岩体结构面力学特征及地下工程结构稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是由不同力学性质和空间条件的结构面切割而成的非连续地质体。大量的岩体工程实例表明:岩体的变形和破坏规律取决于岩体的结构特性,岩体工程的稳定状态受岩体自身结构控制。因此,为了保证岩体工程结构稳定和生产安全,必须在研究结构面的自然特性和力学特征的基础上,采取一定的方法和手段控制岩体结构面的变形和破坏。
     本论文以影响岩体工程稳定性的岩体结构面为主要研究对象,以程潮铁矿地下采矿为例,采用理论分析、现场调查、计算机模拟、数值计算和工程实践等多种研究方法,将宏观与微观、定性与定量、理论与实践相结合,系统地研究岩体结构面的力学特征,研究控制岩体结构面的方法、手段和措施,旨在将岩石力学理论与工程紧密结合,使理论成果能够在工程实践中得到应用,不断完善提高地下工程结构稳定性的研究方法,解决企业生产难题。为此,本文主要进行了以下几个方面的研究:
     1.本文应用分形理论直接从非线性复杂系统入手,分析了不规则形状的局部与整体的自相似性规律。通过研究岩体结构面空间分布的分形特征,提出了应用分形维数这一重要的度量指标来反映结构面在空间分布的优势程度及范围的方法。同时,对程潮铁矿岩体结构面进行了大量的现场调查,应用统计概率模型,对节理裂隙调查结果统计分析,并得出结构面参数的分布函数。在此基础上,应用可视化编程技术,编制了功能齐全、操作简单,交互性强的结构面网络模拟系统(FRMOD),并对程潮铁矿-302m水平矿岩中节理裂隙分布进行计算机模拟,得出节理裂隙分布的网络图。开拓了根据结构面计算机模拟图,应用盒子法求解分形维数的新方法,并求得程潮铁矿岩体结构面分布的分形维数,真实地反映了岩体结构面分布的分形特征。
     2.通过引入损伤张量和净应力来分析岩体结构面的力学特性,从宏观上将岩体纳入连续介质力学的范畴来处理。结合程潮铁矿实际,在工程地质调查的基础上,求得研究区域的损伤张量。成功地开发了基于损伤力学模型的弹塑性有限元计算程序(DFEM)。通过损伤弹塑性模型和常规弹塑性模型两种有限元计算模型的对比计算分析,研究结果表明:采用岩石力学参数计算的损伤模型比常规的有限元模型更能反映岩体的各向异性和不连续性。
     3.根据程潮铁矿矿岩赋存条件及生产现状,结合大量的巷道收敛测试,查明了采场巷道大量垮冒、甚至无法正常生产的原因,系统地分析了影响采场地压分布和采场稳定性的主要因素,研究了采场地压分布和地压显现的总体规律。通过巷道收敛测试,了解巷道开挖后围岩变形情况,建立了围岩位移与巷道稳定性的关系。
    
     武汉理工大学博士学位论文
     4.基于以上研究成果,将岩体结构面分形维数应用于岩体工程质量评价,具有创新性。
    对程潮铁矿-302m水平进行了矿岩工程质量分级,并对-316m水平和-330m水平进行了矿岩工
    程质量分级预测。该方法拓宽了分形几何理论的研究领域和应用范围,为岩体质量工程分级
    提供新的依据和途径,具有其独特的优越性。
     5.为解决程潮铁矿岩体结构面带来生产困难、安全隐患等问题,寻求合理的回采顺序,
    本文进行了系统的数值模拟计算分析。以-302m水平为研究对象,在考虑结构面分布密集程度
    的基础上,将矿体沿走向分为三个区,建立了七种回采模型,从水平和铅垂两个方向来分析
    合理的回采顺序,研究方法新颖、全面。岩体结构面对岩体强度的影响通过岩石物理力学参
    数的工程弱化来体现,这种处理方法经济、合理、实用。通过多种回采方案的有限元计算分
    析,得出了-302m水平最优的回采方案和切合实际的回采工作线,程潮铁矿按此方案组织生产,
    取得了显著的生产效益。本文提出的合理回采顺序分析决策模型,为矿山在不同条件下的回
    采决策提供了理论依据,对矿山生产、管理具有较大的指导意义。
     6.通过对大量垮冒巷道的观测分析,总结出巷道失稳破坏形式,分析了巷道失稳破坏的
    主要原因,提出了巷道合理支护的基本要求。首次研制了支护效果好的锚杆联系链,研究了
    与矿岩质量等级相适用的支护措施和支护参数。采用有限元法对巷道的支护作用下的受力状
    况进行了数值计算,并从结构面剪胀机理、增韧止裂机理,岩体的应力状态以及喷层的物理
    力学作用等方面进行了支护方案的机理分析。此外,为检验锚杆联系链的支护效果,选择两
    条新掘巷道分别采用喷锚加锚杆联系链和常规喷锚网支护进行对比试验,并布设了收敛测点
    进行监测。研究结果表明,支护方案具有加工简单、安装方便、成本低、支护效果显著等特
    点。因此,锚杆联系链支护是解决地压活动频繁,巷道垮冒严重等问题的有效支护措施。
     总之,本文采用新理论、新方法,系统地研究了岩体结构面的力学特征,对控制岩体结
    构面的方法、手段和措施及提高地下采场、巷道的稳定性等方面的研究取得了创造性成果,
    本文对解决岩体工程的设计、施工和生产中存在的问题,提高企业经济效益和确保生产安全
    等都具有十分重大的意义。
Rock mass is a discontinuous geological body with structural planes of varied mechanical properties and spatial conditions. Numerous examples of rock mass engineering indicate that the deformation and breaking law of rock mass depends on its structural characteristics and the stability of rock mass construction is controlled by the very structure of rock mass. Therefore, in order to ensure the structural stability of rock mass construction and production safety, researches must be conducted into the natural characteristics and mechanical properties of structural plane and followed by adequate measures for controlling the deformation and breaking of rock mass structural plane.
    This paper takes rock mass structural plane that influences the stability of rock mass construction as the main subject of investigation and the underground mining in Chengchao Iron Mine as an illustrating example. For a systematic study of the mechanical features of rock mass structural plane and of measures to control the rock mass structural plane, the methods of theoretical analysis, field survey, computer simulation, numerical calculation and engineering practice are employed jointly, aided by the integration of macro-study with micro-study, qualitative approach with quantitative one and theory with practice. The principle of combining rock mechanical theories with engineering practice is followed from beginning to end, which makes it possible to apply theoretical results to engineering practice, perfect the research method in raising the structural stability of underground construction and solve problems with production in enterprises. With this end in view, the following research has been done:
    1. Starting directly from nonlinear complex systems, the study has analyzed the self-similarity of part and the whole body of irregular shape by applying the fractal theory. The fractal features of spatial distribution of rock mass structural plane are researched. It proposes the use of fractal dimension for reflecting the dominance and scope of structural plane in spatial distribution. In the meantime, a comprehensive field investigation into the structural planes of rock masses in Chengchao Iron Mine is conducted, which, together with the application of statistic probability model and the analysis of investigation results of joint fissures, has determined the distribution function of structural plane parameters. On this basis, visual programming technique is used and an interactive structural plane network simulation system FRMOD with all functions is worked out, which is simple and convenient to operate. The joint fissure distribution in ore masses at -302m in Chengchao Iron Mine is simulated with computer and the network graph of the joint fissure distribution arrived at. This opens up a new way of solving fractal dimension with the box method based on the computer simulation graph of structural plane. The fractal dimension of structural plane of rock
    in
    
    
    
    mass in Chengchao Iron Ore is obtained, which presents a true picture of the fractal features of rock mass structural plane.
    2. By introducing damage tensor and net stress, this study has analyzed the mechanical properties of rock mass structural plane, hi this way, the rock mass question is macroscopically transformed into one of continuous medium mechanics, hi the light of the engineering reality in Chengchao Iron Mine, the damage tensor of the area under research has been obtained on the basis of engineering geological survey. The elastoplasticity finite element calculation program DFEM is successfully developed, which is based on damage mechanics model. The comparison and analysis of calculations with damage elastoplasticity and with conventional finite element model show that the damage model that calculates with rock mechanical parameters are more precise than conventional finite element model in reflecting the anisotropy and discontinuity of rock masses.
    3. On the basis of the ore mass conditions and the production reality in Chengchao Iron Mine and in the light of
引文
[1] 孙广忠.岩体结构力学.北京:科学出版社,1988:36
    [2] 唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993:31-41
    [3] 谢和平.岩石混凝土损伤力学.中国矿业大学出版社,1990
    [4] 孙均.岩石力学的若干进展.面向21世纪的岩石力学与工程,中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学技术出版社,1996:1
    [5] 梅剑云,付冰骏等.中国岩石力学的发展与现状.岩石力学与工程学报,1983,2(1):22-31
    [6] 中华人民共和国建设部.《工程岩体分级标准》GB50218-94.1994
    [7] 郑永学.矿山岩体力学.北京:冶金工业出版社,1988:48
    [8] Binham C. Distributions on the sphere and on the projective plan. Yale university. 1964:93-95
    [9] Shanley R. J., Mathtab M. A. Delimeation and analysis of clusters in orientation data. Math. Geol. 1976, 9-23
    [10] Priest S. D., Hudson J. A. Estimation of discontinuity space and trace length using scanline surveys. Inter. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1981, 18: 183-197
    [11] Hudson J. A., Priest S. D. Discontinuity frequency in rock masses. Inter. J. Rock Mech. Min. Sci. and Geomech. Abatr., 1983, 20:73-89
    [12] Hudson J. A., Priest S. D. Discontinuity and rock quality. Inter. J. Rock Mech. Min. Sci. and Geomech. Abstr., 1979:339-362
    [13] Steffen O. H. K. et al. Recent developments in the interpretation of data from the joint surveys in rock masses. Proc. 6th Regional Conf. for Africa on Soil Mech. and Foundation Engineering Durban, South Africa, 1975:135
    [14] Wallis P. F., King M. S. Discontinuity spacings in crystalline rock. Inter J. Rock Mech. Min. Sci and Gcomech Abstr. 1980, 17:63-66
    [15] Sen Z., Kazi A., Discontinuity spacing and RQD estimates from futile length scanline. Inter J. Rock, Me, eh, Min. Sci. and Gcomeeh Abstr. 1984, 21:203-212.
    [16] Roulean A., Gale J. E. Statical Charaeterisafion of fracture system in the Stripa Granite, Inter. J. Rock Mech. Min. Sci. and Geomeeh. Abstr., 1985, 22(6): 353-367
    [17] 陈征宙等,岩体节理网络模拟技术研究.岩土工程学报,1998,20(1):22-25
    [18] 赵文,唐春安.结构面间距和迹长的测量理论.中国矿业,1988,17(3):36-38
    [19] 潘别桐,井兰如.岩体结构概率模拟和应用.岩石力学新进展,沈阳:东北工学院出版社,1989.55-79
    
    
    [20] Kulatilake P. H. S. W. et al. Discontinuuity network modelling of the rock mass around a tunnel close to the permanent shiplock area the three gorges dam site in China. Proc 35th U. S. sym rock mech. Baliena, Rotterdam, 1995:807-812
    [21] Pinnaduwa H. S.W., Kulatilake. Stochastic joint geometry modeling, State of the art, ludea, Sweden, S-951, 1987:1-25
    [22] 潘别桐.岩体结构面网络模拟及应用,中国地质大学,1987
    [23] 陶振宇,王宏.岩石力学中节理网络模拟技术.长江科学院院报,1990(4):18-26
    [24] 周维垣等,三维岩体构造网络生成的自协调法及工程应用.岩石力学与工程学报,1997,16(1):29-35
    [25] 刘连峰,王泳嘉.三维节理岩体计算模型的建立.岩石力学与工程学报,1997,16(1):36-42
    [26] 马宇等.岩体裂隙网络的三维分形仿真.岩石力学与工程学报,1999,18(增):1255-1257
    [27] 夏元有,朱瑞赓.关于分形理论在结构岩体的应用研究.岩土工程学报,1997,16(4):362-367
    [28] 徐光黎.岩石结构面几何特性的分形与分维.水文地质工程地质,1983(2):20-22
    [29] 丁多文.岩体结构分形及应用研究.岩土力学,1993,14(3):67-71
    [30] 祝玉学.分形理论及其在矿业中的应用.中国矿业,1992,1(1):54-58
    [31] 李庆斌.节理岩体断裂的损伤与分形效应.力学与实践,1993,15(4):28-30
    [32] 卢平.自然岩体块度分布研究进展及其工程意义.中国科协第三届青年学术会论文集,北京,中国科学出版社,1998:515-519
    [33] Crain.k, Miles R.E. Mmonte carlo estimates of the diseribution of rantom polygons determined by random lines in a plan stalist. Comput. Simu14, 293-325.
    [34] P.J.Pahl. Estimating the Mean length of Discontinuity Faces. Inter. J. Rock Mech. Min. Sci. &Geomech. Abstr. 1981, 18(3): 221428
    [35] Heuze, F.F. Scale effects in the determination of rock mass strength and deformation. Rock mechanics. 1980, 12(3): 167-189
    [36] H.S.W. Kulatilabe. Estimating elastic constants and strength of discontinuous rock. journal of the geotechnical engineering divison. 1987:847-863
    [37] N.Bartonn. Review of a new shear strength criteria for rock joints. Engineering geology,1973(7):287-332
    [38] N. Barton, S. bandis. Review of predictive capabilities of JRC-JCS model in engineering practice. Rfock joints, 1990
    [39] 杜时贵,潘别桐.岩石节理粗糙度系数的分形特征.水文地质工程地质,1993(3):36-39
    
    
    [40] 谢和平,分形几何及其在岩土力学中的应用.岩土工程学报,1992,(1):14-24
    [41] 盛建龙,朱瑞赓.岩体地质结构面粗糙系数的分形估测,武汉科技大学学报(自然科学版),2000,23(1):1-3
    [42] 谢和平,W. G. Parisearl. 岩石节理粗糙系数的分形估计.中国科学,1994,25(5):524-530
    [43] 付冰骏.参加第五届国际岩石力学大会报导,岩石力学,1984(10):43-49
    [44] 袁建新.非线性有限单元法.岩土力学,7(1)1986:93-100
    [45] Cundall P. A.. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Systems. Proc. Of the Symp. Of the Int. Soc. Rock Mech., France, 1971, 2-8
    [46] 钊万禧.离散单元法的基本原理及其在岩体工程中的应用.岩石力学与工程学报,1986,5(2):165-172
    [47] 王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用.沈阳:东北工学院出版社,1991
    [48] 中国科学院地质所.岩体工程地质力学问题.北京:科学出版社,1976
    [49] 孙玉科,古迅.赤平极射投影在岩体工程地质力学中的应用.科学出版社,1980
    [50] 李四光.地质力学概论.北京:科学技术出版社,1973
    [51] 董学晟,认识岩体、利用岩体、加固岩体—纪念岩基所成立40周年.工程岩石力学,武汉:武汉工业大学出版社,1998:1—7
    [52] 李迪.岩石压力—变形曲线分析.岩土工程学报,1980,2(2)
    [53] 陶振宇.试论岩石力学的最新进展、力学进展,1992,(2):161-172
    [54] 张流等.我国六种岩石在高围压下的强度特性.岩石力学与工程学报,1985,4(1):10-19
    [55] Nova R., Zaninetei A.. An Investigation into the Tensile Behaviour of a Schistose Rock. Int. J. Rock Moch. Min. Sci. & Geomech. Abstr., 1990, 27(4): 231-242
    [56] Okubo S. et al. Uniaxial Compression Testing Using a Linear Combination of Stress and Strain as the Control Uarible, Int. J. Rock Mech. Min. sci. & Geomech. Abstr., 1980, 22(5): 323-330
    [57] Tsur-Lavie Y., Denekamp. S. A.. Comparison of size effete for different type of strength tests, Rock Mechanics, 1982, 15:234-254
    [58] 王谦源,胡乐爽.岩体强度与变形尺度效应的研究现状与问题探讨.中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学出版社,1996,167-174
    [59] 张大任.声发射技术在国外岩石工程中的应用,岩石力学与工程学报,1985,4(1):77-83
    [60] 秦四清等.岩石声发射技术概论,西南交大出版社,1993
    
    
    [61]蔡永昌等.数值流形方法在连续体数值分析中的应用.力学与实践,1999,21(6):1-5
    [62]石根华著,裴觉民译.数值流形方法与非连续变形分析.北京:清华大学出版社,1997
    [63]章青,卓家寿.三峡船闸高边坡稳定分析的界面应力元.岩石力学与工程学报,
    [64]杨延毅,周维垣.裂隙岩体的渗流—损伤耦合分析模型及其工程应用.水利学报,1991,5:19-27
    [65]刘继山.结构面力学参数与水力参数耦合及其应用.水文地质工程地质,1989,2:7-12
    [66]Daniel Swenson et al. An implicitly Coupled model of fluid flow in jointed rock. Rick Mechanics. 1992, 649-657
    [67]Asgian M. Antumerical model of fluid - flow in deformable naturally fractured rock masses. Int. J. Rock Mech. Min. Sci & Geomech. Abstr., 1989, 26(3):317-328
    [68]卓家寿等.裂隙岩体渗流场与位移场的耦合作用分析.中国岩石力学与工程学会第四次学术大会论文集,1996,197-203
    [69]傅冰骏.中国水利水电建设岩石力学与工程实践.中国岩石力学与工程实践.中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学技术出版社,1996,41-5
    [70]盛建龙等.固液相耦合的有限无法及其应用.地下空间,1999,19(4):323-327
    [71]Rice J.B. Cleary M.P. Some basic stress-fission solutions for fluid saturated elastic porous media with compressible constituents. Geophysics, 1997(14): 227~271
    [72]Daniel Swenson et al. An implicitly coupled model and fluid folw in joned rock. Rock mechanics, 1992, 649-657
    [73]R.G. 格雷斯.全球定位学流在露天矿的应用.国外金属矿山,1995,4(3):57-62
    [74]夏元友,朱瑞赓.临滑边坡的施工期监测计算方法.中国地质灾害与防治学报,1994,5(增刊):370-375
    [75]吴景坤等.铁路地质灾害研究中遥感技术的应用.中国地质灾害与防治学报,1994,5(增刊):272-276
    [76]朱瑞赓等.隔河岩水电房超高边坡施工期立体监测.国际滑坡与岩土工程学术会议论文集(Ⅱ),武汉:华中理工大学出版社,1991:291-302
    [77]李沃钊等.监测反馈分析在二滩地下房施工中的应用.岩石力学与工程学报,1990,18(增刊):1175—1180
    [78]陈铸曾,郝松林.损伤变量和有效应力.国防科技大学学报,1984,(1):75-63
    [79]凌建明.节理裂隙岩体损伤力学研究中的若干问题.力学进展,1994,25(2):257-264
    [80]Zhu Ruigend et al. The study of Xintan Landslide's Stereoscopic monitoring in the Changjiang River Three Gorges. Proceedings (Ⅶ) of second Int. Conf. On Recent Advances in Geoeech. G-arthquake Enging. And Soil Rynamics, USA, 1991: 7-31
    
    
    [81]Kyoya T. et al. An Application of Damage Teusor for Estimating Mechanical Properties of Rock Mass. Proc. JSCE, 1985, 358(Ⅲ-3): 756-760
    [82]Kyoya T. et al. A Damage Mechanics Theory for Discontinuous Rock Mass. Proc. 5th Int. Conf. Num. Math. In Geomech., 1985, (1): 469-480
    [83]Marakami S., Ohno N. A Continuum Theony of creep and Creep damage. Proc. 3d IUTAM Symp. on Creep in Structures, Splinger-verlag, Berlin, 1980:422-429
    [84]李新平,朱瑞赓等.岩体损伤与地下工程稳定变形分析研究.围岩稳定控制方法新进展,武汉:湖北科学技术出版社,1992,86-92
    [85]于广明等.岩体采动沉陷的损伤效应.中国有色金属学报,1999,1
    [86]刘斌.巷道围岩非线性变形破坏机理及其控制方法.中国矿业,1996,5(2):48-50
    [87]盛建龙.节理岩体的损伤力学模型及有限元分析.岩土力学研究与工程实践,郑州:黄河水利出版社,1998.
    [88]曹文贵等.金川岩石力学研究方法的探讨.中国矿业,1997,6(4):42-46
    [89]马玉书,人工智能及其应用。石油大学出版社,1998
    [90]冯夏庭、王泳嘉,采矿工程智能系统,北京:冶金工业出版社,1994
    [91]张清等,铁路隧道围岩分类的专家系统,第二届全国岩石力学与工程学术会议论文集,北京:知识出版社,1989
    [92]冯夏庭、李兆权,应用专家系统进行程潮铁矿的进路支扩分区设计与优化,中国矿业,1995,4(1)38-42
    [93]夏元友,边坡工程集成或智能决策支持系统研究,北京科技大学博士论文,1997
    [94]云庆夏,陈永锋.采矿方法选择专家系统.金属矿山,1989,(5):3-7
    [95]宋振骥.顶板控制专家系统的研制,煤炭科学技术出版社,1989,(10):29-32
    [96]Zhang Q. The application of neural network to rock, mechanics and rock engineering. Int. J. Rock Mechi & Mii. Sci. Geomech, Abstr, 1991, 28(6):535-540
    [97]乔春生.岩石工程数值分析中选择岩体力学参数的神经元网络方法.岩石力学与工程学报,2000,19(1):64-67
    [98]周保生、朱继申.巷道围岩移近界的人工神经网络预测.岩石力学与工程学报,1999,18(增刊):1220-1222
    [99]韩凤山等.神经网络与锚杆支护.岩石力学与工程学报,1999,18(增刊):1129—1131
    [100]张玉祥.小波神经网络遗传算法及其在矿山压力预板中的应用.中国有色金属学报,1999,9(2):1-7
    [101]冯夏庭.地下采矿方法合理识别的人工神经网络模型.金属矿山,1994,(3):7-11
    
    
    [102] 盛建龙,应用多目标模糊决策法选择地下采矿方法.云南冶金,1996,25(4)
    [103] 姚番、周占魁.模糊数学优选采矿方法.黄金,1992,13(4):18—22
    [104] 唐绍辉.模糊综合评判法及其在岩体分类中的应用.矿业研究与开发,1994,14(2):4—9
    [105] 潘轺湘.时序分析预测在链子崖危岩体上的应用.第五届全国岩土力学数值分析与解析方法讨论会论文集,1994
    [106] Mitswhiro Nagao. Microfine Cement Vsod to Grout Decomposed Granite Foundation Rock of Konedaira Dam. ASCE Convention, 1985
    [107] 陈旭荣.对坝基帷幕岩体细裂水泥灌浆问题的探讨.工程岩体力学,武汉:武汉工业大学出版社,1998,540-545
    [108] 陈安敏等.预应力锚索对层状岩体的加固效应模拟试验研究.地下空间,1999,19(5):594—599
    [109] 龚晓南.21世纪岩土工程发展展望.岩石力学与工程学报,2000,22(2):238-242
    [110] 张济忠.分形.北京,清华大学出版社,1997
    [111] Mandelbrot B. B. The Fractal Geometry of Nature. WH Freeman, San Francisco, 1983
    [112] 谢和平,张水平.自仿射分形几何.自然杂志,1989,12(9):650—655
    [113] 曾文曲,刘世耀.分形几何——数学基础及其应用.沈阳;东北大学出版社,1991
    [114] 平建军.分形几何学在地震综合预板中的应用.分形理论及其应用,合肥:中国科学技术大学出版社,1993:397-401
    [115] 沈步明、常子文译.分数维.北京:地震出版社,1989
    [116] 林鸿溢、李映雪.分形论.北京:北京理工大学出版社,1992
    [117] 程钺.分形理论及应用(一).成都:四川大学出版社,1989,111—113
    [118] A. Pentland. Fractal-Based Description of Natural Scenes. IEEE Trans. PAMI. 1984,6(6):661-674
    [119] Prasad R.R. Sreenivasan K.R. The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows, phys. Fluids, 1990,2(5):792-807
    [120] 赵辉等.关于分形理论研究中若干基本问题的思考.分形理论及其应用,合肥:中国科学技术大学出版社,1993:5—8
    [121] Huang S. H. et al. Application of Fractal Characterization and Modeling to Rock Joint Profiles. Inter. J. 1992,29(2):89-98
    [122] Sakellariouu M. et al. On the Fractal Character of Rock Surfaces. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991,28(6):527-533
    
    
    [123] Chelidze T., Gueguen Y. Evidence of Fractal Fracture. Inter. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1990,27(3):223-225
    [124] 徐光黎.岩石结构面几何特征的分形与分维.水文地质与工程地质,1992,2:20-22
    [125] N. Barton. Review of A New Sheer Strength Oritention for Rock Joints. Engineering Geologh, 1973,7,287-332
    [126] N. Barton, V. Choubey. The Shear Strength of Rock Joint in Theory and Practice. Rock Mechanics, 1977, 10:1-85
    [127] James R. Carr and James B. Warriner Rock Mass Classificaion Using Fractal Dimension. 28th US Symp. On Rock Mech., Tucson, 1987.
    [128] N. Turk, M.J. Greig, W. R. Deaman and F. F. Amin, Characterization of Rock Joint Surfaces by Fractal Dimension. 28th US Symp. On Rock Mech., Tucson, 1987.
    [129] Kawamoto, T., et al. Elastoplastic Analysis by Cracked Triangular Element, Proc. Int. Conf. EE.M., Shanghai, 1982, 756-760
    [130] Kachanov, M. Contium Model of medium with Cracks, EM5, ASCE, 1980, 106:1039-1051
    [131] L.米勒.岩石力学.煤炭工业出版社,1981
    [132] 程潮铁矿岩体应力现场测试分析,中国科学院武汉岩土力学研究所,1989
    [133] 程潮铁矿东区围岩物理力学性质试验研究报告(分报告Ⅱ),中国科学院武汉岩土力学研究所,1998
    [134] 武钢程潮铁矿东区-288~-358m水平生产勘探报告,程潮铁矿,1991
    [135] 何水源等.关于岩体分级专家系统的几个问题探讨.重庆建筑大学学报,1998,20(4):14-16
    [136] 朱以文等.微机有限元前后处理系统 ViZiCAD 及其应用.北京:科学技术文献出版社,1993
    [137] 周思孟.复杂岩体若干岩石力学问题.北京:中国水利水电出版社,1998
    [138] 张有天,周维垣.岩石高边坡的变形与稳定.北京:中国水利水电出版社,1999
    [139] Sharma K G, Pande G N. Stability of rock masses reinforced by passive, fully-ground bolts. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1988,25:273-285
    [140] ChenS. H.,Pande G.N. Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1994,31:273-277
    [141] 张玉军等,三峡工程船闸高边破锚固方案的平面有限元计算.岩土工程学报,1997,19(1):70-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700