土壤中方铁锰矿生物形成机制及细菌氧化Mn(Ⅱ)的微量热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Formation Mechanisms of Biogenic Bixbyi TE in Soils and Microcalorimetry Study on Mn(Ⅱ) Oxidizing by Bacteria
  • 作者:赵昌松
  • 论文级别:博士
  • 学科专业名称:土壤学
  • 学位年度:2014
  • 导师:刘凡
  • 学科代码:090301
  • 学位授予单位:华中农业大学
  • 论文提交日期:2014-06-01
摘要
锰氧化物在环境中广泛存在,反应活性强,对有机物质降解及污染元素的迁移转化起着非常重要的作用。微生物强烈影响着锰氧化物的形成与转化。目前有关锰氧化物生物形成的研究主要以海相锰矿物为对象,用于研究锰氧化物生物形成的微生物也多来自海相和湖相系统,且陆相表生土壤中锰氧化物的形成比海相和湖相系统复杂得多;从微生物生长的热量变化角度探讨锰细菌氧化Mn(Ⅱ)功能的生物学意义的研究尚未报道。本研究综合运用微生物学、分子生物学、微量热和同步辐射等的理论与技术,从我国4种地带性土壤和结核中筛选锰氧化细菌,探讨了生物氧化锰的形成,并对生物形成的锰氧化物进行了表征和分析;应用基因突变和微量热技术研究了锰氧化物生物形成过程中细菌生长及热量释放特点,通过锰氧化菌催化形成生物氧化锰过程中的生长特点和能量利用效率的关系,探讨了锰细菌具有氧化功能的生物学意义。主要结果如下:
     1.从我国4种地带性土壤中分离到具有较高锰氧化活性的细菌共30株。其中棕壤分离得到20株、黄褐土和黄棕壤分别得到3和2株、红壤分离得到5株。通过对锰氧化菌16SrDNA序列分析和比对可知,30个菌株属于2个发育群,3个门,5个属,11个物种,其中厚壁菌门(G+)有19株,变形菌门(G-)10株,黄杆菌门1株(G-)。通过复筛实验得到变形菌门大肠杆菌属的一株高氧化活性菌MB266,作为生物氧化锰形成菌株进行深入研究。
     2.MB266在含1mM Mn(Ⅱ)的Leptothrix培养基中生长5天,培养体系中生物氧化锰浓度达0.047mM,相当于4.7%的Mn(Ⅱ)被氧化。对冷冻干燥处理后的培养物进行X射线衍射图谱、透射电镜图谱及电子衍射分析,结果显示生物形成的锰氧化物与方铁锰矿Mn2O3(JCPDS00-002-0896)的特征峰吻合,但本实验所得生物氧化锰衍射峰强度较低,且峰形严重宽化。光电子能谱(XPS)和X射线吸收光谱(XANES)拟合结果显示所得的产物平均氧化度分别为2.76和2.61,这表明本实验得到的生物锰氧化物是弱晶质的三氧化二锰矿物。
     3.对培养不同时间形成的生物氧化锰进行XPS和XANES拟合,实验中生物氧化锰的形成过程可能是:Mn(Ⅱ)在酶的催化氧化下生成Mn(Ⅲ),部分Mn(Ⅲ)直接沉淀;另外一部分Mn(Ⅲ)与有机物螯合成可溶的复合体,进一步被酶氧化到Mn(Ⅳ),所得的Mn(Ⅳ)氧化物还可以被Mn(Ⅱ)还原,在菌体表面继续生成Mn(Ⅲ)氧化物。
     4.利用基因突变方法构建了失去锰氧化活性的MB266的突变株MB32,MB98,应用微量热技术,检测了MB266与突变菌株在Leptothrix培养基和含1mM Mn(Ⅱ)的Leptothrix培养基中的生长及热量释放特点,结合Mn(Ⅱ)的氧化量与微生物的生物量,探讨了锰氧化菌的生长特性和能量利用效能。结果表明:野生型菌株由于能够将Mn(Ⅱ)氧化为锰氧化物,降低了Mn(Ⅱ)对菌株的毒害作用,其生物量显著高于突变株;与此同时,Mn(Ⅱ)对野生菌株毒害作用下降,降低了菌株修复细胞内损伤的能量需要,从而降低了细胞的代谢强度,其热量释放显著小于突变株。通过对与Mn(Ⅱ)化学氧化释放的热量与系统释放总热量的比较表明,锰氧化菌在生长过程中主要利用了有机底物分解的能量进行生长,Mn(Ⅱ)氧化过程中释放的热量对锰氧化细菌生长的贡献很小。本实验所检测的锰氧化菌MB266多铜氧化酶基因并非唯一的催化Mn(Ⅱ)氧化的因子,细菌中还存在有其它未知的氧化因子。
Manganese oxides are widely distributed in natural environments, and possess high reactive activity, and thus play a key role in the degradation of organic matters, migration and transformation of contamination elements. Environmental microbiologies strongly influence the formation and microbial transformation of manganese oxide minerals. Current studies are mainly focused on manganese oxides formed in marine conditions and mic obial organisms in marine and lacustrine systems which are involved in the formation of biogenic Mn oxides. However the formation mechanisms of continental Mn oxides in soil nodule sediments are much more complex than those of marine and lacustrine systems; Base on the thermodynamics analysis, there was few research on the physiological relevance of Mn(Ⅱ) oxidation by manganese-oxidizing bacteria. In this study, manganese-oxidizing bacteria were screened from four kinds of zonal soils and nodules in China, and then multiple modern techniques including microbiology, molecular biology, microcalorimetry and synchrotron radiation techniques were used to explore the appropriate conditions for the formation of biogenic manganese oxides, and to characterize and analysis the structures and properties of as-obtained these oxides; further the characteristics of the growth of bacteria involved and heat equilibrium during the biogenic oxidation of Mn(Ⅱ) were investigated by mutation and microcalorimetry techniques, aiming to discover the biological role of biogenic Mn(Ⅱ) oxidation during these processes. The main results are as follows:
     1.30strains with high Mn(Ⅱ) oxidizing activity were isolated from four kinds of zonal soils,20trains of which were screend from the brunisolic soil,3strains were from cinnamon soil,2strains were from yellow brown soil,5strains were from drab soil. Analysis and comparisons of16S rDNA sequences of these manganese-oxidizing bacteria showed that,30strains belonged to2development groups,3phylums,5genera and11species, of which19Firmicutes (G+),10Proteobacteria (G-), and1Flavobacterium (G-). Proteobacteria Escherichia MB266, which had the hightest oxidation acitvity was selected to conduct further studies.
     2. When MB266was cultivated for5days at Leptothrix medium containing1mM Mn(Ⅱ), the concentration of biogenic Mn oxide was0.047mM, suggesting that4.7%of the initial Mn(Ⅱ) was oxidized. The products were then cleaned and freez-dried for further analysis. Powder X-ray diffraction, transmission electron microscopy and electron diffraction pattern analysis demonstrated that the biogenic Mn oxide was bixbyite (JCPDS02-0896), with poor crystallinity evienced by the low intensities of the broad diffraction peaks in the powder XRD pattern. Mn average oxidation state (Mn AOS) of the biogenic Mn oxides determined by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XANES) s are2.76and2.61respectively. This further confirmed that the obtained Mn oxide was bixbyite with poor crystallinity.
     3. XPS and XANES analysis of the biogenic Mn oxides cultivated for different times were conducted. Based on these results two possible mechanisms for Mn(Ⅱ) biogenic oxidation can be proposed. Firstly, Mn(Ⅱ) was catalytically oxidized by enzymes to Mn(Ⅲ), part of which was then precipitated as bixbyite; Secondly, the other part of Mn(Ⅲ) was complexed by organic ligands and then further oxidized by enzymes to Mn(Ⅳ). Conproportionation of Mn(Ⅳ) and Mn(Ⅱ) then might result in Mn(Ⅲ) on the mineral surfaces.
     4. Two gene mutant strains, MB32and MB98, were constructed by gene mutation. The growth characteristics and the energy release during culture process were monitored by microcalorimetry when these bacteria were cultured in Leptothrix medium or1mM Mn(II)-amended medium. By combining the amounts of Mn(Ⅱ) oxidized and microbial biomass, the growth characteristics and energy consuming efficiency were discussed. It demonstrated that, in the absence of Mn(Ⅱ), the growth characteristics of wild strain and mutant strains suffered neglectible change, so did energy efficiency. While in the presence of Mn(Ⅱ), the biomass of the wild-type strain was much higher than that of the mutants by oxidizing Mn(Ⅱ) to manganese oxides to decrease the toxic effect of Mn(Ⅱ). As a result, the intracellular damage repair was no longer indispensable for the wild type, which reduced the intensities of metabolisms and energy release. By comparison of the heat directly released by Mn(Ⅱ) oxidation and the total heat release, it showed that Mn(Ⅱ)-oxidizing bacteria mainly consumed the energy from the decomposition of the organic matters, and the heat released during Mn(Ⅱ) oxidation contributed little. In this experiment, the multi-copper oxidase gene was not the unique way for catalyzing Mn(Ⅱ)-oxidation, there should be other unknown factors.
引文
1.陈建林,林承毅,史君贤,沈华悌,王基庆,马维林.太平洋中国开辟区锰结核生物成因研究.地质学报,2001,75(02):228-233.
    2.冯雄汉.土壤中几种常见氧化锰矿物的合成、转化及表面化学性质.武汉,华中农业大学.2003,博士:155.
    3.李秀萍,赵荣祥.二氧化锰纳米棒的制备和催化性能研究.当代化工,2011,40(1):33-35.
    4.李伟,罗磊,张淑贞.应用先进光谱技术研究无机离子的环境界面化学.化学进展,2011,23:2576-2587.
    5.李学垣.土壤化学.北京,高等教育出版社,2001.
    6.刘凡.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型.土壤学报,2002a,39(5):8.
    7.刘凡.”土壤中氧化锰矿物的类型及其与土壤环境条件的关系.”.土壤通报,2002b,33(3):6.
    8.刘凡,冯雄汉,陈秀华,邱国红,谭文峰,贺纪正.氧化锰矿物的生物成因及其性质的研究进展.地学前缘,2008,15(06):66-72.
    9.谭文峰.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报,2000a,20(1):63-67.
    10.谭文峰.我国几种土壤铁锰结核中的锰矿物类型.土壤学报,2000b,37(2):192-201.
    11.谭文峰.几种土壤铁锰结核对Cr(Ⅲ)的氧化特性(Ⅰ)--氧化锰矿物类型与吸附态离子的影响.环境科学学报,2001,21(5):592-596.
    12.鲁安怀,卢晓英,任子平,韩丽荣,方勤方,韩勇.天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘,2000,7(02):473-483.
    13.黄丽.我国几种亚热带土壤铁锰胶膜的微形貌和元素分布特征.自然科学进展,2006,160):1122-1129.
    14.冉勇,傅家谟,Gilkes等.氧化锰对金(Ⅰ)和金(Ⅲ)络和物的吸附.中国科学(D辑:地球科学),1998,28(6):523-531.
    15.施萍萍,易丽丽.炭载二氧化锰的制备和锂离子超级电容器性能的研究.化学学报,2010,68(19):1956-1960.
    16.魏复盛、王云.土壤环境元素化学.北京,中国环境科学出版社,1995.
    17.熊毅等.土壤胶体(第二册).北京:科学出版社,1985.
    18.吴彻平,彭家惠.纳米二氧化锰的可控制备及其电化学储能机理研究.功能材料,2011,42(02):359-361.
    19.韦世强,谢亚宁,徐法强,胡天斗,刘文汉,刘涛.同步辐射XAFS试验站及其应用.物理,2002,31:40-44.
    20.许东禹.多金属结核形成的古海洋环境.北京,地质出版社,1994.
    21. Adams LF, Ghiorse WC. Characterization of an extracellular Mn2+-oxidizing activity and isolation of Mn2+-oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol.1987.169:1279-85
    22. Adams LF, Ghiorse WC. Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1. Geochim. Cosmochim. Acta,1988,52:2073-76
    23. Arrhenius G O, Tsai a G. Structure, phase transformation and prebiotic catalysis in marine manganate minerals. Scripps Institute of Oceanography,1981,81(28): 1-19.
    24. Bargar J R, Tebo B M, Bergmann U. Biotic and abiotic products of Mn (Ⅱ) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Mineral,2005a, 90:143-154.
    25. Bargar J R, Tebo B M, Villinski J E. In situ characterization of Mn (Ⅱ) oxidation by spores of the marine Bacillus sp. strain SG-1. Geochim Cosmochim Acta, 2000,64:2777-80.
    26. Bargar J R, Webb S M, Tebo B M. EXAFS, XANES and in-situ SR-XRD characterization of biogenic manganese oxides produced in sea water. Physica Scripta,2005b, T115:888-890
    27. Barja I, Nunez L. Microcalorimetric measurements of the influence of glucose concentration on microbial activity in soils[J]. Soil Biology and Biochemistry, 1999,31(3):441-447.
    28. Barja, M. I., Proupin, J., and Nunez, L. Microcalorimetric study of the effect of temperature on microbial activity in soils. Thermochimica Acta,1997,303, 155-159.
    29. Barros, N., Feijoo, S., Simoni, A., Critter, S. A. M., and Airoldi, C. Interpretation of the metabolic enthalpy change, A Hmet, calculated for microbial growth reactions in soils. Journal of Thermal Analysis and Calorimetry,2001,63,577-588.
    30. Barros N, Feijoo S, Balsa R. Comparative study of the microbial activity in different soils by the microcalorimetric method[J]. Thermochimica Acta,1997, 296(1-2):53-58.
    31. Barros N, Feijoo S. A combined mass and energy balance to provide bioindicators of soil microbiological quality[J]. Biophysical Chemistry,2003, 104(3):561-572.
    32. Baur W H. Rutile-type compounds V Refinement of MnO2 and MgF2. Acta Crystallogr,1976,32:2200-2204
    33. Belzile N, Chen Y W, Wang Z. Oxidation of antimony (Ⅲ) by amorphous iron and manganese oxyhydroxides. Chemical Geology,2001,174(4):379-387
    34. Beezer, A. E., Newell, R. D., and Tyrrell, H. J. Flow microcalorimetric investigation of yeast growth in a complex medium. Microbios,1978,22,73-84.
    35. Boonfueng T, Axea L, Yee N, Hahn D, Ndiba P K. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating. Journal of Colloid and Interface Science,2009,333:439-447
    36. Boling, E. A., Blanchard, G. C, and Russell, W. J. Bacterial identification by microcalorimetry. Nature,1973,241,472-473.
    37. Bradley M Tebo, John R Bargar. BIOGENICMANGANESE OXIDES: Properties and Mechanisms of Formation. Earth Planet,2004,32:287-328
    38. Bradley M Tebo, William C Ghiorse, Lorraine G, Bacterially mediated mineral foundation Insights into manganese (II) oxidation from molecular genetic and biochemical studies. Mineralogy,1997,35:224-267
    39. Brandy Toner, Alain Manceau, Samuel M Webb, Garrison Sposito. Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Elsevier:Geochimica et Cosmochimica Acta.2006,70:27-43
    40. Braissant, O., Wirz, D., Gopfert, B., Daniels, A.U.,2010. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiology Letters, 303(1):1-8.
    41. Bricker O. Some stability relations in the system MnO2-H2O at 25 degrees and one atmosphere total pressure. Am Mineral,1965,50(9):1296-1354.
    42. Beezer A E, Newell R D, Tyrrell H J. Flow microcalorimetric investigation of yeast growth in a complex medium[J]. Microbios,1978,22(88):73-84.
    43. Bromfield SM, David D J. Sorption and oxidation of manganous ions and reduction of manganese oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biochem,1976,8:37-43
    44. Brouwers G J, Vijgenboom E, Corstjens P. Bacterial Mn2+oxidizing systems and multicopper oxidases:An overview of mechanisms and functions. Geomicrobiology Journal,2000,17(1):1-24.
    45. Canovas D., Cases I., De Lorenzo V.,2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environmental Microbiology,5(12):1242-1256.
    46. Cabrera, G., Perez, R., Gomez, J.M., Abalos, A., Cantero, D.,2006. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials,135(1-3):40-46.
    47. Caspi R, Haygood M G, Tebo B M. Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology,1996,142:2549-2559.
    48. Caspi R, Tebo B M, Haygood M G. c-Type cytochromes and manganese oxidation in Pseudomonas putida MnBl. Applied and Environmental Microbiology,1998,64(10):3549-3555.
    49. Chardin B., Gallice P., Sari J C, Bruschi, M.,2002. Thermodynamics of cleaning-up of waste waters polluted by chromium. Journal of Thermal Analysis and Calorimetry,70(2):475-482.
    50. Chen, J., Li, J., Li, H., Huang, X., Shen, W., The toxic effect of cadmium on pure microbes using a microcalorimetric method and a biosensor technique. Journal of Environmental Science and Health, Part A,2008,43(14):1639-1649.
    51. Chen Z, Lee G, Liu J. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere,2000,41:235-42
    52. Cole W F, Wadsley A D, Walkley A. An x-Ray diffraction study of manganese dioxide. Trans Electrochem Soc,1947,92:133-158
    53. Corstjens P L A M, deVrind J P M, Goosen T. Identification and molecular analysis of the Leptothrix-discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiology Journal,1997,14(3):249-249.
    54. Critter, S. A. M., and Airoldi, C. Application of calorimetry to microbial biodegradation studies of agrochemicals in oxisols. J Environ Qual,2001,30, 954-959.
    55. Cui H J, Qiu G H, Feng X H, Tan W F, Liu F. "Birnessites with different average manganese oxidation states synthesized, characterized, and transformed to todorokite at atmospheric pressure." Clays and Clay Minerals,2009,57(6): 715-724.
    56. Dick G J, Torpey J W, Beveridge T J et al. Direct identification of a bacterial Manganese(Ⅱ) oxidase from spores of several different marine bacillus species: the multicopper oxidase MnxG. Applied and Environmental Microbiology,2007, 32:147-162
    57. Djoko, K Y., Xiao Z., Wedd A G.,2008. Copper Resistance in E. coli:The Multicopper Oxidase PcoA Catalyzes Oxidation of Copper(Ⅰ) in CuICuII-PcoC. ChemBioChem,9(10):1579-1582.
    58. Douka C. Study of bacteria from manganese concretions. Soil Biol Biochem, 1977,9:89-97
    59. de Vrind, J.P.M., Brouwers, G.J., Corstjens, P.L.A.M., den Dulk, J., de Vrind-de Jong, E.W.,. The Cytochrome c Maturation Operon Is Involved in Manganese Oxidation in Pseudomonas putidaGB-1. Applied and Environmental Microbiology,1998,64(10):3556-3562.
    60. Douka C. Study of bacteria from manganese concretions. Soil Biol Biochem, 1977,9:89-97
    61. Driedhaus W, Seith R, Jekel M. Oxidation of arsenate(Ⅲ) with manganese oxides in water treatment. Water Res,1995,29:297-305
    62. Edwards, K.J., Bach, W., Rogers, D.R.,2003. Geomicrobiology of the Ocean Crust:A Role for Chemoautotrophic Fe-Bacteria. The Biological Bulletin, 204(2):180-185.
    63. Ehrlich H L. Bacteriology of manganese nodules:Bacterial action in nodule environments.Appl Microbiol,1963,11:15-19
    64. Emerson D, Ghiorse W C. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl Environ Microbiol,1992,58:4001-4010.
    65. Emerson S, Kalhorn S, Jacobs L et al. Environmental oxidation rate of manganese(Ⅱ):bacterial catalysis. Geochimica et Cosmochimica Acta,1982, 46(6):1073-1079.
    66. Fendorf S E, Zasoski R J, Burau R G. Competing metal ion influences on Chromium(Ⅲ) oxidation by birnessite. Soil Sci Soc Am J,1993,57:1508-1515
    67. Feng X H, Liu F, Tan W F, Liu X W. Synthesis of birnessite from the oxidation of Mn2+by 02-in alkali medium:Effects of synthesis conditions. Clay Clay Miner,2004,52(2):240-250
    68. Feng, X. H., W. F. Tan, et al. "Oxidation of As-Ⅲ by several manganese oxide minerals in absence and presence of goethite." Acta Geologica Sinica-English Edition, (2006).,80(2):249-256.
    69. Feng X H, Tan W F, Liu F, Huang Q Y, Liu X W. Pathways of birnessite formation in alkali medium. Sci China Ser D,2005,48(9):1438-1451.
    70. Francis C A., Tebo B M.,2001. cumA Multicopper Oxidase Genes from Diverse Mn(Ⅱ)-Oxidizing and Non-Mn(Ⅱ)-OxidizingPseudomonas Strains. Applied and Environmental Microbiology,67(9):4272-4278.
    71. Francis C A., Tebo B M.,2002. Enzymatic Manganese(Ⅱ) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species. Applied and Environmental Microbiology,68(2):874-880.
    72. Francis C, Casciotti K, Tebo B. Localization of Mn(Ⅱ)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine <SMALL>Bacillus</SMALL> sp. strain SG-1[J]. Archives of Microbiology,2002,178(6):450-456.
    73. Friedl G., Wehrli B, Manceau A. Solid phases in the cycling of manganese in eutrophic lakes:New insights from EXAFS spectroscopy. Geochim Cosmochim. Acta,1997,61:275-290.
    74. Francis C A, Co E M, Tebo B M. Enzymatic manganese(Ⅱ) oxidation by a marine-proteobacterium. Appl Environ Microbiol,2001,67:4024-4029.
    75. Ghiorse W C.Biology of iron-and manganese-depositing bacteria. Annu Rev Microbiol,1984,38:515-550.
    76. Gibbons, S M.,2011. Use of Microcalorimetry To Determine the Costs and Benefits to Pseudomonas putida Strain KT2440 of Harboring Cadmium Efflux Genes. Applied and Environmental Microbiology,77(1):108-113.
    77. Gilkes R J, Mckenzie R M. Geochemistry and mineralogy of manganese in soils. In: Graham R D, Hannam K J eds, Manganese in Soil and Plants. Netherlands: Kluwer Academic Publishers,1988:23-25
    78. Giovanoli R, Stahli E, Feitknecht W. Uber oxide hydroxide des vierwertigen mangans mit Schichtengitter 2. Mangan (Ⅲ)-manganat (Ⅳ).. Helv Chim acta,1970a, 53:453-464
    79. Giovanoli R, Stahli E, Feitknecht W. Uber oxide hydroxide des vierwertigen mangans mit Schichtengitter 1. Natrium mangan(Ⅱ,Ⅲ)-manganat(Ⅳ). Helv Chim acta,1970b,53:453-464
    80. Glenn J K, Akileswaran L, Gold MH. Mn(Ⅱ) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys.1986,251:688-96
    81. Gleisner, M., Herbert Jr, R.B., Frogner Kockum, P.C.,2006. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chemical Geology,225(1-2):16-29.
    82. Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner, 1987,35:271-280
    83. Golden D C, Zuberer D A, Dixon J B. Manganese oxides Produced by f ungal oxidation of manganese from siderite and rhodochrosite,161-168. In Skinner, H.C.W. and Fitzpatrick,R.W.(ed.), Biomineralization processes of iron and manganese:modern and ancient environments.Catena supplement, vol.21.Cremlingen-Destedt,1992,Germany
    84. Grangeon S., Lanson B., Miyata N., Tani Y., Manceau A. Structure of nanocrystalline phyllomanganates produced by freshwater fungi. Am. Mineral.,2010,95,1608-1616.
    85. Gupta R. P. and Sen S. K. (1974) Calculations of multiplet structure of corep-vacancy levels. Phys. Rev. B10,71-79.
    86. Harvey J W, Fuller C C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour.Res. 1998.34:623-36
    87. Hastings D, Emerson S. Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations. Geochimica et Cosmochimica Acta, 1986,50(8):1819-1824.
    88. Healy T W, Herring A P, Fuerstenau D W. The effect of crystal structure on the surfance properties of a series of manganese dioxides. J.Colloid Interf Sci,1966, 21:435-444.
    89. Hem J D.Redox prosses at surfaces of manganese oxide and their effects ona aqueous metal ions. Chem Geol,1978,21:199-218
    90. Hem J D. Rates of manganese oxidation in aqueous systems.Geochimica et Cosmochimica Acta.1981,45:1369-1374
    91. Huang PM. Kinetics of redox reactions on manganese oxides and its impact on environmental quality. In rates of Soil Chemical Processes, ed..1991.191-230
    92. Ian Saratovsky, Sarah J.Gurr, Michael A. Hayward. The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochimica et Cosmochimica Acta.2009,73:3291-3300
    93. Jasquelin Pena, Kideok D. Kwon, Keith Refson, John R. Bargar, Garrison Sposito. Mechanisms of nickel sorption by a bacteriogenic birnessite.ELSEVIER.Geochimica et Cosmochimica Acta 2010,74:3076-3089
    94. Jokic A, Frenkel A I, Vairavamurthy M A, et al 2001. Birnessite catalysis of the mailard reaction:Its significance in natural humification [J]. Geophysical Research Letters,28(20):3899-3902
    95. Jon Chorover, Mary Kay Amistadi. Reaction of forest floor organic matter at goethite, birnessite and smectite surface. Geochimica et Cosmochimica Acta. 2001,65:95-109
    96. Johnson C A, Xyla a G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite ([gamma]-MnOOH). Geochim Cosmochim Ac,1991, 55(10):2861-2866.
    97. Jurgensen A, Widmeyer J R, Grodon R A. The structure of the manganese oxide on the sheath of the bacterium Leptothrix discophora:An XAFS study. Am Mineral,2004,89:1110-1118.
    98. Katranas T K, Godelitsas A C, Vlessidis A G. Propane reactions over natural Todorokite. Microporous and Mesoporous Materials.2004,69:165-172
    99. Kay J. T., Conklin M. H., Fuller C. C. and O'Day P. A. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek,globe mining district, Arizona. Environ. Sci. Technol.,2001,35, 4719-4725
    100. Kepkay P E, Nealson K H. Growth of a manganese oxidizing <i>Pseudomonas sp. in continuous culture[J]. Archives of Microbiology, 1987,148(1):63-67.
    101. Keller L, Murr L E. Acid-bacterial and ferric sulfate leaching of pyrite single crystals[J]. Biotechnology and Bioengineering,1982,24(1):83-96.
    102. Kim, D.-G., Jiang, S., Jeong, K., Ko, S.-O., Removal of 17 alpha-Ethinylestradiol by Biogenic Manganese Oxides Produced by the Pseudomonas putida strain MnBl. Water Air and Soil Pollution,2012,223(2): 837-846.
    103. Kim, H.-S., Pasten, P.A., Gaillard, J.-F., Stair, P.C., Nanocrystalline Todorokite-Like Manganese Oxide Produced by Bacterial Catalysis. Journal of the American Chemical Society,2003,125(47):14284-14285.
    104. Kim J G, Dixon J B, Chusuei C C, Deng Y. Oxidation of chromium(Ⅲ) to (Ⅵ) by manganese oxides. Soil Sci Soc Am J,2002a,66(1):306-315.
    105. K R Blight, D E Ralph. Effect of ionic strength on iron oxidation with batch cultures of chemolithotrophic bacteria. ELSEVIER,2004,73:325-334
    106. Krumbein, W.E. and H.J.Altaian.A new method for detection and enumeration of manganese-oxidizing and reducing microorganisms.Helgol Wiss Meeresunters.1973,25:347-356.
    107. Kimura, T., and Takahashi, K. Calorimetric studies of soil microbes: Quantitative relation between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. Journal of General Microbiology,1985,131,3083-3089.
    108. Lanson B, Drits VA, Silvester E, Manceau A. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral,2000,85:826-38
    109. Lanson B, Drits VA, Gaillot A-C, Silverster E, Plancon A, Manceau A. Structrure of heavy-metal sorbed birnessite:Part 1. Results from X-ray diffraction. Am.Mineral.2002,87:1631-45
    110. Larsen E I, Sly L I, McEwan A G. Manganese (Ⅱ) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol,1999,171:257-64.
    111. Lee Y, Tebo B M.. Cobalt(Ⅱ) Oxidation by the Marine Manganese(Ⅱ)-O xidizing Bacillus sp. Strain SG-1. Applied and Environmental Microbiolo gy,1994,60:2949-2957.
    112. Ledin M, Pedersen K. The environmental impact of mine wastes — Roles of microorganisms and their significance in treatment of mine wastes[J]. Earth-Science Reviews,1996,41(1-2):67-108.
    113. Leeper G M, Swaby R J. The oxidation of manganese compounds by microorganisms in the soil. Soil Sci,1947,49:163-169
    114. Luo J, Zhang Q, Huang A, Giraldo O, Suib S L. Double-aging method for preparation of stabilized na —buserite and transformations to todorokites incorporated with various metals.Inorg Chem,1999,38(26):6106-6113.
    115. Mandernack K W, Post J, Tebo B M. Manganese mineral formation by bacterial spores of a marine Bacillus, strain SG-1:evidence for the direct oxidation of Mn (Ⅱ) to Mn (Ⅳ). Geochim Cosmochim Acta,1995,59:4393-4408.
    116. Mann S, Sparks NHC, Scott GHE, de Vrind-de JongEW. Oxidation of manganese and formation of Mn3O4 (hausmannite) by spore coats of a marine Bacillus sp. Appl. Environ. Microbiol,1988,54:2140-43
    117. Markus R., Xaver S, Volker M. Chloride dependence of growth in bacteria. FEMS Microbiology Letters.2003,25(1):161-165
    118. Manceau A., Marcus M. A. and Grangeon S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral.,2012,97,816-827.
    119. Mench MJ, Didier VL, Loffler M, Gomez A, Masson P. A mimicked in situ remediation study of metal-contaminated soils with emphasis on cadmium lead. Environ. Qual,1994,23:58-63
    120. Mcdermitt, D.K., Loomis, R.S.,1981. Elemental Composition of Biomass and its Relation to Energy Content, Growth Efficiency, and Growth Yield. Annals of Botany,48(3):275-290.
    121. Mckenzie R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral mag,1971,38:493-502.
    122. Mckenzie R M. Manganese oxides and hydroxides. In:Dixon J B, Weed S B eds., Minerals in Soil Environments (2nd edition). SSSA Book Series 1,1989: 439-465.
    123. Miyata N, Maruo K, Tani Y. Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles. Geomicrobiology Journal,2006,23(2):63-73.
    124. Miyata N, Tani Y, Iwahori K. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiology Ecology,2004,47(1):101-109.
    125. Miyata N, Tani Y, Sakata M. Microbial manganese oxide formation and interaction with toxic metal ions. Journal of Bioscience and Bioengineering, 2007,104(1):1-8.
    126. Morgan J J. Manganese in natural waters and Earth's crust:its availability to organisms. In Metal Ions in Biological Systems, Manganese and Its Role in Biological Processes, ed. A Sigel, H Sigel,2000,37:1-33. New York:Marcel Dekker.
    127. Murray K J, Tebo B M. Cr(Ⅲ) Is Indirectly Oxidized by the Mn(Ⅱ)-Oxidizing Bacterium sp. Strain SG-1. Environmental Science & Technology,2007,41: 528-533.
    128. Murray K J, Mozafarzadeh M L, Tebo B M. Cr (Ⅲ) Oxidation and Cr Toxicity in Cultures of the Manganese (Ⅱ)-Oxidizing Pseudomonas putida Strain GB-1. Geomicrobiol J,2005,1-159.
    129. Nakamura K, Go N. Function and molecular evolution of multicopper blue proteins[J]. Cellular and Molecular Life Sciences,2005,62(18):2050-2066.
    130. Naidja, C Liu, P M Huang. Formation of Protein-Birnessite Complex:XRD, FTIR, and AFM Analysis. Colloid and Interface Science,2002,251:46-56
    131. Nealson K H, Tebo B M, Rosson R A. Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol,1988,33:279-318.
    132. Nelson Y M, Lion L W, Ghiorse W C. Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol,1999, 65:175-180.
    133. Nelson Y M, Lion L W, Shuler M L. Effect of Oxide Formation Mechanisms on Lead Adsorption by Biogenic Manganese (Hydr)oxides, Iron (Hydr)oxides, and Their Mixtures. Environmental Science & Technology,2002,36(3):421-425.
    134. Nelson Y M, Lion L W, Shuler M L. Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnol Oceanogr,1999,4:1715-1729.
    135. Nesbitt, H.W., Canning, G.W., Bancroft, G.M.,1998. XPS study of reductive dissolution of 7A-birnessite by H3AsO3, with constraints on reaction mechanism. Geochimica et Cosmochimica Acta,62(12):2097-2110.
    136. Nico P S, Zasoski R J. Importance of Mn(Ⅲ) Availability on the Rate of Cr(Ⅲ) Oxidation on δ-MnO2. Environ. Sci. Technol.,2000,34 (16):3363-3367.
    137. Nunez-Regueira, L., Rodriguez-Anon, J. A., Proupin-Castineiras, J., and Nunez-Fernandez, O. Microcalorimetric study of changes in the microbial activity in a humic cambisol after reforestation with Eucalyptus in Galicia (Nw Spain). Soil Biology and Biochemistry,2006,38,115-124.
    138. Parikh S J, Chorover J. FTIR Spectroscopic Study of Biogenic Mn-Oxide Formation by Pseudomonas putida GB-1[J]. Geomicrobiology Journal,2005, 22(5):207-218.
    139. Pecher K, McCubbery D, Kneedler E, Rothe J,Bargar J,. Quantitative charge state analysis of manganese biominerals in aqueoussuspension using scanning transmission X-ray microscopy (STXM). Geochim. Cosmochim.Acta,2003, 67:1089-98
    140. Post, J. E.. "Manganese oxide minerals:Crystal structures and economic and environmental significance." Proceedings of the National Academy of Sciences, 1999,96(7):3447-3454.
    141. Post J E, Veblen D R. Crystal structure determinations of synthetic sodium, magnesium, andpotassium bimessite using TEM and the Rietveld method. Am Mineral,1990,75(5-6):477-489.
    142. Post J E, Bish D L. Rietveld refinement of the todorokite structure. Am Mineral, 1988,73(7-8):861-869.
    143. Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. Am Mineral,2003,88(1): 142-150.
    144. Pena J., Kwon K. D., Refson K., Bargar J. R. and Sposito G. (2010) Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim. Cosmochim. Acta 74,3076-3089.
    145. Phipps, M. A., and Mackin, L. A. Application of isothermal microcalorimetry in solid state drug development. Pharmaceutical Science & Technology Today, 2000,3,9-17
    146. Rossouw M H, Liles D C, Thackeray M M. Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Lil.09Mn0.91O2. J Solid State Chem,1993,104(2): 464-466.
    147. Sunda W G, Kieber D J. Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates[J]. Nature,1994,367(6458): 62-64.
    148. Silver, S., Phung, L.,2005. A bacterial view of the periodic table:genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology,32(11-12):587-605.
    149. Siegel M D, Turner S. Crystalline todorokite associated with biogenic debris in manganese nodules. Science,1983,219(4581):172-174.
    150. Sterflinger K. Fungi as geologic agents. Geomicrobiol J,2000,17:97-124
    151. Scott M J, Morgan J J. Reactions at oxide surfaces. Oxidation of Se(IV) by synthetic birnessite. Environ Sci Technol,1996,30:1990-1996
    152. Sullivan L A, Koppi A J. Manganese oxide accumulations associated with some soil structural pores. I. Morphology, composition and genesis. Aust J Soil Res,1977, 30:409-427.
    153. Tazaki, K.,2000. Formation of banded iron-manganese structures by natural microbial communities. Clays and Clay Minerals,48(5):511-520.
    154. Tanaki K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2[J]. Geochimica et Cosmochimica Acta,2010,74(19): 5463-5477.
    155. Takahashi Y, Shimizu H, Usui A, Kagi H, Nomura M. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim Cosmochim Acta,2000,64(17): 2929-2935
    156. Tani Y, Miyata N, Ohashi M, Ohnuki T, Seyama H, Iwahori K, Soma M. Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-Oxidizing fungus, Strain KR21-2. Environmental Science and Technology,2004,38:6618-6624
    157. Tebo, B.M., Bargar, J R., Clement, B.G., Dick, G.J., Murray, K.J., Parker,D., Verity, R., Webb, S.M.,. Biogenic manganese oxides:Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences,2004,32:287-328.
    158. Tebo, B.M., Ghiorse, W.C., van Waasbergen, L.G., Siering, P.L., Caspi, R.,. Bacterially mediated mineral formation; insights into manganese(Ⅱ) oxidation from molecular genetic and biochemical studies. Reviews in Mineralogy and Geochemistry,1997,35(1):225-266.
    159. Tebo, B.M., He, L.M.,. Microbially Mediated Oxidative Precipitation Reactions, Mineral-Water Interfacial Reactions. ACS Symposium Series. American Chemical Society, pp.,1999,393-414.
    160. Tebo, B.M., Johnson, H.A., McCarthy, J.K., Templeton, A.S., Geomicrobi ology of manganese(Ⅱ) oxidation. Trends in Microbiology,,2005,13(9):4 21-428.
    161. Tian Z R, Yin Y G, Suib S L, O'young C L. Effect of Mg2+Ions on the Formation of Todorokite Type Manganese Oxide Octahedral Molecular Sieves. Chem Mater,1997,9(5):1126-1133.
    162. Tipping, E., Thompson, D.W., Davison, W.,1984. Oxidation products of Mn(Ⅱ) in lake waters. Chemical Geology,44(4):359-383.
    163. Timonin M I, Illman W I, Hartgerink T. Oxidation of manganous salts of manganese by soil fungi.Can J Microbiol,1972,18:793-799
    164. Turner S, Buseck P R. Manganese oxide tunnel structures and their intergrowths. Science,1979,203(4379):456-458.
    165. van Waasbergen, L.G., Hildebrand, M., Tebo, B.M.,1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. Journal of Bacteriology,178(12):3517-30.
    166. Villalobos M, Toner B, Bargar J, Sposito G. Characterization of the manganese oxide produced by Pseudomonas putida strain MnBl. Geochim Cosmochim Acta,2003,67(14):2649-2662
    167. Villalobos M, Bargar J, Sposito G. Mechanisms of Pb (Ⅱ) Sorption on a Biogenic Manganese Oxide [J]. Environmental Science & Technology,2005, 39(2):569-576.
    168. Villalobos M, Lanson B, Manceau A, Toner B, Sposito G. Structural model for the biogenic Mn oxide produced by Pseudomonas putida. American Mineralogist,2006,91:489-502
    169. Wang, F., F.,Yao, J., Tian, L., Zhou, Y., Chen, H.L, Chen, H.Y., Gai, N., Chen,Y.,Zhuang,R.,Zaray.,Maskow,T.,Bramanti, E. Microcalorimetric in vestigation of the toxic action of ammonium ferric(Ⅲ) sulfate on the me tabolic activity of pure microbes. Environmental Toxicologyand Pharmaco logy,2008,25(3):351-357.
    170. Wadso, I. Isothermal microcalorimetry current problems and prospects. Journal of Thermal Analysis and Calorimetry,2001,64,75-84.
    171. Webb S M, Dick F J, Bargar J R, Tebo B M. Evidence for the presence of Mn(Ⅲ) intermediates in the bacterial oxidation of Mn(Ⅱ). Proc Natl Acad Sci U.S.A,2005a,102(15):5558-5563
    172. Webb S M, Fuller C C, Tebo B M, Bargar J R. Determination of Uranyl Incorporation into Biogenic Manganese Oxides Using X-ray Absorption Spectroscopy and Scattering. Environ. Sci. Technol,2006,40:771-777
    173. Webb S M, Tebo B M, Bargar J R. Structural characterization of biogenic manganese oxides produced in seawater by the marine Bacillus sp strain SG-1. American Mineralogist,2005b,90(8/9):1342-1357
    174. Webb S M, Tebo B M, Bargar J R. Structural influences of sodium and calcium ions on biogenic manganese oxides produced by the marine Bacillus sp strain SG-1. Geomicrobiol J,2005c,22(3):181-193
    175. Wu Y,Deng B, Xu H, Kornishi H. Chromium(Ⅲ) oxidation coupledwith microbially-mediated Mn(Ⅱ) oxidation. Geomicrobiol J,2005,22(3-4):161-170
    176. Xie, C.-L., Tang, H.-K., Song, Z.-H., and Qu, S.-S. Microcalorimetric st udy of bacterial growth. Thermochimica Acta,1988,123,33-41.
    177. Yang X, Kanoh H, Tang W, Liu Z-H, Ooi K. New Route for Preparation of Layered Manganese Oxides with Multivalent Metals in the Interlayer. Chem Lett,2001,30(7):612-613.
    178. Yang, Y., Zhu, J., Liu, Y., Shen, P., and Qu, S. Microcalorimetry is a sensitive method for studying the effect of nucleotide mutation on promoter activity. Journal of Biochemical and Biophysical Methods,2005,62,183-189.
    179. Yin Hui, Tan Wenfeng, Lirong Zheng, Haojie Cui, Guohong Qiu, Fan Liu*, Xionghan Feng*. Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+and As(Ⅲ). Geochimica et Cosmochimica Acta,2012,93:47-62.
    180. Yin Hui, Feng Xionghan, Guohong Qiu, Wenfeng Tan, Fan Liu*. Characterization of Co-doped birnessites and application for removal of lead and arsenite. Journal of hazardous materials,2011a,188:341-349.
    181. Yin Hui, Feng Xionghan,, Wenfeng Tan, Tiandou Hu, Mengqiang Zhu*, Fan Liu*.Vanadium introduction decreases birnessite particle sizes and enhances Pb2+adsorption.,2011b, Geochimica et Cosmochimica Acta
    182. Zhang L-M, Liu F, Tan W-F, Feng X-H, Zhu Y-G, He J.. Microbial DNA extraction and analyses of soil iron-manganese nodules. Soil Biol Biochem,2008,40:1364-1369.
    183. Zhang G Y, He J Z, Liu F, Zhang L-M., Iron-manganese nodules harbor lower bacterial diversity and greater proportions of Proteobacteria compared to bulk soils in four locations spanning from north to south China, Geomicrobiol J 2014(submitted)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700