嗜热四膜虫中Chromodomain蛋白Tcd3和Tcd4的表达调控与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Chromodomain (chromatin organization modifier domain)是一个由30~50个氨基酸组成的保守的蛋白质结构域,含有Chromodomain的蛋白质广泛存在于多种生物中的染色质结合蛋白中,通过与组蛋白或RNA的作用参与了异染色质的形成及基因的表达调控。
     四膜虫中程序性全基因组重排在有性生殖过程中发生,siRNA, MeH3K9, Pdd1p和Pdd3p参与这一过程,然而其详细机制仍不清楚。本研究从四膜虫基因组中筛选到两个含有Chromodomain的基因TCD3(Tetrahymena Chromo Domain 3)与TCD4(Tetrahymena Chromo Domain 4),对这两个基因的表达调控和细胞定位进行了研究,获得的主要结果如下:
     1.TCD3和TCD4序列分析通过生物信息学的方法,从四膜虫大核基因数据库鉴定了TCD3 (TTHERM_00585180)和TCD4 (TTHERM_00585190),两个基因串联于同一条大核染色体上,间隔237bp,两个基因内均具有GT-AG的内含子。TCD3和TCD4基因拟编码的蛋白334个和344个氨基酸残基组成,分子量分别为40.26kDa和41.11kDa,等电点(pI)分别为4.590和5.435。全基因表达Microarray分析表明TCD3和TCD4在四膜虫营养生殖阶段和饥饿期不表达,在有性生殖过程中8h时表达量最高,并且两者的表达谱一致。
     2.TCD3和TCD4的5'和3'-RACE TCD3和TCD4的ORF分别为1005bp和1035bp,大核染色体中基因全长分别为1241bp和1429bp,各含有两个内含子。5’RACE和3'RACE表明TCD3和TCD4的5’端非编码区(5'-UTR)长度分别为40bp和43bp,3'端非编码区(3’-UTR)长度分别为90bp和189bp。Chromodomain聚类分析表明Tcd3和Tcd4与pddlp蛋白的Chromodomain最为相似,SWISS—MODEL预测发现Tcd4的Chromodomain缺失α-螺旋结构。
     3.Tcd3和Tcd4的免疫荧光定位构建含有HA标签的表达载体OE-PBX-TCD3和OE-PBX-TCD4,转化四膜虫CU428和B2086细胞株,通过巴龙霉素筛选,PCR鉴定,获得HA-Tcd3和HA-Tcd4的过表达细胞株。激光共聚焦显微镜对HA-Tcd3和HA-Tcd4的免疫荧光定位发现:HA-Tcd3定位于四膜虫有性生殖核发育的亲本大核和新发育的大核中;HA-Tcd4则定位于conjusome和新发育的大核中。
     TCD3和TCD4相似的序列特征,保守的Chromodomain位置,一致的表达谱,表明两个基因中的一个很可能源于基因复制,进而加强该基因的功能。TCD3和TCD4在四膜虫接合生殖时期特异表达,都能够定位于新的发育的大核中,表明Tcd3和Tcd4极有可能参与了新的大核发育过程中程序性基因组重排。Tcd3和Tcd4在亲本大核和conjusome特异的定位,以及不同的模型结构,暗示基因TCD3和TCD4在进化过程中产生了新的功能。这些研究为进一步探讨chromodomain蛋白的功能提供了新的数据。
Chromodomain is a conservative protein domain consisting of 30-50 amino acids. Chromodomain-containing Proteins were identified in different organism. They participate in the formation of heterochromatin and expression regulation of genes through interaction with the histone or RNA.
     Programmed genome rearrangement occurs during the conjugation stage in Tetrahymena. siRNA, MeH3K9, Pddlp and Pdd3p are involved in this process. However, the detailed programmed genome rearrangement mechanism is still unclear. In this study, we identified TCD3 and TCD4 from Tetrahymena. Transcriptional regulation and cellular localization of TCD3 and TCD4 were analysed, the results are as follows:
     1. Bioinformatics analysis of TCD3 and TCD4 TCD3 (TTHERM_00585180) and TCD4 (TTHERM 00585190) are in the same chromosome. There is 237bp interval between them. They contain two introns, respectively. TCD3 and TCD4 encoded predicted polypeptide of 334 and 344 amino acids, respectively. The predicted molecur weight is 40.26kDa and 41.11kDa, isoelectric point is 4.590 and 5.435, respectively. Microarray analysis showed that TCD3 and TCD4 are unexpressed in growing stages and starvation stages, but, expressed during conjugation stage and upregulated at 8h. Furthermore, TCD3 and TCD4 showed same expression profile.
     2. The 5 'and 3'-RACE of TCD3 and TCD4 The ORF of TCD3 and TCD4 contain 1005bp and 1035bp, respectively. Macronuclear chromosome counterpart is 1241bp and 1429bp.5'RACE of TCD3 and TCD4 showed 5' untranslated region is 40bp and 43bp, respectively.3'RACE of TCD3 and TCD4 showed 3'untranslated region is 90bp and 189bp, respectively. The cluster analysis of Chromodomain showed Tcd3 and Tcd4 is similar to pddlp.
     3. The immunofluorescence localization of Tcd3 and Tcd4 HA-TCD3 and HA-TCD4 were constructed and transformed into CU428 and B2086 cells, respectively. Transformed cells were selected by paromomycin and identified by PCR. Immunofluorescence localization of HA-Tcd3 and HA-Tcd4 showed Tcd3 is located in the parental macronucleus and the new development macronucleus and Tcd4 is located in the conjusome and the new development macronucleus.
     TCD3 and TCD4 showed similar sequence features, conserved chromodomain location, the same expression profile. It implies that two genes are likely derived from gene duplication to strengthen the function of the gene. TCD3 and TCD4 specifically expressed during conjugation stage and localize in the new development macronucleus. The results showed that Tcd3 and Tcd4 likely involved in the programmed genome rearrangement during the process of new macronucleus development. Specifically, Tcd3 and Tcd4 also localized in parent macronucleus and conjusome, respectively. It implies that two genes could evolve new functions. These studies provide new data for further exploring the function of the chromodomain protein.
引文
[1]Smerdon, M. J. and Conconi, A. Modulation of DNA damage and DNA repair in chromatin. Progress in Nucleic Acid Research and Molecular Biology.1999,62,227-255
    [2]赵剑,韩云,朱应葆.异染色质蛋白HPlα参与辐射损伤修复的研究.中华放射医学与防护杂志.2004,24,493-495
    [3]Huang, H., Wiley, E. A., Lending, C. R. et al. An HP 1-like protein is missing from transcriptionally silent micronuclei of Tetrahymena. Proceedings of the National Academy of Sciences of the United States of America.1998,95,13624-13629
    [4]刘峰涛.异染色质的开放.生命的化学.2004,24,108-109
    [5]Paro, R. and Hogness, D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proceedings of the National Academy of Sciences of the United States of America.1991,88,263-267
    [6]Eissenberg, J. C., James, T. C., Foster-Hartnett, D. M., et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America.1990,87,9923-9927
    [7]Cavalli, G. and Paro, R. Chromo-domain proteins:linking chromatin structure to epigenetic regulation. Current opinion in cell biology.1998,10,354-360
    [8]R., P. and H, P.J.. The role of Polycomb group and trithorax group chromatin complexes in the maintenance of determined cell states. In Epigenetic Mechanisms of Gene Regulation,1996,507-528
    [9]Brehm, A., Tufteland, K. R., Aasland, R., et al. The many colours of chromodomains. Bioessays.2004,26,133-140
    [10]Aasland, R. and Stewart, A. F. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP 1. Nucleic acids research.1995,23,3168-3173
    [11]Kato, M., Kato, Y., Nishida, M., et al. Functional domain analysis of human HP1 isoforms in Drosophila. Cell structure and function.2007,32,57-67
    [12]Eissenberg, J. C. Molecular biology of the chromo domain:an ancient chromatin module comes of age. Gene.2001,275,19-29
    [13]Nielsen, P. R., Nietlispach, D., Buscaino, A., et al. Structure of the chromo barrel domain from the MOF acetyltransferase. The Journal of biological chemistry.2005,280, 32326-32331
    [14]Zhang, P., Du, J., Sun, B., et al. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic acids research.2006,34,6621-6628
    [15]Buscaino, A., Legube, G. and Akhtar, A. X-chromosome targeting and dosage compensation are mediated by distinct domains in MSL-3. EMBO reports.2006,7, 531-538
    [16]Edmondson, S. P., Qiu, L. and Shriver, J. W. Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry.1995, 34,13289-13304
    [17]Baumann, H., Knapp, S., Lundback, T., et al. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nature structural biology.1994,1,808-819
    [18]Eissenberg, J. C. Molecular biology of the chromo domain:an ancient chromatin module comes of age. Gene.2001,275,19-29
    [19]Ma, J., Hwang, K. K., Worman, H. J., et al. Expression and functional analysis of three isoforms of human heterochromatin-associated protein HP1 in Drosophila. Chromosoma.2001,109,536-544
    [20]Platero J. S., Hartnett, T. and Eissenberg, J. C. Functional analysis of the chromo domain of HP 1. The EMBO journal.1995,14,3977-3986
    [21]Platero, J. S., Sharp, E. J., Adler, P. N., et al. In vivo assay for protein-protein interactions using Drosophila chromosomes. Chromosoma.1996,104,393-404
    [22]Aagaard, L., Laible, G., Selenko, P., et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. The EMBO journal.1999,18, 1923-1938
    [23]Wang, G., Ma, A., Chow, C. M., et al. Conservation of heterochromatin protein 1 function. Molecular and cellular biology.2000,20,6970-6983
    [24]Powers, J. A. and Eissenberg, J. C. Overlapping domains of the heterochromatin-associated protein HP1 mediate nuclear localization and heterochromatin binding. The Journal of cell biology.1993,120,291-299
    [25]Messmer, S., Franke, A. and Paro, R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes & development.1992,6,1241-1254
    [26]Strutt, H., Cavalli, G. and Paro, R. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. The EMBO journal.1997,16,3621-3632
    [27]Busturia, A. and Bienz, M. Silencers in abdominal-B, a homeotic Drosophila gene. The EMBO journal.1993,12,1415-1425
    [28]Zink, D. and Paro, R. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. The EMBO journal.1995,14, 5660-5671
    [29]Chan, C. S., Rastelli, L. and Pirrotta, V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. The EMBO journal. 1994,13,2553-2564
    [30]Le Douarin, B., vom Baur, E., Zechel, C., et al. Ligand-dependent interaction of nuclear receptors with potential transcriptional intermediary factors (mediators). Philosophical transactions of the Royal Society of London.1996,351,569-578
    [31]Le Douarin, B., Nielsen, A. L., Gamier, J. M., et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. The EMBO journal.1996,15,6701-6715
    [32]Ye, Q., Callebaut, I., Pezhman, A., et al. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. The Journal of biological chemistry.1997,272,14983-14989
    [33]Ye, Q. and Worman, H. J. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. The Journal of biological chemistry.1996,271,14653-14656
    [34]Smothers, J. F. and Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol.2000,10,27-30
    [35]Mochizuki, K. and Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Current Opinion in Genetics & Development.2004,14,181-187
    [36]Ivanova, A. V., Bonaduce, M. J., Ivanov, S. V. et al. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature genetics.1998,19, 192-195
    [37]Nakayama, J., Rice, J. C., Strahl, B. D., et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science (New York), N.Y.2001,292, 110-113
    [38]Smith, E. R., Pannuti, A., Gu, W., et al. The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Molecular and cellular biology.2000,20,312-318
    [39]Akhtar, A. and Becker, P. B. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Molecular cell.2000,5,367-375
    [40]Gu, W., Szauter, P. and Lucchesi, J. C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Developmental genetics. 1998,22,56-64
    [41]Lucchesi, J. C. Dosage compensation in Drosophila and the "complex' world of transcriptional regulation. Bioessays.1996,18,541-547
    [42]Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. et al. Mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. The EMBO journal.1997,16,2054-2060
    [43]Mandrioli, M. and Borsatti, F. Analysis of heterochromatic epigenetic markers in the holocentric chromosomes of the aphid Acyrthosiphon pisum. Chromosome Res.2007,15, 1015-1022
    [44]Ekwall, K., Javerzat, J. P., Lorentz, A., et al. The chromodomain protein Swi6:a key component at fission yeast centromeres. Science.1995,269,1429-1431
    [45]James, T. C., Eissenberg, J. C., Craig, C., et al. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. European journal of cell biology.1989,50,170-180
    [46]Fanti, L., Giovinazzo, G., Berloco, M. et al. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Molecular cell.1998,2,527-538
    [47]Pak, D. T., Pflumm, M., Chesnokov, I., et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell.1997,91,311-323
    F48] Kellum, R. and Alberts, B. M. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. Journal of cell science.1995,108 (Pt 4), 1419-1431
    [49]Liu, F. T. and Zhang, Y. Heterochromatin protein 1 deleted chromo domain decreases gene silencing of transgene in mouse. Biotechnology letters.2006,28,419-424
    [50]Piacentini, L., Fanti, L., Berloco, M., et al. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. The Journal of cell biology.2003,161,707-714
    [51]Lu, B. Y., Emtage, P. C., Duyf, B. J., et al. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics.2000,155, 699-708
    [52]Kellum, R. Is HP1 an RNA detector that functions both in repression and activation? The Journal of cell biology.2003,161,671-672
    [53]Lorentz, A., Ostermann, K., Fleck, O. et al. Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene.1994,143,139-143
    [54]Ekwall, K., Nimmo, E. R., Javerzat, J. P., et al. Mutations in the fission yeast silencing factors clr4+and rikl+disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. Journal of cell science.1996,109 (Pt 11), 2637-2648
    [55]Flanagan, J. F., Mi, L. Z., Chruszcz, M., et al. Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature.2005,438,1181-1185
    [56]Eissenberg, J. C., Shilatifard, A., Dorokhov, N. et al. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment. Mol Genet Genomics.2007,277,101-114
    [57]Madireddi, M. T., Coyne, R. S., Smothers, J. F., et al. Pddlp, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell.1996,87,75-84
    [58]Callebaut, I., Courvalin, J. C., Worman, H. J. et al. Hydrophobic cluster analysis reveals a third chromodomain in the Tetrahymena Pdd1p protein of the chromo superfamily. Biochemical and biophysical research communications.1997,235,103-107
    [59]Madireddi, M. T., Davis, M. C. and Allis, C. D. Identification of a novel polypeptide involved in the formation of DNA-containing vesicles during macronuclear development in Tetrahymena. Developmental biology.1994,165,418-431
    [60]Coyne, R. S., Chalker, D. L. and Yao, M. C. Genome downsizing during ciliate development:nuclear division of labor through chromosome restructuring. Annual review of genetics.1996,30,557-578
    [1]Chalker, D. L.. Dynamic nuclear reorganization during genome remodeling of Tctrahymena. Biochimica et Biophysica Acta,2008,1783(11),2130-2136
    [2]Taverna, S.D., Coyne, R. S. and Allis, C.D. Methylation of Histone H3 at Lysine 9 Targets Programmed DNA Elimination in Tetrahymena. Cell,2002,110,701-711.
    [3]Mochizuki, K. and Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Current Opinion in Genetics & Development.2004,14,181-187.
    [1]Miao, W., Xiong, J., Bowen, J., et al. Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PLoS ONE,2009,4,e4429.
    [2]Chang, W. J., Addis, V. M., Li, A. J., et al. Intron Evolution and Information Processing in the DNA Polymerasea Gene in Spirotrichous Citiates:A Hypothesis for Interconversion Between DNA and RNA Deletion. Biology Direct,2007,2(6),1-15.
    [3]党旭红,许静,李江姣等.八肋游仆虫中ECD1基因的克隆及序列分析.山西大学学报,2009,32(2),273-279.
    [4]James, F. S., Craig, A. M., Michelle, M. T., et al. Pddlp associates with germline-restricted chromatin and a second novel anlagen-enriched protein in developmentally programmed DNA elimination structures. Development,1997,124,4537-4545.
    [5]Malavi, T. M., Robert, S. C., James, F. S., et al. Pddlp, A Novel Chromodomain-Containing Protein, Links Heterochromatin Assembly and DNA Elimination in Tetrahymena. Cell,1996,87,75-84.
    [1]Chris, J., Eric, C., James F. S., et al. The conjusome:a novel structure in Tetrahymena found only during sexual reorganization. Journal of Cell Science.1999,112,1003-1011.
    [2]Madireddi, M. T., Coyne, R. S., Smothers, J. F., et al. Pdd1p, A Novel Chromodomain-Containing Protein, Links Heterochromatin Assembly and DNA Elimination in Tetrahymena. Cell,1996,87,75-84.
    [3]Nikiforov, M. A., Gorovsky, M. A., Allis, C. D.,et al. A Novel Chromo-domain Protein, Pdd3p, Associates with Internal Eliminated Sequences during Macronuclear Development in Tetrahymena thermophila. Molecular and Cellular Biology,2000, 4128-4134.
    [4]Huang, H., Smothers, J F., Wiley, E A., et al. A Nonessential HP1-Like Protein Affects Starvation-Induced Assembly of Condensed Chromatin and Gene Expression in Macronuclei of Tetrahymena thermophila. Molecular and Cellular Biology,1999, 3624-3634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700