多孔结构锰氧化物的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要进行OL和OMS结构多孔锰氧化物合成过程的优化,运用了XRD、BET和微反色谱等测试与表征技术,探讨了各种因素对OL和OMS结构多孔锰氧化物合成过程的影响。
     OL结构锰氧化物合成的研究结果表明,氧化还原法没有合成单一晶相的OL-1,所合成的样品中均有六方水锰矿晶相。当反应温度达到45℃时,继续提高温度对OL-1结构的影响很小;随着Mn~(2+)/MnO_4~-的增加,六方水锰矿的晶相越来越好;当OH-/Me~(2+)≥8时,碱量的继续增加对样品结晶度的影响不大,样品的化合价也趋于稳定;以KOH作为沉淀剂得到的样品结晶度不好,且比表面积较低;采用醋酸锰作为锰源要优于硫酸锰;Cu掺杂的锰氧化物没有六方水锰矿的晶相,并且Cu的分散度也较好;氧化法能够制得单一晶相的水钠锰矿。氧气法合成OL-1的关键因素是氧气通量,只有溶液中具有足够的的氧含量,即具有足够大氧气扩散推动力的情况下才能生成晶型完整的OL-1;当反应时间小于3h时,主要得到是黑锰矿,当反应时间达到5h时,才能够得到单一晶相OL-1;采用硝酸锰作为锰源要优于硫酸锰;是否加入H_2O_2对水钠锰矿的形成影响不大。
     OMS结构锰氧化物的研究结果表明,氧气法合成的布塞尔矿在酸性介质中、H_2O中、碱性介质中,均不能合成具有孔道结构的锰氧化物,但在碱性介质中晶化进一步优化了OL-1;离子交换中,只有Cu离子交换后的样品能够生成OMS-1结构锰氧化物,而Ca离子、Mg离子交换后的样品不能得到OMS-1,但得到了1nm矿相;在不同反应时间中,只有Mg的加入时间为0h时能够生成OMS-1结构锰氧化物。
This paper focused on the optimization of OL and porous structure OMS synthesis processes and XRD, BET and Micro-Reactor-Chromatography were used to study effect of preparation factors on OL and OMS manganese oxides.
     For the manganese oxides of OL structure, the OL-1 phase was not the only phase detected in the samples and the Feitknechtite phase was also contained. when the synthesis temperature is higher than 45℃the temperature is not the main influence factor to prepare OL-1. The crystalline of Feitknechtite improve with Mn~(2+)/MnO4- increasing and the best value in preparing the OL-1 manganese oxide is Mn~(2+)/MnO4-=70.8/29.2. It is showed that KOH as the precipitator is not suitable to the formation of OL-1 structure and the specific surface area of samples. It is proved that manganese acetate as the source of Mn is better than manganese sulfate. The Feitknechtite phase disappeared when the Cu~(2+) was added in the solution. Purely OL-1 manganese oxide can be synthesized through oxidation style. The results showed that the flux of O2 is the pivotal factor for the synthesis of OL-1 manganese oxide. Only the solution with high oxygen content has enough oxygen diffusion force for formation of purely OL-1. Hausmanite is the main phase when the oxidation time is lesser than 3h, and pure OL-1 structure can be detected when it is more than 5h. Manganese nitrate as the starting material of Mn is better than manganese sulfate. The effect of H2O2 treatment after the layer manganese oxide is formatted is very small.
     Buserite synthesized by oxygen can not transformed into porous manganese oxide structure under the acidic reaction condition, H2O and alkaline, but under alkaline medium the crystallization of OL-1 is further optimized. Buserite transformed into OMS-1 structure after ion-exchanged with Cu ion, but buserite maintained after ion-exchanged with Mg and Ca ions. OMS-1 can be synthesized by oxygen when the Mg ion was added in the original solution.
引文
[1] Feng Qi, Kanoh H, Ooi K. Manganese oxide porous crystals[J]. Mater. Chem. 1999,9:319-333
    [2] Post J E. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance[J]. Proc.Natl.Acad.Sci.USA. 1999,96:3447~3454
    [3] Tian.Z R,Tong W,Wang J. Manganese Oxide Mesoporous Structures:Mixed Valent Sem-iconducting Catalysts[J]. Science. 1997,276:926-930
    [4] Suib.S L. Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials[J]. Accounts of Chemical Research. 2008,41:479-487.
    [5]吴忠帅,张向东,臧健等. Birnessite型锰氧化物的合成研究进展[J].化学通报,2006,69:1~6
    [6] Prieto O,Delarco M,Rives V. Characterisation of K,Na,and Li birnessites prepared by oxidation with H2O2 in a basic medium. Ion exchange properties and study of the calcined products[J]. Mater. Scie. 2003,38:2815– 2824
    [7] Vol’khin V V,Pogodina O A,Leont’eva G V. Nonstoichiometric compounds based on manganese(III,IV) oxides with the birnessite structure[J]. Gene. Chem. 2002,72(2):173~177.
    [8] Kh.S. Abou-El-Sherbini,M.H. Askar,R. Scho¨llhorn. Hydrated layered manganese dioxide Part I. Synthesis and characterization of some hydrated layered manganese dioxides from a-NaMnO2[J]. Solid State Ionics. 2002,150:407~415
    [9] Ching S,Petrovay D J,Jorgensen M L. Sol-gel synthesis of layered birnessite-type manganese oxides[J]. Inorg. Chem. 1997,36:883~890
    [10] Feng Q. Synthesis of Cs–Birnessite and Transformation Reaction to (2×4) Tunnel Structure by Heat–Treatment[J]. Journal of Materials Science Letters. 2003,22:999~1001
    [11]刘迎新,秦善,刘瑞等.孔道结构矿物及其晶体结构特征[J].北京大学学报(自然科学版). 2004, 40(6):993~1000
    [12] Yang D S, Wang M K. Syntheses and Characterization of Well–Crystallized Birnessite[J]. Chem.Mater. 2001,13:2589~2594
    [13] Ma Y, Luo J, Suib S L. Syntheses of Birnessites Using Alcohols as Reducing Reagents:Effects ofSynthesis Parameters on the Formation of Birnessites[J]. Chem. Mater. 1999, 11:1972~1979
    [14] Ying Ma. Studies of Layered and Pillared Manganese Oxide Materials [D]. Doctoral dissertation of The University of Connecticut. 1999,7~10
    [15] Hey M H, Embrey P G. Twenty–Eight Lists of New Mineral Names[J]. Mineral Mag.. 1974,39:903~932
    [16] Paterson E, Bunch J L, Clark D R. Cation Exchange in Synthetic Manganates:Ⅰ. Alkylammonium Exchange in a Synthetic Phyllomanganate[J]. Clay Minerals. 1986,21:949~955
    [17] Giovanoli R. Vernadite is Random–Stacked Birnessite[J]. Mineralium Deposita. 1980,15:251~253
    [18] Jia Liu,B.S. Nanoscale Octahdral Molecular Sieves: Syntheses,Characterization,and Applications[D]. Doctoral dissertation of The University of Connecticut. 2003,1~11
    [19] Post J E, Veblen D R. Crystal Structure Determination of Synthetic Sodium, Magnesium, and Potassium Birnessite Using TEM and the Rietveld Method[J]. Am Mineral. 1990,75:477~489
    [20] Buser W, Graf P, Feitlnecht W. Beitragzur Kenntnisder manganese (II)-manganite und desδ-MnO2[J]. Helv Chim Acta, 1954,37:2322~2333
    [21] Cai J, Suib S L. Preparation of Layer Structure Birnessite by Air Oxidation:Synthetic Factors and Framework Dopant Effects[J]. Inorganic Chemistry Communications. 2001,4:493~495
    [22]冯雄汉,谭文峰,刘凡等.碱性介质中水钠锰矿的生成途径[J].中国科学D辑地球科学. 2005,35 (4):340~351
    [23] Feng Q, Liu L H, Yanagisawa K. Effects of Synthesis Parameters on the Formation of Birnessite–Type Manganese Oxides[J]. Journal of Materials Science Letters. 2000,19(17):1567~1570
    [24] Feng Q, Yanagisawa K, Yamasaki N. Synthesis of Birnessite–Type Potassium Manganese Oxide[J]. Journal of Materials Science Letters. 1997,16:110~112
    [25] Xu Y H, Feng Q, Kajiyoshiand K, etc. Hydrothermal Intercalation Reaction of Nickel Hydroxide into Layered Manganese Oxides[J]. Chem. Mater.. 2002,14:697~703
    [26] McKenzie R M. The synthesis of birnessite, cryptomelane , and someother oxides and hydroxides of manganese [J]. Mineral. Mag., 1971,38(296): 493~503
    [27] Ching S, Petrovay D J, Jorgensen M L, etc. Sol–Gel Synthesis of Layered Birnessite–Type Manganese Oxides[J]. Inorg. Chem. 1997,36:883~890
    [28] Suib S. L, O’Young C. L. In Synthesis of Porous Materials[J]. Dekker Inc. New York, 1997:215-231
    [29] Guan-Guang Xia,Wei Tong,StevenL,Suib等. Synthesis and Characterization Of Nanofibrous Sodium Manganese Oxide With a 2*4 Tunnel Struture[J]. Chem.Mater. 2001,13,1585~1592
    [30]崔浩洁,冯雄汉,谭文峰,刘凡.隧道构造锰氧化物合成及应用[Z].中国科技论文在线
    [31] Baur W H. Rurile-type compound V Refinement of MnO2 and MgF2[J].Acta Crystallogar, 1976,32:2200-2204
    [32] Bilkes R J. Geochemistry and mineralogy of manganese in soils[J]. Developments in plant and soil sciences. 1988:23~35
    [33] Post J E. Crystal stuctures of manganese oxide minerals[Z]. Catena Verlag. 1992,51~73
    [34] Post J E, B Von Dreele R, Buseck P R. Symmetry and Cation Displacement in Hollandites:Structure Refinments of Hollandite. Cryptomelane and Priderite[J]. Acta Cryst Series B. 1982,38:1056~1065
    [35] Vicat J, Fanchon E, Strobel P, etc. The Structure of K1.33Mn8O16 and Cation Ordering in Hollandite–Type Structure[J]. Acta Cryst Series B. 1986,42:162~167
    [36]鲁安怀,高翔,秦善等.锰钾矿(KxMn8-xO16):天然活性八面体分子筛(OMS–2)[J].科学通报. 2003,48(6):615~618
    [37] Shi N, Ma Z, He W, etc. Nano–Solids in Manganese Nodules from Northern Part of Pacific Ocean Floor[J]. Science in China (Series B). 1995,8(12):1493~1500
    [38]魏秀荣.铜锰复合氧化物催化剂的结构设计、控制合成与表征[D].内蒙古工业大学硕士学位论文[D].2008:9
    [39]冯雄汉,谭文峰,刘凡等.热液条件下钙锰矿的合成及其影响因素[J].地球科学-中国地质大学学报. 2005, 30(3):349~351
    [40]冯雄汉,刘凡,谭文峰等.回流条件下钙锰矿的合成及其初步表征[J].中国科学D辑. 2003, 33(11):1084~1093
    [41] Jothiramalingam R, Viswanathan B, Varadarajan T K. Preparation, Characterization and Catalytic Properties of Cerium Incorporated Porous Manganese Oxide OMS–2 Catalysts[J]. Catalysis Communications. 2005,6:41~45
    [42]阎继娜,施剑林,陈航榕等.纳米介孔材料的催化应用前景[J].无机材料学报. 2003,18(4):725~730
    [43] Feng Q, Kanoh H, Miyai Y, etc. Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion ExtractiodInsertion Reactions[J]. Chem.Mater. 1995,7:1226~1232
    [44] Golden D C, Chen C C, Dixon J B. Synthesis of Todorokite[J]. Science. 1986,231:717~720
    [45] Tournassat C, Charlet L, Bosbach D, etc. Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate[J]. Environ. Sci. Technol. 2002,36:493~500
    [46] Aronson B J, Kinser A K, Passerini S, etc. Synthesis, Characterization, and Electrochemical Properties of Magnesium Birnessite and Zinc Chalcophanite Prepared by a Low–Temperature Route[J]. Chem. Mater. 1999,11:949~957
    [47] Nakayama M, Konishi S, Tagashira H, etc. Electrochemical Synthesis of Layered Manganese Oxides Intercalated with Tetraalkylammonium Ions[J]. Langmuir. 2005,21:354~359
    [48] Thilo R, Andrea S, Tim M. Oxidation of Ferrocyanide by Birnessite[J]. Environ. Sci. Technol. 2005, 39:821~825
    [49] Nur H, Hayati F, Hamdan H. On the Location of Different Titanium Sites in Ti–OMS–2 and their Catalytic Role in Oxidation of Styrene[J]. Catalysis Communications. 2007,8:2007~2011
    [50] Liu F, Colombo C, He J Z, etc. Trace Elements in Manganese–Iron Nodules from a Chinese Alfisol[J]. Soil Science Society of American Journal. 2002,66:661~671
    [51]冯雄汉,翟丽梅,谭文峰等.几种氧化锰矿物的合成及其对重金属的吸附和氧化特性[J].岩石矿物学杂志.2005, 24(6):531~538
    [52] Manning B A, Fendorf S E, Bostick B, etc. Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite[J]. Environ. Sci. Technol. 2002,36:976~981
    [53] Scott M J, Morgan J J. Reactions at Oxide Surfaces. 2. Oxidation of Se(IV) by Synthetic Birnessite[J]. Environ. Sci. Technol. 1996, 30:1990~1996
    [54] Banerjee D, Nesbitt H W. Oxidation of Aqueous Cr(III) at Birnessite Surfaces:Constraints on Reaction Mechanism[J]. Geochim. Cosmochim. Acta. 1999, 63:1671~1687
    [55]尤金跨,杨勇,舒东等.锂离子电池纳米电极材料研究.电化学. 1998,4(1):94
    [56] Suib S L. Sorption, Catalysis, and Separation by Design [J]. Chemical Innovation. 2000,30 (3):27~40
    [57]陈永熙,周立娟,郭丽萍.锂锰氧化物中锰的平均化合价的测定研究[J].武汉理工大学学报. 2001,23(10):1~3
    [58]李琪,李飞,乔庆东. LixMn2OyFz中锰的平均化合价的测定[J].辽宁石油化工大学学报. 2004, 24(1):11~14
    [59]魏秀荣,红霞,何润霞等.锰氧化物中锰的平均化合价的测定研究[J].内蒙古石油化工. 2007,33(123):149~150
    [60] Luo J, Suib S L. Preparative Parameters, Magnesium Effects, and Anion Effects in theCrystallization of Birnessite[J]. J.Phys.Chem.B. 1997,101:10403~10413
    [61]冯雄汉,刘凡,谭文峰等.碱性介质中合成水钠锰矿的几个影响因素[J].地球化学. 2002,31(5):495~500
    [62] Q FENG, L. LIU, K. YANAGISAWA. Effects of synthesis parameters on the formation of birnessite-type manganese oxides. Journal of Materials Science letters. 2000,19: 1567~1570
    [63]钱江初. 1nm锰矿相结构稳定性的研究.海洋学报,1998,5,20(3)
    [64]朱小燕,叶瑛,沈忠悦,张孝彬,程继鹏.由天然锰结核水热合成钙锰矿的实验研究.浙江大学学报. 2004,9,38(9)
    [65] Chenzi Fan, Anhuai Lu, Yan LiSynthesis ect. characterization, and catalytic activity of cryptomelane nanomaterials produced with industrial manganese sulfate. Journal of Colloid and Interface Science. 2008,327:393–402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700