simultaneous quantification and confirmation of malachite green, gentian violet and their leuco-metabolites in aquatic products
     An automated method had been developed for the determination of Malachite green and Gentian violet as well as their leuco-metabolites in aquatic products by liquid chromatography-tandem mass spectrometry with accelerated solvent extraction and auto solid-phase cleanup. The target analytes were extracted using accelerated solvent extraction (ASE) and then purified using auto solid-phase clean-up. The ASE conditions as:solvent, temperature, pressure, static time, and cell size were optimized. The optimum extraction conditions were set as the following aspects:using 22mL ASE cell, McIlvaine buffer (pH 3)/acetonitrile/ hexane (2/10/2, v/v) as the extraction solvent; pressure at 1500 psi; temperature at 60℃; static time 5 min(static time); one cycles. The extracts were purified on OASIS MCX SPE column. Detection and quantification of Malachite green; gentian violet; leucomalachite green; leucogentian violet were performed by reversed-phase liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). An averaged decision limits (CCa) and detection capability (CCβ) of the method were in the range of 0.005μg/kg-0.012μg/kg and 0.08μg/kg-0.13μg/kg in shrimp and salmon. The recoveries of Malachite green; Gentian violet; Leucomalachite green; Leucogentian violet at levels of 0.1-1.0μg/kg averaged from 82.1 to 102.9% with the relative standard derivation less than 14.6%. This method is precise, sensitive and highly efficient in extraction. What's more, after routine applications, it's turned out that this method is suitable for the determination of Malachite green, Gentian violet and their leuco-metabolites in aquatic products. Contrasting with the reported literatures, although there are many methods about the analysis the residues of malachite green. But because of poor stability of these compounds, it's still exist the problem of low recoveries of these compounds. In this study adding to the stability reagents, using the accelerated solvent extraction (ASE), which shorten the analysis time and greatly improve the recovery rate, and gain better reproducibility for the realization of automation to provide a scientific basis.
     From above, analysis methods for determination of four classes of veterinary drugs in the foods of animal origin were studied in this dissertation. Accerated solvent extraction was used, and various parameters were optimized according to characters of drugs and matrix. All results from the study can provide advanced technologies and reasonable evidence for monitoring or surveillance for these kinds of veterinary drugs residue. And all of them have great values for food safety and drug safety re-evaluation.
引文
1. SC/T3021-2004.水产品中孔雀石绿残留量的测定液相色谱法.
    2.艾晓辉,刘长征,罗玉双,文华,邹世平.水产品中呋喃唑酮含量的高效液相色谱检测法.淡水渔业,2003,33(1):8-11.
    3.安娟,陈冬东,蔡慧霞,李淑娟,彭涛,邱月明.高效液相色谱-串联质谱法测定动物肌肉中硝基呋喃类抗生素代谢物.检验检疫科学,2003,13(6):23-26.
    4.蔡根法,冯玉明,张心会.HPLC法测定动物源性食品中呋喃唑酮残留的研究.中国卫生检验杂志,2004,14(3):310-312.
    5. 陈飞,戴先礼,肖国平,姚永华.食品中药物残留的危害及控制.动物科学与动物医学,2003,(20):1-3.
    6.储晓刚,李刚,李建中,李重九,彭涛,杨强.高效液相色谱/串联质谱法测定奶粉中的硝基呋喃代谢物.分析化学,2005,33(8):1073-1076.
    7. 丁岚,刘媛,刘素英,单吉浩,谢孟峡,杨清峰.高效液相色谱法测定鸡蛋中呋喃唑酮的残留量.分析化学,2004,32(2):139-142.
    8.丁涛,陈惠兰,蒋原,沈崇饪.液相色谱-电喷雾质谱联用检测蜂蜜中四种硝基 呋喃类代谢物.畜牧与兽医,2005,37(3):12-15.
    9. 董晓庆,程培英,陈绍辉,曲桂娟.鸡组织中链霉素残留检测方法的研究.吉林农业大学学报,2005,(1):339-343.
    10.葛宝坤,贺信,王云凤.高效液相色谱法测定鸡肉、水产品中呋喃西林和呋喃唑酮残留量的研究.中国卫生检验杂志,2002,12(6):661-662.
    11.耿士伟,花继兰.高效液相色谱法检测鸡蛋中呋喃唑酮的残留.兽药与饲料添加剂,2005,10(3):22-25.
    12.耿雪冰,沈美芳,宋红波,吴光红.酶联免疫法测定水产品中呋喃唑酮代谢物AOZ的残留,2006,(5):15-26.
    13.郭德华,叶长淋,李波.高效液相色谱-质谱法测定水产品中孔雀石绿及其代谢物.分析测试学报,2004.23:206-208.
    14.郭德华,叶长淋,朱莹洁.液相色谱法测定鳗鱼中的孔雀石绿.化学分析计量,2002,11(2):20-21.
    15.郭桢,连瑾,吴淑君.动物源性食品中呋喃唑酮及其代谢物的检测.广东农业科学,2005,(5):57-59.
    16.姜莉,赵守成.柱后衍生荧检测高效液相色谱法快速测定鲜牛奶中链霉索残留量.分子科学学报,2005,21(1):20.
    17.蒋原,丁涛,沈崇钰,陈惠兰.液相色谱-电喷雾质谱联用检测蜂蜜中四种硝基呋喃类代谢物.畜牧与兽医.2005,第37卷,第3期,12-15.
    18.蒋宏伟.酶联免疫技术在动物产品中硝基呋喃类药物残留检测的应用.2006,(5):124-136.
    19.林黎明,林回春,刘心同,邱芳,王曼霞,王建华,张鸿伟.固相萃取高效液相色谱-质谱法测定动物组织中硝基呋喃代谢产物.分析化学,2005,33(5):707-710.
    20.刘晓华,陈喜斌.饲料中越霉素A的TLC鉴别方法的研究[J].华中农业大学学报,2003,(3):236-239.
    21.刘艳华,董琳琳,仲锋,孙雷,蒋宏健,赵贵平,孟云. 液相色谱-串联质谱法检测鸡肌肉组织中硝基呋喃类代谢物的研究.2006.9.153-172
    22.卢迈新,黄樟翰.美洲鳗对几种药物的敏感性研究.淡水渔业,2000,30(5):28-29.
    23.罗杰,李健.呋喃唑酮间接竞争ELISA (ciELISA)检测法的建立,2005,35(2):213-218.
    24.罗瑞峰,马小宁.柱后衍生高效液相色谱法测定猪肉中的链霉素残留.2006,15(3):22.
    25.毛叶萌,刘振,段更利.荧光衍生化高效液相色谱法测定大鼠血浆中威替米星的含量.中国新药与临床杂质,2005,(5):360-363.
    26.彭涛,储晓刚,杨强,李刚,李建中,李重九.高效液相色谱/串联质谱法测定奶粉中的硝基呋喃代谢物.分析化学.2005,33(8):1073-1076.
    27.彭涛,邱月明,李淑娟,陈冬东,安娟,蔡慧霞.高效液相色谱-串联质谱法测定动物肌肉中硝基呋喃类抗生素代谢物. 检验检疫科学.2003,13(6):23-26.
    28.邱绪健,林洪,江洁.渔药孔雀石绿及其关联化合物检测方法研究进展.海洋水产研究,2005,26(2):92-95.
    29.王声瑜.怎样有效选用含氯消毒剂和孔雀石绿.北京水产,1999,(33):16.
    30.王玉堂.从国外对我水产品禁运看我国水产品质量管理.中国水产,2002,(6):14-16.
    31.吴永宁.邵兵.沈建忠.兽药残留检测与监控技术.北京.化学工业出版社.2007,658-661.
    32.杨大军,鲁敏,张瑞,许鸿章.越霉素A的反相高效液相色谱分析[J].中国抗生素杂志,1992,(6):6-14.
    33.于慧梅,陈大舟,汤桦,刘娜,李蕾.同位素稀释质谱法测定蜂蜜中4种硝基呋喃代谢物.分析试验室.2008,27(12):38-41
    34.于技.水生动物药物残留危害与控制.齐鲁渔业,2003,20(6):37-38.
    35.袁成,贾暖,王景祥,刘树芬.高效液相色谱—间接光度检测法同时测定血清和尿中5种氨基苷类抗生素.药物分析杂志,1999,19(2):108-111.
    36.张莉,文红,王红.高效液相色谱法测定鱼类产品中孔雀石绿及无色孔雀石绿的残留.中国卫生检验杂志,2005,(12):1483-1485.
    37.赵李霞,邹月利,衣克寒,李冬梅.高效液相色谱测定蜂蜜中链霉素含量[J].生命科学仪器,2005,(5):63-81.
    38.朱其太,于维军,颜景堂.密切关注欧盟禁用抗生素规定确保动物源性食品出口安全.山东家禽,2003,(4):43-45.
    39. Agata Kot-Wasik, Andrzej Wasik. Determination of robenidine in animal feeds by liquid chromatography coupled with diode-array detection and mass spectrometry after accelerated solvent extraction. Analytica Chimica Acta 2005, (543):46-5
    40. Alborali L, Sangiorgi E, Leali M, Guadagnini P F, Sicura S. The persistence of malachite green in the edible tissue of rainbow trout. Rivista Italiana Di Acquacoltura, 1997, (32):45-60.
    41. Alderman D J. Malachite green. Review. Journal of Fish Diseases,1985, (8):289-298.
    42. Alex G, Isaac S, Michael H. Determination of chloramphenicol in animal tissues and urine liquid chromatography-tandem mass spectrometry versus gas chromatography-mass spectrometry. Analytical Chimica Acta,2003,483:125-135
    43. Andersen WC, Turnipseed SB, Karbiwnyk CM, Lee RH, Clark SB, Rowe WD, Madson MR, Miller KE. Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green. Analytica Chimica Acta, 2009,637,279-289.
    44. Angelika Beyer, Marek Biziuk Applications of sample preparation techniques in the analysisof pesticides and PCBs in food. Food Chemistry.2008, (108):669-680
    45. Annunziata Cascone, Susanna Eerola, Alberto Ritieni, Aldo Rizzo. Development of analytical procedures to study changes in thecomposition of meat phospholipids caused by induced oxidation. Journal of Chromatography A,2006, (1120):211-220
    46. Antonio Nieto, Francesc Borrull, Eva Pocurull, Rosa Maria Marce. Pressurized liquid extraction:A useful technique to extract Pharmaceuticals and personal-care products from sewage sludge. Trends in Analytical Chemistry,2010,29(7):752-764.
    47. Arroyo D, Ortiz MC, Sarabia LA, Palacios F. Determination and identification, according to European Union Decision 2002/657/EC, of malachite green and its metabolite in fish by liquid chromatography-tandem mass spectrometry using an optimized extraction procedure and three-way calibration. Journal of Chromatography A,2009,1216,5472-5482.
    48. Babin Y, Fortier S A. high-throughput analytical method for determination of aminoglycosides in veal tissues by liquid chromatography/tandem mass spectrometry with automated cleanup. Journal of Chromatography A,2007 (5):1418-26
    49. Bergwerff A.A., Scherpenisse P. Determination of residues of malachite green in aquatic animals. Journal of Chromatography B,2003,788,351-359.
    50. Bhogte CP, Patravale VB, Devarajan PV. Fluorodensitometric evaluation of gentamicin from plasma and urine by high-performance thin-layer chromatography. Journal of Chromatography B,1997,694(2):443-7.
    51. Bock C, Gowik P, Stachel C. Matrix-comprehensive in-house validation and robustness check of a confirmatory method for the determination of four nitrofuran metabolites in poultry muscle and shrimp by LC-MS/MS. Journal of Chromatography B.2007,856(1-2):178-89.
    52. Bock C, Stachel C, Gowik P. Validation of a confirmatory method for the determination of residues of four nitrofurans in egg by liquid chromatography-tandem mass spectrometry with the software InterVal. Journal of Chromatography A.2007,586(1-2):348-58
    53. Bogialli S, Curini R, Di Corcia A, Lagana A, Mele M, Nazzari M. Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk:hot water extraction followed by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A.2005.1067(1-2):93-100.
    54. Borivoj Klejdus, Jan Vacek, Vojtech Adama, Josef Zehnalek, Rene Kizek,Libuse Trnkova, Vlastimil Kuba. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. Journal of Chromatography B,2004, (806) 101-111
    55. Cannavan A, Haggan SA, Kennedy DG. Simultaneous determination of thiabendazole and its major metabolite,5-hydroxythiabendazole, in bovine tissues using gradient liquid chromatography with thermospray and atmospheric pressure chemical ionisation mass spectrometry. Journal of Chromatography B,1998, 718(l):103-13
    56. Cawley, Bronopol W. An alternative fungicide to malachite green. Fish Veterinary Journal,1998, (3):9-81.
    57. Chen G, Miao S. HPLC determination and MS confirmation of malachite green, gentian violet, and their leuco metabolite residues in channel catfish muscle. Journal of Agricultural and Food Chemistry,2010,58,7109-7114.
    58. Cherlet M, Baere SD, Backer PD. Determination of gentamicin in swine and calf tissues by high-performance liquid chromatography combined with electrospray ionization mass spectrometry. Journal of Mass Spectrom.2000,35(11):1342-50.
    59. Cherlet M, De Baere S, De Backer P Quantitative determination of dihydrostreptomycin in bovine tissues and milk by liquid chromatography-electrospray ionization-tandem mass spectrometry. Journal of Chromatography A,2007,42(5):647-56
    60. Chunyan Hao, Xiaoming Zhao, Paul Yang. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. Trends in Analytical Chemistry,2007,(26):6-10
    61. Claudia Bock, Petra Gowik, Carolin Stachel. Matrix-comprehensive in-house validation and robustness check of a confirmatory method for the determination of four nitrofuran metabolites in poultry muscle ahd shrimp by LC-MS/MS. Journal of Chromatography A,2007, (29):39-42.
    62. Clemmensen S, Jensen J C, Jensen N J, Meyer O, Olsen P, Wurtzen G.. Toxicological studies on malachite green:a triphenylmethane dye. Archives of Toxicology.1984,56:43-45
    63. Commission Decision (2002/657/EC) of 12 August 2002. Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities L221, Brussels, Belgium,8-36.
    64. Commission Decision 2004/25/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin (2004). Office Journal of The European Union,2004, L6:38-39
    65. Commission Decision 2004/25/EC of 22 December 2003, Brussels, Off. Journal Europe Communication, L6 (10 January 2004) 38.
    66. Conneely A, Nugent A and O'Keeffe M. Use of solid phase extraction for the isolation and clean-up of a derivatised furazolidone metabolite from animal tissues Analyst.2002,49-58.
    67. Conneely A, Nugent A, O'Keeffe M, Mulder P.P.J, van Rhijn J.A. Kovacsics L. Fodor A, McCracken R.J, Kennedy D.G. Isolation of bound residues of nitrofuran drugs from tissue by solid-phase extraction with determination by liquid chromatography with UV and tandem mass spectrometric detection. Analytica Chimica Acta,2003,91-98.
    68. Cooper KM, Elliott CT, Kennedy DG. Detection of 3-amino-2-oxazolidinone (AOZ). a tissue-bound metabolite of the nitrofuran furazolidone. in prawn tissue by enzyme immunoassay. Food Additive Contamination,2004,21(9):841-848
    69. Cooper KM, Kennedy DG. Nitrofuran antibiotic metabolites detected at parts per million concentrations in retina of pigs--a new matrix for enhanced monitoring of nitrofuran abuse. Analyst.2005,130(4):466-468.
    70. Cooper KM, Kovacsics L, Kennedy DG,Mulder PP, McCracken RJ, van Rhijn JA, Young PB. Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food Additive and Contamination.2005,22(5):406-14.
    71. Council Directive 96/23/EC of 29 April 1996, Brussels, Official. Journal Europe Communication, L125 (23 May 1996) 10.
    72. Culp S J, Beland F A, Heflich R H. Mutagenticity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutation Research,2002, 506-507:56-63
    73. Culp S J, Beland F A. Malachitegreen:a toxicologicalr eview. Journal American College Toxicology,1996,15:219-238
    74. Daniel, Doerge W. Mechanism for inhibition of thyroid peroxidase by leucomalachite green. Chemical Reseach Toxicology,1998, (1):1098-1104.
    75. De Ruyck H, Daeseleire E, De Ridder H, Van Renterghem R. Development and validation of a liquid chromatographic-electrospray tandem mass spectrometric multiresidue method for anthelmintics in milk. Journal of Chromatography A.2002, 976(1-2):181-94
    76. Decolin D, Leroy P, Nicolas A, Archimbault P. Hyphenated liquid chromatographic method for the determination of colistin residues in bovine tissues. Journal of Chromatography Science.1997,35(12):557-64.
    77. Diana F, Paleologo M, Persic L Validation of two enzyme immunoassays for aminoglycoside residues according to European Decision 657/2002.2007, 24(12):1345-52
    78. Dietmar E,Breithaupt. Simultaneous HPLC determination of carotenoids used as food coloring additives:applicability of accelerated solvent extraction. Food Chemistry 2004, (86):449-456
    79. Doerge D R. Mechanism for inhibition of thyroid peroxidase by leucomalachite green. Chemcal Reseach Toxicoogy,1998,11:1098-1104
    80. Dowling G, Mulder PP, Duffy C, Regan L, Smyth MR. Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta.2007,586(1-2):411-419.
    81. Dragana Mutavdzic Pavlovic, Sandra Babic, Alka J.M. Horvat, Marija Kastelan-Macan. Sample preparation in analysis of pharmaceuticals. Trends in Analytical Chemistry,2007, (26):11
    82. D'Souza J, Ogilvie RI. Determination of gentamicin components Cla. C2 and Cl in plasma and urine by high-performance liquid chromatography. Journal of Chromatography.1982,232(1):212-8.
    83. Edder P, Cominoli A, Corvi C. Determination of streptomycin residues in food by solid-phase extraction and liquid chromatography with post-column derivatization and fluorometric detection. Journal of Chromatography A,1999,830(2):345-351.
    84. Edder P, Vargas S, Ortelli D, Corvi C. Analysis of nitrofuran metabolites in food by high-performance liquid chromatography with tandem mass spectrometry detection. Clin Chem Lab Med,2003,41(12):1608-1614.
    85. Edelhaeuser, Klein E. Determination of malachite green residues in food fish. Deutsche Lebensmittel Rundschau,1986,82(12):386-389.
    86. Effkemann S., Feldhusen F. Triple-quadrupole LC-MS-MS for quantitative determination of nitrofuran metabolites in complex food matrixes. Analytical and Bioanalytical Chemistry.2004,378(4):842-844.
    87. Eric Verdon, Pierrick Couedor, Pascal Sanders. Multi-residue monitoring for the simultaneous determination of five nitrofurantoine, nifursol in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by liquid chromatography coupled to electrospray tandem mass spectrometry—In-house validation in line with Commission Decision 657/2002/EC. Journal of Chromatography A,2007,336-347.
    88. Fessard V, Godard T, Huet S. Mutagenicity of malachite green and leucomalachite green in vitro tests. Journal of Applied Toxicology,1999,19:421-430
    89. Finzi JK, Donato JL, Sucupira M, De Nucci G. Determination of nitrofuran metabolites in poultry muscle and eggs by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B,2005,25; 824(1-2):30-5.
    90. Food Drug Administration, Guideline for industry:mass spectrometry for confirmation of the identity of animal drug residues, U.S. Federal Register 68 (2003) 25617-25618.
    91. George S, Jonathan T, Andrew C R, Matthew S, Tim B, Paul R. A multi-residue cation-exchange cleans up procedure for basic drugs in produce of animal origin. Analytica Chimica Acta,2005,547:262-268
    92. Gerhardt GC, Salisbury CD, MacNeil JD. Analysis of streptomycin and dihydrostreptomycin in milk by liquid chromatography. Journal of AOAC International,1994,77(3):765-7.
    93. Gianluca Damontea, Annalisa Salis, Luigia Rossi, Mauro Magnani, Umberto Benatti. Journal of Pharmaceutical and Biomedical Analysis,43 (2007):376-380.
    94. Hannah Runnqvist, Soren Alex Bak, Martin Hansen, Bjarne Styrishave, Bent Halling-Sorensen, Erland Bjorklund. Determination of pharmaceutical s in environmental and biological matrices using pressurised liquid extraction-Are we developing sound extraction methods? Journal of Chromatography A,2010,1217(16): 2447-2470.
    95. Hajee C A J, Haagsma N. Simultaneous determination of malachite green and it's metabolite leucomalachite green in eel plasma using post column oxidation. Journal of Chromatography B,1995,699:219-227
    96. Halme K, Lindfors E, and Petonen K. Determination of malachite green residues in rainbow trout muscle with liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. Food Additives and Contaminants,2004,21: 641-648
    97. Heller D. Determination of leucogentian violet in chicken fat by liquid chromatography with UV detection. Journal of AOAC International,1992,75: 650-654
    98. Henderson A L, Schmitt T C, Heinze T M and Cerniglia C E. Reduction of malachite green to leucomalachite green by intestinal bacteria. Applied Environment. Microbiology,1997,63 (10):4099-4101
    99. Hernando M D, Mezcua M, Su'arez-Barcena J M, Fern'andez-Alba A R. Liquid chromatography with time-of-flight mass spectrometry for simultaneous determination of chemotherapeutant residues in salmon. Analytica Chimica Acta, 2006,562:176-184
    100.Ho, Clarea; Sin, Della W.M; Wong, K.M; Tang, Hubert P.O. Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography-electron capture negative ionization mass spectrometry. Analytica Chimica Acta,2005,530(1):23-31
    101.Hurtaud-Pessel, Dominiquea; Delepine, Bernarda; Laurentie, Michel. Determination of four nitroimidazole residues in poultry meat by liquid chromatography-mass spectrometry. Journal of Chromatography A,2000,882(1-2):89-98
    102.Hutchinson MJ, Young PB, Kennedy DG. Confirmation of carbadox and olaquindox metabolites in porcine liver using liquid chromatography-electrospray, tandem mass spectrometry. Journal of Chromatography B,2005,25; 816(1-2):15-20
    103.Hutchinson MJ, Young PB, Kennedy DG. Confirmatory method for the analysis of carbadox and olaquindox in porcine feedingstuffs using LC-electrospray MS-MS. Food Additive Contaminations.2005,22(2):113-9
    104.Hutchinson MJ, Young PY, Hewitt SA, Faulkner D, Kennedy DG. Development and validation of an improved method for confirmation of the carbadox metabolite, quinoxaline-2-carboxylic acid, in porcine liver using LC-electrospray MS-MS according to revised EU criteria for veterinary drug residue analysis. Analyst.2002, 127(3):342-6
    105.Jefferson J J, Joseph O F. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria. Antimicrobial Agents and Chemotherapy, 2003,47(7):2323-2326
    106.Kamila M, Andrzej P K, Jan Z. Determination of malachite green and leucomalachite green in carp muscle by liquid chromatography with visible and fluorescence detection. Journal of Chromatography A,2005,1089:187-192
    107.Kathryn L L, Carolyn E O. Interference from arsenate when determining phosphate by the malachite green spectrophotometric method. Analytica Chimica Acta,2001, 450:247-252
    108.Lech Rodziewicz. Determination of nitrofuran metabolites in milk by liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography B.2008,156-160
    109.Lee K C, Wu J L, Cai Z G. Determination of malachite green and leucomalachite green in edible goldfish muscle by liquid chromatography-ion trap mass spectrometry. Journal of Chromatography B,2006,36-37
    110.Luis V, Cecilia D, Antonio L Z, Pablo R. Determination of the sum malachite green and leucomalachite green in salmon muscle by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry. Journal of Chromatography A,2005, 1017:101-105
    111.Martinez Bueno MJ, Herrera S, Ucles A, Aguera A, Hernando MD, Shimelis O, Rudolfsson M, Fernandez-Alba AR. (2010). Determination of malachite green residues in fish using molecularly imprinted solid-phase extraction followed by liquid chromatography-linear ion trap mass spectrometry. Analytica Chimica Acta,665, 47-54.
    112.McCracken RJ, Kennedy DG. LC-MS/MS method detection, accumulation and distribution of nitrofuran residues in egg yolk. Albumen and shell.2007,24(1):26-33.
    113.Meyer F P, Jorgenson T A. Teratological and other effects of malachite green on development of rainbow trout and rabbits. Transactions of American Fisheries Society,1983,112:818-824.
    114.Mottier P, Khong SP, Gremaud E, Richoz J, Delatour T, Goldmann T, Guy PA. Quantitative determination of four nitrofuran metabolites in meat by isotope dilution liquid chromatography-electrospray ionisation-tandem mass spectrometry. Journal of Chromatography A.2005,1067(1-2):85-91.
    115.Mulder PP, Zuidema T, Keestra NG, Kooij PJ, Elbers IJ, van Rhijn JA. Determination of nifursol metabolites in poultry muscle and liver tissue. Development and validation of a confirmatory method. Analyst.2005, 130(5):763-71.
    116.Munns R K, Roybal J E, Hurlbut J A, Shimoda W. Rapid method for determination of leucogentian violet in chicken fat by liquid chromatography with electrochemical detection. Journal AOAC International,1990,73:705-708
    117.O'Keeffe M., Conneely A., Cooper K.M., Kennedy D.G., Kovacsics Andrea Fodor L., Mulder P.P.J., van Rhijn J.A., Trigueros G.. Nitrofuran antibiotic residues in pork The FoodBRAND retail survey. Analytica Chimica Acta 520 2004, 125-131.
    118.Peter S, Bergwerff A A, Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta,2005, 529:173-177
    119.Plakas S M, Doerge D R, Turnipseed S B. Disposition and Metabolism of Malachite Green and Other Therapeutic Dyes in Fish. In:M. Beconi-Barker, W H Gingerich, and Smith D J eds., Xenobiotics in Fish. New York City:Plenum Press,1999: 149-166
    120.Plakas S M, Said K R E, Stehly G R, Gingerich W H, Allen J L. Uptake, tissue distribution, and metabolism of malachite green in the channel catfish. Canadian Journal of Fisheries and Aquatic Science,1996,53:1427-1433
    121.Plakas S M, Said K R, Stehly G R, Roybal J E. Optimization of a liquid chromatographic method for determination of malachite green and it's metabolites in fish tissues. Journal AOAC International,1995,78:1388-1394
    122.Polzer, J; Gowik, P.a. Validation of a method for the detection and confirmation of nitroimidazoles and corresponding hydroxy metabolites in turkey and swine muscle by means of gas chromatography-negative ion chemical ionization mass spectrometry. Journal of Chromatography B,2001,761(1):47-60
    123.Pottinger D, Katoch R C, Day J G. A saprolegnia parasitica challenge system for rainbow trout:assessment of Pyceze as an antifungal agent for both fish and ova. Disease Aquatic Organisms,1999,36 (2):129-141
    124.Rao K, Fernandes C L. Progressive effects of m alachite green at varying concentrations on the development of N-nitrosodiethylamine jinduced hepatic preneoplastic lesions in rats. Tumors,1996,81 (2-3):280-286
    125.Rao K. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green:a new liver tumor promoter. Toxicology Letters,1996,81 (2-3):107-113
    126.Rebecca S. Nicolich, Eduardo Werneck-Barroso, Marlice A. Marques S'ipoli. Food safety evaluation:Detection and confirmation of chloramphenicol in milk by high performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta,2006,565:97-102
    127.R. Draisci, C. Marchiafava, L. Palleschia, P. Cammarataa, S. Cavallib. Journal of Chromatography B,753 (2001):217-223
    128.Roybal J E, Denver, Munns R K, Holland D C, Hurlbut J A, Long A R. Determination of malachite green and it's metabolite, leucomalachite green in catfish (Ictalurus punctatus) tissue by liquid chromatography with visible detection. Journal of AOAC International,1995,78:453-457
    129.Roybal J E, Munns R K, Holland D C, Burkepile R G, Hurlbut J A. Liquid chromatographic determination of gentian violet in poultry feed. Journal AOAC International,1992,75:433-437
    130.Roybal J E, Munns R K, Hurlbut J A, Shimoda W. Determination of gentian violet, its demethylated metabolites, and leucogentian violet in chicken tissue by liquid chromatography with electrochemical detection. Journal AOAC International,1990, 73:940-946
    131.Rushing L G, Hansen J R, Eugene B. Confirmation of malachite green, gentian violet and their leuco analogs in catfish and trout tissue by high performance liquid chromatography utilizing electrochemistry with ultraviolet visible diode array detection and fluorescence detection. Journal of Chromatography B,1997,700: 223-231
    132.Smith S, Gieseker C, Reimschuessel R, Decker CS, Carson MC. (2009). Simultaneous screening and confirmation of multiple classes of drug residues in fish by liquid chromatography-ion trap mass spectrometry. Journal of Chromatography A, 1216,8224-8232.
    133.Tadao S, Hiromasa H, Liu X Q, Nobuo U, Kenji T, Kunihiko S. New phase separator for extraction-spectrophotometric determination of anionic surfactants with Malachite Green by flow injection analysis. Talanta,1998,45:543-548
    134.Tarbin J A, Barnes K A, Bygrave J, Farrington W H H. Screening and confirmation of triphenylmethane dyes and their leuco metabolites in trout muscle using HPLC-VIS and ESP-LC-MS. Analyst,1998,123,2567-2571
    135.Thompson J R, Harold C, Rushing L G, Gehring T, Lochmann R. Persistence of gentian violet and leucogentian violet in channel catfish (Ictalurus punctatatus) muscle after water borne exposure. Journal of Chromatography B,1999,723: 287-291
    136.Turnipseed S B, Andersen W C, Roybal J E. Determination and Confirmation of Malachite Green and Leucomalachite Green Residues in Salmon Using Liquid Chromatography/Mass Spectrometry with No-Discharge Atmospheric Pressure Chemical Ionization. Journal AOAC International,2005,88,1312-1317
    137.Turnipseed S B, Wendy C A, Roybal J E. Determination and confirmation of leucomalachite green in salmon using no-discharge atmospheric pressure chemical ionization LC-MS. Laboratory Information Bulletin,2006,4333:1-13
    138.Vahl M. Analysis of nifursol residues in turkey and chicken meat using liquid chromatography-tandem mass spectrometry. Food Additive Contamination.2005, 22(2):120-7.
    139.Van de Riet JM, Murphy CJ, Pearce JN, Potter RA, Burns BG. Determination of malachite green and leucomalachite green in a variety of aquacultured products by liquid chromatography with tandem mass spectrometry detection. Journal AOAC International,2005,88(3),744-749.
    140.Van de Riet JM, Potter RA, Christie-Fougere M. Simultaneous determination of residues of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in farmed aquatic species by liquid chromatography/mass spectrometry. Journal AOAC International,2003,86 (3):510-514
    141. Wendy C A, Sherri B T, and Roybal J E. Quantitative and Confirmatory Analyses of Malachite Green and Leucomalachite Green Residues in Fish and Shrimp, Laboratory Information Bulletin,2006,4363:1-25.
    142.Wu xueli, Gong Zhang, Yongning Wu, Xiaolin Hou, Zonghui Yuan. Simultaneous determination of malachite green, gentian violet and their leuco-metabolites in aquatic products by high-performance liquid chromatography-linear ion trap mass spectrometry. Journal of Chromatography A,2007,1172,121-126.
    143.Jose L. Tadeo, Consuelo Sanchez-Brunete, Beatriz Albero, Ana I. Garcia-Valcarcel. Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. Journal of Chromatography A.2010,1217:2415-2440
    144.Wang Pu, Qinghua Zhang, Yawei Wang, Thanh Wang, Xiaomin Li, Lei Ding, Guibin Jiang. Evaluation of Soxhlet extraction, accelerated solvent extraction and icrowave-assisted extraction for the determination of polychlorinated iphenyls and polybrominated diphenyl ethers in soil and fish samples. Analytica Chimica Acta. 2010,663:43-48
    145.V Carretero, C Blasco, Y Pico. Multi-class determination of antimicrobials in meat by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,2008,1209(1-2):162-173
    146.Vazquez-Roig P, Segarra R, Blasco C, Andreu V, PicoY. Determination of Pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Journal of Chromatography A,2010, 1217:2471-2483
    147.Zoe Hall, Chris Hopley, Gavin O'Connor. High accuracy determination of malachite green and leucomalachite green in salmon tissue by exact matching isotope dilution mass spectrometry. Journal of Chromatography B,2008,874,95-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700