地铁下穿既有线施工扰动变形控制关键技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善我国城市地面交通拥挤状况,发展地铁交通成为我国许多城市解决交通问题的主要战略决策。在城市地铁网的建设过程中,不可避免地会出现新建地铁或市政管线等穿越运营地铁线路的问题,此外,地铁工程具有施工条件复杂、开挖跨度大、临时支撑和工法转换频繁、时空效应显著等特点,因此,城市地铁近距离穿越既有线是一项难度高、技术复杂、安全风险大的工程。随着城市地铁网建设规模的不断扩大,在地铁施工过程中,地下结构以及地表环境对象的安全问题不仅不可避免,而且在数量上会越来越多,因此,地下工程近距离穿越既有线施工时采取适当的施工方法和辅助工法最大限度地减少对既有线的不利影响,确保线路的运营和结构的安全,是目前十分重要而亟待解决的技术难题。
     本文以北京地铁十号线下穿地铁一号线近距离施工为工程与研究背景,采用现场调查、室内试验、数值模拟、理论分析与现场监测相结合的综合集成研究方法,对城市地铁近距离下穿既有线施工扰动变形控制关键技术及其应用进行了系统研究。得出如下主要结论:
     (1)基于对现场工程条件和技术难点的分析,提出了以控制既有结构变形为基准的合理化施工技术方案。即紧密结合工程实际,首次提出以减小施工扰动效应、控制既有结构的扰动变形为核心,先采用袖阀管注浆技术,构筑密贴既有线的门式止浆墙结构进行地层加固,起到隔水防渗和力学支撑的双重效果;然后,在上述结构保护下,进行门式断面内分区、分步超前掘进、台阶式下行法开挖与支护,并与现场实时监测相结合,不断修正与完善施工参数,进行信息化施工。
     (2)应用有限差分FLAC3D数值计算软件,构建了地铁隧道近邻施工的地层-结构三维计算模型,考虑时间-空间-工法,对地铁十号线下穿一号线的整个施工工序,包括矩形断面内分区开挖、掘进断面内短段掘进、台阶式下行法施工及开挖后及时支护等,进行了可视化的力学响应优化分析,此外,对进行袖阀管注浆构筑门式支撑加固结构所起的作用、掘进断面超前注浆和进行锁脚锚管支护等工艺也进行了施工力学响应效果分析,对指导工程实践,及时采取有效工程对策,控制扰动变形有十分重要的意义。
     (3)考虑灰色预测模型与双曲线预测模型在预测路基沉降变形方面存在缺陷,基于上述两类预测模型,采用误差绝对值加权和最小的准则,借助MATLAB软件计算加权平均数,结合现场大量实测数据,创建了新的加权组合模型,不仅对上述模型的缺陷进行了弥补,提高了预测精度,而且为既有线路基沉降变形预测提供了可靠的理论依据,同时,也为路基沉降变形预测提供了新的思路和方法。
     通过实施上述技术方案,既有线的南线道床和北线道床实测的变形曲线趋于收敛,最终沉降变形预测值满足工程要求。工程实践表明,基于上述研究成果,地铁十号线下穿一号线施工,取得了良好的技术效益和社会效益,对类似工程实践具有理论指导意义和工程实用价值。
In order to improve the worst traffic condition of the cities in our country, developing the subway is a major strategic decision to solve traffic problems in large cities. Duing the subway construction, it unavoidably happens that some newly built subway lines or the municipal pipelines will pass through an existing subway line. Besides, metro construction is always of the complicated construction conditions, large span, temporary support, frequent construction methods exchange, and obvious excavation time-space effects . Consequently, the subway construction crossing an existing subway line at close range is a project which is a very difficult and complex technology, with a lot of risks. In the construction of the metro, these safety problems which cover a wide range of underground structure, many surface objects and surroundings, are not only inevitable , but also increasing . Consequently, some construction methods and auxiliary methods for minimizing the bad effect on existing lines to large extent ,should be adopted at present in underground construction crossing existing subway lines at close range, and it is a very important technical problem to be solved immediately.
     Based on the background of the No.10 line crossing the existing No.1 line of Beijing metro at close range, the key technology and its application in deformantion control for underground construction crossing existing subway lines at close range are studied by combunation of field investigation, lab tests, numerical simulation, theoretical analysis and field monitoring. The main conclusion of the present study are as follows:
     1. On the basis of engineering geological conditions and the technical difficulties, the reasonable technology schemes subjecting to the deformanon control are put forward. namely in view of actual project, the author first put forward the comprehensive measures to reduce the disturbance effect centering on the deformation of the existing subway, firstly construct ing the gate type wall for grouting using sleevet-grouting technique, which has good strata strengthening and antiwater effect. And then, the construction methods such as from top-to-bottom bench excavation in cross-section, pilot heading advanced excavation and supporting along the longitudinal section are conducted under the protection of the gate type wall, and the measured data from monitoring were applied to confirm design assumption and optimize construction schemes.
     2. A 3-D calculation lmodel of considering stratum-structure was built by using FLAC3D , the visual numerical simulation analysis of the construction process of the underground engineering crossing existing subway lines at close range is studied considering the time-space-construction, including from top-to-bottom bench excavation in cross-section, pilot heading advanced excavation and supporting along the longitudinal section. Besides, the deformation and stress characteristics of the gate type wall for grouting using sleevet-grouting technique, and the auxiliary measures of pre-grouting for the excavation section, and foot bolts with pre-grouting, are analysed. The above results have important theoretical meaning for guiding the practice of grouting and supporting of tunnels to meet the requirements and control deformation of the existing tunnels structures.
     3. In view of the deficiencies existing in the double-curve model and grey model, based on them, a new combined weighting model of the subsidence for the excavation tunnel crossing below the existing subway line is built on the condition of the minimal absolute values of errors, in which the weighting average is calculated with MATLAB. The engineering measurement results show that the predictive error with combined weighting model is reduced, and the satisfactory results are obtained. A new method for predicting subsidence deformation of the subgrade is provided.
     By implementing these above technical schemes, the subsidence deformation curves of the north line and the south line subgrade in existing subway line are gradually convergent, and the ultimate subsidence deformation can meet the requirements control deformation of the existing tunnels structures. Engineering practice shows that the construction of No.10 line crossing the existing No.1 line of Beijing metro at close range is successful, and the good technological social benefits are obtained, and it is of important theoretical meaning to guide the practice in the similar engineering.
引文
[1]何兴江,苗国航,陈仁俊.浅谈北京市地下空间的开发与利用[J].地质与勘探, 2005,41(5): 96-98.
    [2]叶四桥,陈洪凯.地下空间开发利用中的几个环境[J].地下空间, 2002, 22 (2):168-171.
    [3]王璇,束昱.城市的可持续发展与地下空间开利用[J].地下空间, 1997, 17 (3) : 154-161.
    [4]郭庆军,赛云秀,关继发.我国城市地铁可持续发展分析[J].交通企业管理, 2008,(3):59-60.
    [5]王梦恕. 21世纪是隧道及地下空间大发展的年代[J].西部探矿工程, 2000, 11 (1): 7-8.
    [6]朱胜利,王文斌,刘维宁,等.地铁工程施工的安全风险管理[J].都市快轨交通, 2008 ,21 (1):56-60.
    [7]张成平,张顶立,王梦恕.浅埋暗挖隧道施工引起的地表塌陷分析及其控制[J].岩石力学与工程学报, 2007,26 (增2): 3601-3608.
    [8]吴波著.城市地下工程技术研究与实践[M].北京:中国铁道出版社, 2008,28 ,(3):59-60.
    [9]周健,吴世明,徐建平.环境与岩土工程[M].北京:中国建筑工业出版社, 2002.
    [10]罗国煜,李晓昭,张春华.南京地质环境的基本特征和几个主要环境岩土工程问题[J].高校地质学报,1998,4 ( 2) : 190-192.
    [11]蒋建平,章扬松,罗国煜,李晓昭.南京地铁地基下稳定性因素分析及对策[J] .地下空间, 2002, 22 (1) :42-44.
    [12]宋克志,王梦恕.隧道地层变位的可靠性分析[J].中国安全科学学报, 2004, l4(6): 82-86
    [13]段光杰.地铁隧道施工扰动对地表沉降和管线变形影响的理论和方法研究[D].北京:中国地质大学, 2002.
    [14]殷险峰.城市地铁与地下空间设计施工方法及效率探讨[J].铁道运输与经济, 2006,28(8):4-7.
    [15]王东杰,高文学.城市地铁隧道常用施工方法概述[J].建筑技术开发, 2005(8):96-99.
    [16]李围, ,何川.地铁车站施工方法综述[J].西部探矿工程, 2004(7):109-112. [17 ]关宝树.隧道工程施工要点集[M] .北京:人民交通出版社, 2003. [18 ]刘建航,侯学渊.盾构隧道[M] .北京:中国铁道出版社, 1991. [19 ]施仲衡.地下铁道设计与施工[M].西安:西安科学技术出版社, 1997.
    [20]吴波,刘维宁,索晓明,等.地铁施工近邻桥基加固效果三维数值分析[J].铁道工程学报, 2005, 89(5):48-52.
    [21]邹正盛,章银祥,关继发,等.北京大北窑地铁隧道粉细砂层顶板注浆加固研究[J].中国地质灾害与防治学报, 1998, 9(4): 65-69
    [22]张传安,王启东.地层加固技术在北京地铁施工中的应用[J].西部探矿工程, 1999, 11(3): 121-123
    [23]张景秀.坝基防渗与灌浆技术[M].北京:中国水利水电出版社. 2002.8
    [24] Rojo J. L., Novillo A., Alocen J. R.. Soil freezing for the Valencia underground railway work[A]. Ground Freezing 91[C]. Rouerdam Balkema ,1991.
    [25]路清泉,李孝荣.盾构工法的出洞技术浅谈[J].西部探矿工程, 2003, 90(11): 96-99.
    [26]陈卫军,朱忠隆.近距离交叠隧道研究现状及评析[J].现代隧道技术, 2002,39 (1): 42-47.
    [27] Muir W. A . M. The circular tunnel in elastic ground[J]. Geotechnique, 1975, 25(1): 115-127.
    [28] Peck J., Scoble M. J.,Carter M. Interpretation of drilling parameters for ground characterization in exploration and development of quarries[J]. Transactions of the Institution of Mining and Metallurgy (Series B), 1987, 96: 141-148.
    [29] Sagaseta C. Discussion to Verruijt[J]. Geotechnique, 1998, 48(5): 709-713.
    [30] Verruijt A., Booker J. R.. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique, 1996, 46(4): 753-756.
    [31] Peck R. B., Hanson W. E., Thornburn T. H. Foundation engineering[M]. 2nd ed. New York: John Wiley and Sons, 1974.
    [32]张志勇.盾构施工对周围环境影响研究综述[J].现代隧道技术, 2002, 39(2): 7-11.
    [33]袁建议,周顺华,宫全美.下穿铁路的盾构隧道管片衬砌内力计算法研究[J].地下空间与工程学报, 2008, 4(2): 290-294.
    [34] Lee K M, Rowe R K. An analysis of three-dimensional ground movements: the Thunder Bay tunnel[J]. Canadian Geotechnical Journal, 1991, 28: 25-41.
    [35] Soliman E., Duddeck H., Ahrens H.. Two-and threedimensional analysis of closely spaced double-tube tunnels[J]. Tunneling and Underground Space Technology, 1993, 8(1):13-18.
    [36] Yamaguchi I, Yamazaki I, and Kiritani Y. Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels[J]. Tunnelling and Underground Space technology, 1998, 13: 289-304.
    [37]李围,何川,等.南京地铁区间隧道盾构法施工关键技术研究-区间盾构隧道下穿玄武湖公路隧道施工研究报告[R].成都:西南交通大学,2002.
    [38]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报, 2002,22(4):379-385.
    [39]孙钧.地下工程设计理论与实践[M] .上海:上海科学技术出版社, 1996 :121-133. [40 ]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析[J ].岩石力学与工程学,1999,18(5) :558-562.
    [41]徐林生,孙钧,蒋树屏.洋碰隧道CRD工法施工过程的动态仿真数值模拟研究[J].地质灾害与环境保护, 2001 ,12(1) :58-62.
    [42]刘洪洲.盾构施工对软土地层沉降影响综述[J] .公路隧道,2001, (3):5-10.
    [43]刘洪洲,孙钧.软土隧道盾构推进中地面沉降影响因素的数值法研究[J].现代隧道技术, 2001,(6):24-28.
    [44]俞鑫风,王健.地铁隧道近接施工相互影响研究现状及其思考[J].北京建筑工程学院学报, 2008,24(3):30-34.
    [45] Lin, D., and C. Fairhurst. Static Analysis of the Stability of Three-Dimensional Blocky Systems around Excavations in Rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1988, 25(3), 138~147
    [46] Lorig, L. J., and P. A. Cundall. Modeling of Reinforced Concrete Using the Distinct Element Method, in Fracture of Concrete and Rock, 1987, 459-471.
    [47] Starfield, A. M., and P. A. Cundall. Towards a Methodology for Rock Mechanics modelling, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1988 ,25, 99~106
    [48] Alonso, E.E., A. Gens, I. Carol, P. Prat and E. Herero.. Three-dimensionl failure mechanisms in arch dam abutments-A safety study. In: Proc. 18th ICOLD Congress, 1994,471~484
    [49] Cundall, P. A. Distinct Element Models of Rock and Soil Structure, in Analytical and Computational Methods in Engineering Rock Mechanics, London: George Allen and Unwin, 1987, 4: 129~163
    [50] Wood, D. M. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press,1990
    [51] Damjanac, B. A Three-dimensional Numerical Model of Water Flow in a Fractured Rock Mass. Ph.D. Thesis, University of Minnesota, June, 1996
    [52] Lo K. W., Chong L. K., Leung L. F., et al. Field instrumentation of a multiple tunnels interaction problem[J]. Tunnels and Tunnelling, 1998, 18: 4-16.
    [53]张杰,骆建军,吴波.地铁区间三连拱隧道施工地表沉降的数值模拟及模型试验研究[J].隧道建设. 2005, 25(2): 3-6.
    [54]于宁,朱合华.盾构施工仿真及其相邻影响的数值分析[J].岩土力学, 2004, 2(25): 51-55.
    [55]张云,殷宗泽.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报, 2002, 2l(3): 388-392.
    [56]王敏强,陈盛宏.盾构推进隧道结构三维非线形有限元仿真[J].岩石力学与工程学报, 2002, 2l(2): 228-232.
    [57]张玉军,熊传义.拟建武汉地铁盾构法施工的有限元数值模拟[J].岩石力学与工程学报, 2001, 20(1):51-55.
    [58]张志勇.盾构施工对周围环境影响研究综述[J].现代隧道技术, 2002, 39(2): 7-11.
    [59]陈卫军,朱忠隆.近距离交叠隧道研究现状及评析[J].现代隧道技术, 2002, 39 (1):42-46.
    [60] Balendra T, Koh C G, Ho Y C. Dynamic response of buildings due to tains in underground tunnel[J]. Earthquake Engineering and Structural Dynamics, 1991, 20: 275-291.
    [61]张玉鹅,白宝鸿.地铁区间隧道列车振动响应测试与数值分析[J].石家庄铁道学院学报, 1993, 6 (2): 7-14.
    [62]张民庆,黄平先,常记春,等.袖阀管注浆工法在国内工程施工中的应用[J].探矿工程, 1999, (5):19-21.
    [63]杨米加,陈明雄,贺永年.注浆理论的研究现状及发展方向[J].岩石力学与工程学报, 2001, 20 (6): 839-841.
    [64]晏启祥,何川,姚勇,等.小净距隧道施工小导管注浆效果的数值模拟分析[J].岩土力学, 2004, 25(Supp. 2): 239-242.
    [65]杜嘉鸿.国外化学注浆教程[M ].北京:水利电力出版社, 1987.
    [66]张民庆.城市地下工程采用C-S双液浆注浆导致地面隆起效应研究[M].北京:中国科学技术出版社, 2001.
    [67]张民庆,黄平先,常记春.袖阀管注浆工法在国内工程施工中的应用[J].探矿工程(岩土钻掘工程), 1999.
    [68]刘军,张飞进,高文学,等.远程自动连续监测系统在复杂地铁工程中的应用[J] .中国铁道科学, 2007, 28 (3) :140-144.
    [69] Takagi N, Shimamura K, Nishio N. Buried Pipe Response to Adjacent Ground Movements Associated with Tunne-ling and Excavations[A]. Ground Movements and Structures Proceedings of the 3rd International Conference[C]. London: Pentech Press, 1985: 97-112.
    [70]李强,王明年,李德才,等.地铁车站暗挖隧道旌工对既有桩基的影响[J].岩石力学与工程学报, 2006, 25(1):184-190.
    [71]夏才初,潘国荣.土木工程监测技术[M] .北京:中国建筑工业出版社, 2001.
    [72]安关峰,宋二祥.广州地铁琶州塔站及站后折返线工程基坑监测分析[J].岩土工程学报, 2005, 27(3): 333-337.
    [73]蒋正华,吴波,高波.地铁区间隧道施工对管线影响的数值模拟[J].现代隧道技术, 2003, 40(1) : 16-20.
    [74]刘宝琛.急待深入研究的地铁建设中的岩土力学课题[J].铁道建筑技术, 2000, 20(3): 1-3
    [75]曾超,唐仲华.灰色模型(GM)在软土路基沉降量预测中的应用研究[J].勘察科学技术, 2002, 9(1): 17-19
    [76]谭昌明,黄绍槟.软土地基沉降的二维非线性粘弹性反演与预测[J].岩石力学与工程学报, 2002, 23(1): 67-71
    [77]汪祖民,张兄武.高速公路非等步长变形监测分析与预报[J].勘察科学技术, 2003, (4): 26-28
    [78]公路软基路堤设计与施工技术规范JTJ017-96 [S].北京:人民交通出版社
    [79]傅文.灰色系统理论及其应用[M].北京:科学技术文献出版社, 1992
    [80]唐纪,王景.组合预测方法评述[J].预测,1999,18(2):42-43
    [81]张志涌。精通MATLAB[M].北京:北京航空航天大学出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700