两种微型动物减量污泥的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市污水厂越来越多剩余污泥的产生,以及有关剩余污泥处理的立法和相关法规的严格化,处理大量剩余污泥的费用也越来越高。利用微型动物的捕食作用减量活性污泥,虽然减量程度有限,减量的稳定性有待加强,但由于能耗低,不产生二次污染,作为一种生态工程技术近年受到关注。
     本文建立了用特定系统中非固态碳增加速率来表征微型动物减量速率的方法,并通过连续运行活性污泥系统证明了此方法是可信的。
     本文在连续运行活性污泥系统中导入了曝气池中常见的寡毛纲环节动物门的红斑顠体虫和腹足纲淡水螺类的卷贝两种微型动物,考察了它们对污泥的减量效果:活性污泥产量与微型动物密度呈负相关。当红斑顠体虫密度超过50ind/ml,污泥产生量是没有虫子时的污泥量的20-30%;卷贝5ind/l左右时,污泥产生量是没有虫子时的污泥量的8-16%。并将摇瓶试验结果带入连续运行系统中进行了印证。
     进一步考察了两种微型动物对水处理效果的影响:一定密度下,红斑顠体虫和卷贝对出水中的COD、氨氮和总磷的影响不大;同时,红斑顠体虫的存在有利于污泥沉降性能的改善,卷贝对污泥沉降性能几乎没有影响。
     由于两种微型动物的加入,利用醌指纹法—基于新的多样性指标(DQ)和种的均匀性指标(EQ),考察了微型动物对活性污泥中的微生物群落的影响:试验期间内,两种微型动物对活性污泥中微生物多样性及微生物种的均匀性没有明显影响;同时对醌指纹法应用高效液相色谱仪时的实验条件进行初步探讨。
with the more and more excess sludge and the environmental and legislative requirements ,the cost of excess sludge disposal becomes higher and higher. New technologies for excess sludge reduction are thus in a urgent need. As one of ecological approaches, reduction of excess sludge through predation of micro faunal has been paid more and more attention since it requires a little energy and brings no second pollution.
    In this thesis, the performance of sludge reduction in a conventional activated sludge process where Aeolosoma hempfichicii (one species of oligochaeta) and physa acuta(one species of gastropoda) were induced as the two of micro faunal ,whose effects on the sludge reduction ,at the same time,were investigated. The sludge yield was experimentally found to be in a negative correlation to the density of Aeolosoma hempfichicii and physa in the activated sludge reactor. In the running activated sludge system, when the density of Aeolosoma hempfichicii was up 50 ind/ml, the sludge reduction by Aeolosoma hempfichicii was 20-30%;whereas when physa was about 5ind/l, the sludge reduction was 8-16%.
    More experiments showed that the two of micro faunal have no side-effects on wastewater disposal in given density of the micro faunal. The existence of Aeolosoma hempfichicii and physa did not affect COD, NH4+-N and P removals in the process. Aeolosoma hempfichicii could improve but physa was independent of the sludge settlement.
    The method of quinone profiles, since the two of micro faunal were induced in a activated sludge reactor, was used to evaluate the changes in microbial diversity based on the new diversity index of the respiratory quinines(DQ)and an index of equitability of the distribution of quinine species(EQ),and the changes in the microbial community were analyzed .The results indicated microbial diversity and equitability of the distribution of
    
    
    microbial species were not both changed obviously in response to the two of micro faunal. Moreover, the HPLC' s experimental conditions were briefly discussed.
引文
[1] Low E.U. and Chase H. A.Reducing production of excess biomass during wastewater treatment. Wat. Res, 1999, 33(5): 1119-1132.
    [2] 鲍宪枝,佐洁,周向争,周彤。 大旱后对城市缺水的思考。 给水排水,2001,27(3):16-18。
    [3] 梁鹏、黄霞、钱易。污泥减量化技术的研究进展。环境污染治理与设备。2003,4(1):44
    [4] 魏源送,樊耀波.污泥减量技术的研究及其应用.中国给水排水.2001,17(7):23-26.
    [5] J.R.Quayle al.,MicrobialBiochemistry.England.:UniversityPark Press, 1979.40-42
    [6] Low.E.U., Chase H.A.,Milner M.G.and Curtis T.P.Uncoupling of metebolism to reduce biomass production in the activated sludge process .Wat.Res.2000,34(12): 3204-3212
    [7] Liu yu.Effect of chemical uncoupler on the observed growth yiled in batch culture of activated sludge.Wat.Res.2000,34(7):2025-2030.
    [8] Stuart S.E.,Greg H.N.,Stensel H.D.Activated-sludge yield reduction using chemical uncouplers.Water Environment Research. 1999,71(4):454-458
    [9] Russell J.B.and Cook G.M.Energetics of bacterial growth:balance of anabolic and catabolic catabolic reaction .Microbiological Reviews. 1995,59(1):48-60
    [10] Low.E.U., Chase H.A.The use of chemical uncouplers for reducing biomass prodction during biodegradation.Wat.Sci.Tech. 1998,37(4-5):399-402
    [11] Skulachev V.P.Uncoupling:new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta. 1998,1363 : 100-124
    [12] Chang J.Chudoba P.and Capdeville B.Determination of the maintenance requirements of activated sludge.Wat.Sci.Tech. 1993,28(7): 139-142.
    [13] Cook G.M.and Russell J.B.Energy-spilling Reactions of atreptococcus bivis and resistance of its membrane to proton conductance.Applied and Environmental Microbiology. 1994,60(6): 1942-1948.
    [14] Abbassi B.Dullstein s.and Rabiger N.Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs:experimental and theoretical approach.Wat.Res.2000,34(1): 139-146.
    [15] Chudoba P.Chudoba J.and Capdeville B.The aspect of energetic uncoupling of microbial growth in the activated sludge process-OSA system.Wat.Sci.Tech. 1992,26(9-10):2477-2480.
    
    
    [16] Chen G.,H.Saby s.,Djafer M.and Mo H.K.New approaches to minimize excess sludge in activated sludge systems.Wat.Sci.Tech.,2001,44(10) :203-208.
    [17] Mayhew M. and Stephenson T.Low biomass yield activated sludge:a reciew. Eneironmental technology, 1997,18:883-892.
    [18] Strachan L.F.,Freitas dos Santos L.M.,Leak D.J.and Livingston A.G.Minimisation of biomass in an extractive membrane bioreaetor. Wat.Sci.Tech. 1996,34(5-6):273-280
    [19] Hamoda M.F. and Al-attar I.M.S.Effeets of high sodium chloride concentrations on activated sludge treatment. Wat.Sci.Tech. 1995,31 (9):61-72.
    [20] Abbassi B.,Dullstein S.and Rabiger N.Minimization of excess sludge production by increse of oxgen concentration in activated sludge floes:experimental and theroetical approach.Wat.Res.,2000,34(1): 139-146.
    [21] Mark C.M.,Loosdrecht V.and Henze M.Maintenance,endogeneous respiration,lysis, decay and predation. Wat.Sci.Teeh. 1999,39(1): 107-117
    [22] Salvado H.,Gracia M.P.and Amigo J.M.Capability of eiliated protozoa as indicators of effluent quality in activated sludge plants. Wat.Res. 1995,29(4): 1041-1050.
    [23] Ratsak C.H.,Maarsen K.A.and Kooijman S.A.L.M.Effects of protozoa on carbon mineralization in activated sludge. Wat.Res. 1996,30(1): 1-12.
    [24] 李探微 彭永臻 朱晓.活性污泥中原生动物的特征和作用.给水排水,2001,27(4):
    [25] 金成清.原生动物在反应器中的增长速率与功能.沈阳建筑工程学院学报.1996,12(4):464—468.
    [26] Inamori Y.,Ouchiyama T.,Sugiura N.and Sudo R..Decomposition and removal of musty odor producing phormidium tenue by bacteria and smaller animals. Wat.Sei. Tech., 1990,23:991-999.
    [27] Lee N.M.and Welander T..Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment.Biotechnology Letters, 1996,18(4):429-434.
    [28] 沈韫芬,章宗涉,龚循矩,等.微型生物监测新技术.北京:中国建筑工业出版社,1990.72.
    [29] Curds C.R..The ecology and role of protozoa in aerobic sewage treatment process.Ann.Rev.Microbiol, 1982,36:27-46.
    [30] Madoni P..Microfauna biomass in activated sludge and biofilm. Wat.Sci. Tech., 1994,29(7):63-66.
    [31] Madoni P.and Ghetti P.F..The structure of ciliate protozoa communities in biological swage-treatment plants.Hydrobiologia, 1981,83:207-215.
    [32] Ratsak,C.H.et al.Biomass reduction and mineralization increase due to the ciliate Tetrahymena
    
    pyriformis grazing on the bacterium Pseudomonas fluorecens[J].Wat.Sci.Tech., 1994,29: 119-128.
    [33] 周群英,高廷耀。环境工程微生物学。北京。高等教育出版社,2002:58
    [34] Stemberger R.S.and Gilbert J.J..Body size,food concentration,and population growth in planktonic rotifers.Ecology,1985,66(4): 1151-1159.
    [35] Woombs M.and Johanna L.P..The role of nematodes in low rate percolating filter sewage treatment works.Wat.Res., 1986,20(6):781-787.
    [36] Michael H.G.An operator's guide to rotifers and wastewater treatment process.Public Works, 1987,12:66-67.
    [37] Michael H.G.An operator's guide to free-living nematodes in wastewater treatment. Public Works, 1987,12:47-48.
    [38] Rensink J.H.,Rulkens W.H..Using metazoa to reduce sludge production. Wat.Sci. Tech., 1997,36(11): 171-179.
    [39] Ratsak C.H.,Koouman S.A.L.M.,Kooi B.W..Modelling the growth of an oligochaete on activated sludge. Wat.Res., 1993,27(5):739-747.
    [40] 杨万发。废水处理功能生物诊断技术。台湾:经济部工业局,1985.175-177
    [41] 俞庭康,杨健.城镇污水处理最佳实用技术新进展.环境污染治理技术与设备,2000,1(5):54-60.
    [42] 吉方英,罗固源,周健,刘鸿霞.蚯蚓与污水土地处理试验研究.重庆环境科学,1998,20(4):12-27.
    [43] Sambanis A.and Fredrickson A.G..Effect of addition of wall growth to a model of ciliate-bacterial interactions.Biotechnology and Bioengineering,1989,34: 875-881.
    [44] Sambanis A.Pavlou S.and Fredrickson A.G..Coexistence of bacteria and feeding ciliates:growth of bacteria on autochthonous substrates as a stabilizing factor for coexistence.Biotechnology and Bioengineering, 1987,31:714-728.
    [45] Ghyoot W.and Verstraete W..Reduced sludge production in a two-stage membrane-assisted bioreactor.Wat.Res., 1999,34(1):205-215.
    [46] 翟小蔚,潘涛,Ghoot W.and Verstraete W.利用原生动物削减剩余活性污泥产量.中国给水排水,2000.16(11):6-9.
    [47] 国家环保局《水和废水监测分析方法》编委会(1989)水和废水监测分析方法:北京:中国环境科学出版社,第三版。
    [48] 胡洪营,童中华。微生物醌指纹法在环境微生物群体组成研究中的应用。微生物学通报。 2002,29(4):95-98
    
    
    [49] HONG-YING HU,Byung-Ran Lim,Naohiro Goto, Koich Fujie.Analytical precision and repeatability of respiratory quinines for quantitative study of microbial community structure in environmental samples.Journal Of Microbiological Methods. 1506(2001)
    [50] 北村博主编。光合细菌,日本东京:学会出版中心,1994.287~288.
    [51] Hiraishi A.J Gen Appl Microbiol, 1988,34:39-56
    [52] Hu H Y, Fujie K,Tanaka H,et al.Wat Sci Tech,1997,35:103-110
    [53] Hu H Y, Fujie K,Nakagome H,et al.Water Reserch ,1999,33(15):3263-3270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700