基因调控网络的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学和生物实验技术的发展,通过研究和应用高效算法、结合高性能计算技术,对海量生物学数据进行整合和分析的计算系统生物学正成为21世纪自然科学的核心领域之一。如何分析、阐明和理解基因表达数据从而构建基因调控网络是目前计算系统生物学研究中面临的重大挑战。本论文将计算机科学应用于基因组学,从计算系统生物学的角度研究基因调控网络。
     论文围绕基因调控网络的构建问题,从数值研究的角度出发,一方面基于基因表达的实验数据,定性地分析基因调控关系;另一方面通过网络的拓扑特性,分析网络的动力学稳定性,以计算模拟的方法生成人工基因调控网络。论文还进一步应用以上算法及其并行思想,构建小鼠脑部神经干细胞(NSC)的基因调控网络,预测重要的调控信号通路,并获取关键基因的功能信息。
     本论文的创新性工作主要有四个方面:
     (一)以单基因扰动的稳态数据为分析对象,本文提出了基于线性微分方程模型的逐步回归网络推断算法(Stepwise Network Inference Method,SWNI)。针对基因调控网络较稀疏的特点,根据严格的选元准则,为目标基因逐步选择最具显著影响的调控子子集,克服了高维小样本的实验数据问题,避免了以往算法中对目标基因强制设定最大连接数的不合理性。实验表明,随着网络规模的增大和网络稀疏度的增加,SWNI算法在计算精度、计算效率上均优于同类算法。
     (二)基于复杂网络理论和真实基因调控网络的拓扑特性,充分考虑网络的生物学鲁棒性和动力学稳定性,本文提出了人工基因网络的生成过程和模拟方法,并构建基因调控网络模拟器(Gene Network Simulator,GN-Simulator)。实验结果表明,GN-Simulator能模拟在拓扑结构上和动力学性质上与真实基因调控网络高度相似的大规模人工网络,并产生用于无偏验证的多样化人工基因表达数据集,为基因调控网络的构建算法提供高效、合理的计算实验平台。
     (三)论文从基因组学的角度研究基因dcf1在小鼠神经干细胞分化中的作用机制,应用SWNI算法,将数值实验与生物实验相结合,将公共数据库中的基因芯片数据与实验室数据相整合,构建关于dcf1的小鼠神经干细胞基因调控网络。论文预测了pou6f1显著影响脑部神经干细胞分化的功能,该功能与对dcf1的部分研究结果相符;预测了pou6f1对dcf1的显著调控作用,预测结果与已发表的文献中对含POU结构域的蛋白的研究相吻合;分析了dcf1在预测网络中所处的位置,提示dcf1可能处于其调控通路的下游,为进一步探索dcf1的功能奠定了很好的基础。
     (四)论文将并行计算思想应用于大规模的基因调控网络构建和模拟问题,提高了网络构建的效率,初步满足了对大规模基因表达数据进行分析和处理的需要;通过并行化策略,论文实现了对小鼠神经干细胞高通量基因芯片数据的整合分析,极大提高了处理计算系统生物学中实际问题的能力。
Computational systems biology mainly deals with huge quantities of biological data by means of integrating and performing analysis with efficient algorithms and supercomputers. Along with the development of computer science and experimental technique of biology, computational systems biology has become one of the kernel scientific research areas in the 21st century. Comprehensive gene expression analysis and gene regulatory network (GNR) construction are addressed as grand challenges of computational systems biology nowadays. This dissertation contributes an application of computing science to genomics research with the aim to study GRN from the perspective of computational systems biology.
     Numerical methods which focus on GRN construction are proposed. On one hand, qualitative analysis on gene regulations from expression data is performed. On the other hand, simulation method of generating artificial GRNs is developed by considering specific network topology and dynamic stability. These methods are applied in GRN construction of mouse neural stem cell to predict important regulatory signal pathways and functions of key genes.
     The innovative results in the four aspects are described below:
     1. Stepwise Network Inference Method (SWNI) based on linear differential model is proposed to reconstruct sparse GRN from steady state data response to single gene perturbation. A regression subset-selection strategy is adopted to choose significant regulators for a given gene. Then it solves the small size problem for high-dimensional data in order to remove unreasonable limitation of maximum number of regulators by strict selection rules. The numerical experiments indcate that the SWNI is efficient, and outperforms the other methods with the increase in both network size and sparsity.
     2. Based on complex network theory, gene regulatory network simulation method (GN-Simulator) is developed. Study on the topology of real gene networks, the simulation method for generating artificial gene network is proposed according to the robust biological mechanism and dynamic stability. Numerical experiments demonstrate that large-scale artificial gene networks can be simulated with similar dynamics as real ones, and various synthetic gene expression data can also be generated by the GN-Simulator to provide efficient and reasonable estimation platform for algorithms performance assessment.
     3. The regulatory mechanism of mouse neural stem cell differentiation by dcf1 is explored on the genome-level. Based on the SWNI, numerical method combined with biological experiment is designed to construct GRN of mouse neural stem cell from public data integrated with laboratory data. Computing-based predictions that pou6f1 might significantly affect the differentiation of neural stem cells in mouse brain and play an important role in regulation of dcf1, are consistent with some findings of dcf1 and research of the POU-domain in the literature. Moreover, the predicted network lays a solid foundation for further exploration of dcf1 function by indicating that dcf1 locates in the downstream of the signaling pathway.
     4. Parallel computing is considered to construct and simulate the large-scale GRNs, thereby increase efficiency in network inference and meet the computing requirements for large-scale gene expression management preliminarily. With the parallel strategy, synthetical analysis is performed successfully on high through-put gene chip data of mouse neural stem cell and similar issues in computational systems biology will be solved effectively.
引文
[1]孙啸,陆祖宏,谢建明.生物信息学基础.清华大学出版社, 2006.
    [2]王翼飞,史定华.生物信息学--智能化算法及其应用.化学工业出版社, 2006.
    [3] Kanehisa M,孙之荣等译.后基因组信息学,清华大学出版社, 2002.
    [4] A.马尔科姆.坎贝尔,劳里J.海尔著,孙之荣主译.探索基因组学蛋白质组学和生物信息学.科学出版社, 2005.
    [5]韦斯特海德D R,帕里什J H,特怀曼著, R M.王明怡等译.生物信息学.科学出版社, 2004.
    [6] Arcady Mushegian.比较基因组学基础.科学出版社, 2007.
    [7] Jonathan Pevsner. Bioinformatics and Functional Genomics, 2nd Edition. Wiley-Blackwell, 2009.
    [8]杨子恒著,钟杨等译.计算分子进化.复旦大学出版社, 2008.
    [9] Wolfe K H, Li W H. Molecular evolution meets the genomics revolution. Nature genetics (Supplement), 2003, 33:255-265.
    [10] Kellis M, Patterson N, Endrizzi M, Birren B, Lander E S. Sequancing comparison of yeast species to identify genes and regulatory elements. Nature, 2003, 423:241-254.
    [11] Setubal J, Meidanis J著,朱浩等译.计算分子生物学.科学出版社, 2003.
    [12] McDermott J, Samudrala R, Bumgarner R et al. Computational Systems Biology. Humana Press, 2009.
    [13] Levchenko A. Dynamical and integrative cell signaling: challenges for the new biology. Biotechnology. Bioengineering, 2003, 84:773-782.
    [14] Ideker T, Galitski T, Hood L. A New approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics, 2001, 2:343-372.
    [15] Klipp E, Herwig R, Kowald A, Wierling C, Legrach H.贺福初,杨芃原,朱云平主译.系统生物学的理论、方法和应用.复旦大学出版社, 2007.
    [16] Kitano H. Computational systems bioloby. Nature, 2002, 420:206-210.
    [17] Davidson E H. Developmental biology at the systems level. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2009, 1789(4):248-249.
    [18] Kitano H. Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics, 2002, 41:1-10.
    [19] http://www.ncbi.nlm.nih.gov/Genbank/
    [20] http://www.ebi.ac.uk/embl/
    [21] http://www.ddbj.nig.ac.jp/searches-e.html
    [22] Genbank数据统计, 2009. http://www.ncbi.nlm.hig.gov/Genband/genbankstats.html.
    [23] Kuderer N M, Lyman G H. Gene expression profile assays as predictors of distant recurrence-free survival in early-stage breast cancer. Cancer Invest. 2009, 27(9):885- 890.
    [24] Joos L, Eryuksel E, Brutsche M H. Functional genomics and gene microarrays--the use in research and clinical medicine. Swiss Medical Weekly, 2003, 133:3-4.
    [25] Ahmed A A, Vias M, Iyer N G, et al. Microarray segmentation methods significantly influence data precision. Nucleic Acids Res, 2004, 32(5):e50.
    [26] Farnham P J, Insights from genomic profilling of transcription factors. Nature Review Genetics, 2009, 10(9):605-616.
    [27] Gilchrist D A, Fargo D C, Adelman K. Using ChIP-chip and ChIP-seq to study the regulation of gene expression: genome-wide localization studies reveal widespread regulation of transcription elongation. Methods, 2009, 48(4):398-408.
    [28] Kininis M, Kraus W L. A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nuclear Receptor Signaling, 2008, 15(6):e005.
    [29] Halbeisen R E, Galgano A, Scherrer T, Gerber A P, Post-transcriptional gene regulation: From genome-wide studies to principles. Cellular and Molecular Life Sciences. 2008, 65 (5):798-813.
    [30] Longabaugh J R , Davidson E H, Bolouri H. Computational representation of developmental genetic regulatory networks. Developmental Biology, 2005, 283:1-16.
    [31] Quaylea A P, Bullockb S. Modelling the evolution of genetic regulatory networks. Journal of Theoretical Biology, 2006, 238:737-753.
    [32] Elati M, Neuvial P, Bolotin-Fukuhara M, Barillot E, Radvanyi F, Rouveirol C. LICORN: learning cooperative regulation networks from gene expression data.Bioinformatics, 2007, 23(18):2407-2414.
    [33] Goeman J J, Bühlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics, 2007, 23:980-987.
    [34] Oshlack A, Chabot A E, Smyth G K, Gilad Y. Using DNA microarrays to study gene expression in closely related species. Bioinformatics, 2007, 23(10):1235-1242.
    [35]李瑶.基因芯片数据分析与处理.化学工业出版社. 2006.
    [36] D’haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 16:707-726, 2006.
    [37] Styczynski M P, Stephanopoulos, G. Overview of computational methods for the inference of gene regulatory networks. Computers and Chemical Engineering. 2005, 29:519-534.
    [38] De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Computational Biology, 2002, 9:67-103.
    [39] Bansal A K, et al. The role of reverse engineering in the development of genetie for muations Pharmaeeutieal technology. Pharmaeeat Teehnology, 2005, 29:50-54.
    [40] Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature, 1969, 224 (5215): 177 -178.
    [41] Kauffman S, Peterson C, Samuelsson B, Troein C. Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA, 2003, 100(25): 14796-14799.
    [42] Faure A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 2006, 22(14):l24-l31.
    [43] Kim H, Lee J K, Park T. Boolean networks using the chi-square test for inferring large --scale gene regulatory networks. BMC Bioinformatics, 2007, 8: 37
    [44] Friedman N. GraPhieal: Inferring cellular networks using Probabilistie models.Science,2004, 303:799-805.
    [45] Bickel D R,Probabilities of spurious connections in gene networks: Application to expression time series. Bioinformatics. 2005, 21:1121-1128.
    [46] Lahdesmaki H, Hautaniemi S, Shmulevich I, et al . Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. J. Signal Processing, 2006, 86 (4): 814 - 834.
    [47] Lee W P, Tzou W S. Computational methods for discovering gene networks from expression data. Briefings in Bioinformatics, 2009, 10(4): 408 - 423.
    [48] Lhdesmki H, Hautaniemi S, Shmulevich I, et al. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Processing, 2006, 86:814-834.
    [49] Butte A S, Kohane I S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomputing, 2000: 418- 429.
    [50] Garrett ES, Irizarry RA, and Zeger S. The analysis of gene expression data. New York: Springer-Verlag, 2003.
    [51] De la Fuente A. et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 2004, 20: 3565–3574.
    [52] Edwards D. Introduction to Graphical Modelling. Springer, 2000.
    [53] Chen K C, Wang T Y, Tseng H H, Huang C Y, Kao C Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae.Bioinformatics, 2005, 21(12):2883–2890.
    [54] Casey R, De Jong H, GouzéJ L. Piecewise-linear models of genetic regulatory networks:equilibria and their stability. Journal of Mathematical Biology, 2006, 52(1): 27-56.
    [55] Chen T, He H L, Church G M. Modeling gene expression with differential equations. Pac.Symp. Biocomputing, 1999:29- 40.
    [56]虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法.第二军医大学学报. 2006, 27(7):737-740.
    [57]刘万霖,李栋,朱云平,贺福初,基于微阵列数据构建基因调控网络.遗传, 2007, 29(12):1434-1442.
    [58] Chen K C, Wang K Y, Tseng H H, et al.A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics, 2005, 21(12):2883–2890.
    [59] Chana Zeke S H , Collins Zeke S H, Kasabov N. Bayesian learning of sparse gene regulatory networks, Biosystems, 2007, 87:299-306.
    [60]王明怡,夏顺仁,陈作舟.基于微阵列数据的基因网络预测方法研究进展.生物物理学报,2005, 21(1):19-25.
    [61]李春喜,邵云.生物统计学.科学出版社, 2008.
    [62]伯纳德.罗斯纳.孙尚拱.生物统计学基础.科学出版社, 2008.
    [63]何晓群,刘文卿.应用回归分析(第二版).中国人民大学出版社, 2008.
    [64] http://vlado.fmf.uni-lj.si/pub/networks/pajek/
    [65] http://www.cytoscape.org/
    [66] http://www.graphviz.org/
    [67] http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/excel2Pajek.htm
    [68] http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/text2pajek.htm
    [69] Liang S, Fuhrman S, Somogyi. REVEAL: a general reverse engineering algorithm for inference of genetic network. Proc. Pacific Symp. Biocomputing’98, 1998: 18–29.
    [70] Morohashi M, Kitano H. Identifying gene regulatory networks from time series expression data by in silico sampling and screening. Proc. 5th Euro. Conf. Artificial Life, 1999:477–486.
    [71] Mjolsness E, Mann T, Castano R, Wold B. From coexpressionto coregulation: an approach to inferring transcriptional regulation among gene classes from large-scale expression data. Technical. Reptor, 1999.
    [72] Styczynski M P, Stephanopoulos G, Overview of computational methods for the inference of gene regulatory networks, Computers & Chemical Engineering, 2005, 29(3): 519-534.
    [73] Schumacher M, Binder H, Gerds T. Assessment of survival prediction models based on microarray data. Bioinformatics, 2007, 23(14):1768-1774.
    [74] Hughes T R, Marton M J, Jones A R, et al. Functional discovery via a compendium of expr ession profiles. Cell, 2000, 102:109–126.
    [75] Gengyo-Ando K, Mitani S. Characterization ofmutations induced by ethylmethanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. Biochem Biophys Res Comm, 2000, 269(1):64-69.
    [76] Spradling A C, Stern D, Beaton A et al. The Berkeley Drosophila GenomeProject gene disruption project: single P-element insertions mutating 25% ofvital Drosophila genes. Genetics, 1999, 153(1):135–177.
    [77] Sharp P A. RNAi and double-strand RNA. Genes & Development, 1999, 13(2):139–141.
    [78] Davidson E H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. San Diego: Academic Press (1st edn.), 2006.
    [79] Margolin A A, Califano A. Theory and limitations of genetic network inference from microarray data, New York Academy of Sciences, 2007, 1115(1):51-72.
    [80] Tegnéer J, Bj?orkegren J. Perturbations to uncover gene networks. Trends in Genetics, 2006, 23(1):34-41.
    [81] Zak D E, Gonye G E, Schwaber J S, Doyle F J. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Research, 2003(13):2396–2405.
    [82] Wang Y, Joshi T, Zhang X S, et al. Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics, 2006, 22 (19): 2413-2420.
    [83] Tegner J, Yeung M, Hasty J, Collins J: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. PNAS, 2003, 100 (10):5944-5949.
    [84] Gardner T, di Bernardo D, Lorenz D, Collins J: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301(5629):102-105.
    [85]贾俊平.统计学(第3版).中国人民大学出版社, 2008.
    [86]瓦尔特.克莱默.隋学礼译.统计数据的真相, 2008.
    [87]库特纳.应用线性回归模型.高等教育出版社, 2005.
    [88]约翰逊,威客恩.陈旋,叶俊译.实用多元统计分析(第6版).清华大学出版社, 2008
    [89]师义民,徐伟,秦超英.数理统计.科学出版社, 2009.
    [90]杜荣骞,生物统计学(第3版).高等教育出版社, 2009.
    [91] Kauffman S. The large scale structure and dynamics of gene control circuits: an ensemble approach’. Journal of Theoretical Biology, 1974, 44:167-190.
    [92] Watts DJ, Strogatz S H. Collective dynamics of‘small-world’networks. Nature, 1998, 393: 440–442.
    [93] Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512.
    [94] Albert R, Barabasi A L. Toppoligy of evolving networks: local events and universality.Physical Review Letters, 2000, 85: 234–5237.
    [95] Featherstone D E, Rushton E, Broadie K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nature Neuroscience, 2002, 5:141–146.
    [96] Mendes P, Sha W, Ye K.Artificial gene networks for objective comparison of analysis algorithms. 2003, 19,(2):122-129.
    [97] Kauffman S. The large scale structure and dynamics of gene control circuits: an ensemble approach. Journal of Theoretical Biology, 1974, 44:167-190.
    [98] Mendoza L. et al. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics, 1999, 15:593-606.
    [99] De la Fuente A, Brazhnik P, Mendes P. Linking the genes: inferring quantitative gene networks from microarray data. Trends in Genetics. 2002(18) 295-298.
    [100] Xu G, Lu F, Yu H, Xu Z, A Distributed Parallel Computing Environment for Bioinformatics Problems. Sixth International Conference on Grid and Cooperative Computing (GCC 2007), 2007: 593-599.
    [101] Du Z, Lin F. A novel parallelization approach for hierarchical clustering. Parallel Computing, 2005, 31:523–527.
    [102] Quest D, Dempsey K, Shafiullah M, Bastola D, Ali H H. A parallel architecture for regulatory motif algorithm assessment. Parallel and Distributed Processing (IPDPS08) 2008: 1-8.
    [103] Gough E S, Kane M D. Evaluating Parallel Computing Systems in Bioinformatics. Proceedings of the Third International Conference on Information Technology. 2006, 233-238.
    [104] Araujo R, Trielli G, Orair G, et al. ParTriCluster: A Scalable Parallel Algorithm for Gene Expression Analysis. International Journal of Parallel Programming. International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06), 2006: 3-10.
    [105] Vera G, Jansen R C, Remo L. R/parallel-speeding up bioinformatics analysis with R. BMC Bioinformatics. 2008, 9(390):1471-2105
    [106] Zomaya A Y. Parallel Computing for Bioinformatics and Computational Biology: Models, Enabling technologies and Case Studies. Wiley- Interscience Press, 2006.
    [107] Dongarra J, Foster I, Fox G, et al.莫则尧,陈军,曹小林等译.并行计算综论.电子工业出版社, 2005.
    [108]陈国良.并行计算--结构.算法.编程.高度教育出版社, 2001.
    [109]付朝江.集群MPI环境下有限元结构分析并行计算研究.博士学位论文.上海大学, 2006.
    [110]都志辉.高性能计算之并行编程技术--MPI并行程序设计.清华大学出版社. 2002.
    [111] Xiao M, Zhang L W, He B, Xie J, Zhang W. A Parallel algorithm of constructing generegulatory networks. The Third International Symposium on Optimization and Systems Biology (2009.ORSC & APORC), 20-22 Sep, 2009:184-188.
    [112] Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 651-654.
    [113] Erd?s P, Rényi A. On random graphs. Publ Math Debrecen, 1959, 6: 290-297.
    [114] Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268-276.
    [115] Jeong H, Mason S P, Barabasi A L, Oltvai Z N. Lethality and centrality in protein networks, Nature (2001)411:41- 42.
    [116] Eisenberg E, Levanon E Y, Proferential attachment in the protein network evolution. Physics Review Letter, 2003,91: 138701-138704.
    [117] Soranzo N, Bianconi G, Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data, Bioinformatics, 2007, 23: 1640-1647.
    [118] Lee T I, Rinaldi N J, Robert F et al. Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, 2002, 298: 799-804.
    [119] Shinar G, Dekel E, Tlusty T, Alon U. Rules for biological regulation based on error minimization. PNAS, 2006(103):3999-4004.
    [120] Li F T, Long T, Lu Y, Ouyang Q, Tang C, The yeast cell-cycle netwrok is robustly designed, Proceedings of the National Academy of Sciences, 2004(101):4781-4786.
    [121] Tyers M. Cell cycle goes global. Current Opinion in Cell Biology, 2004, 16:602-613.
    [122] Li F T, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle cutwork is robustly designed, Proceedings of the National Academy of Sciences, 2004, 101:4781- 4786.
    [123] Kitano H. Biological rebustness, Nature Reviews Genetics, 2004, 5: 826-837.
    [124] Fengli R, Jinde C. Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Nerocomputing, 2008, 71:834-842.
    [125] Crombach A, Hogeweg P. Evolution of Evolvability in Gene Regulatory Networks. PLoS Computational Biology, 2008, 4: e1000112
    [126] Mering C et al. Comparative assessment of large-scale data sets of protein-protein interactions in yeast. 2000, 18:1257-1261.
    [127] Xiaohua L, Hongyan G, Yuanwei J. Robust decentralized connective stabilization for expanding construction of large-scale systems, Automation and Logistics (ICAL 2008), 2008, 1121– 1125.
    [128]郭雷,许晓鸣.复杂网络.上海科技教育出版社, 2006.
    [129] Mendes P. et al. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics, 2003, 19 (2), ii122–ii129.
    [130] Kyoto Endyclopedia of Genes and Genomes, http://www.genome.jp/kegg/.
    [131] Schumacher M, Binder H, Gerds T, Assessment of survival prediction models based on microarray data. Bioinformatics, 2007, 23(14) 2007:1768–1774.
    [132] Marbach D, Schaffter T, Mattiussi C, Floreano D, Generating Realistic in silico Gene Networks for Performance Assessment of Reverse Engineering Methods. Journal of Computational Biology, 2009, 16(2): 229-239.
    [133] Aleman-Meza B, Yu Y H, Schüttler H B, Arnold J, Thiab R. Taha. KINSOLVER: A simulator for computing large ensembles of biochemical and gene regulatory networks, Computers and Mathematics with Applications, 2009, 57:420-435.
    [134] Subodh B R, Venkatesh K V. Steady state approach to model gene regulatory networks-Simulation of microarray experiments. BioSystems, 2007, 90:636-655.
    [135]谭璐,姜璐.系统生物学与生物网络研究.复杂系统与复杂性科学, 2005, 2(4):1-9.
    [136] Adriano V W, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics. 2006, 22(20): 2523–2531.
    [137] Schlitt T, Brazma A. Current approaches to gene regulatory network modelling. BMC Bioinformatics. 2007, 27(8):S9.
    [138] Soranzo N, Bianconi G, Altafini C, Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data ,Bioinformatics, 2007, 23(13):1640–1647.
    [139] Bansal M, Belcastro V, Ambesi-Impiombato A, Di Bernardo D. How to infer gene networks from expression profiles. Molecular Systems Biology, 2007, 3:78.
    [140] Davis J. and Goadrich M. The relationship between precision-recall and ROC curves. Proc. the 23rd international conference on machine Learning, 2006, 148, 233-240.
    [141] Basso K., Margolin A A., Stolovitzky G. et al. Reverse engineering of regulatory networks in human B cells. Nature Genetics, 2005, 37, 382–390.
    [142] Yu J, Smith V A, Wang P P, et al. Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 2004(20), 3594-3603.
    [143] Amato R, Ciaramella A, Deniskina N, et al. A multi-step approach to time series analysis and gene expression clustering. Bioinformatics, 2006, 22, 589- 596.
    [144] Doetsch F, Scharf C. Challenges for brain repair: Insights from adult neurogenesis in birds and mammals. Brain, Behavior and Evolution, 2001, 58(5):306-322.
    [145] Wen T Q, Gu P, Chen F X. Discovery of two novel functional genes from differentiation of neural stem cells in the striatum of the fetal rat. Neuroscience letters, 2002, 329: 101-105.
    [146] Wang L, Wang J, Wu Y L, et al. A novel function of dcf1 during the differentiation of neural stem cells in vitro. Cell mol neurobiol, 2008, 28: 887-894.
    [147] Lennington J B, Yang Z G, Conover J C. Reproductive biology and endocrinology, 2003, 1:1-7.
    [148] Alvarez-Buylla A, Garcia-Verdugo J M, Tramontin A D. A unified hypothesis on the lineage of neural stem cells. Nature reviews neuroscience, 2001, 2: 287-293.
    [149] Okamoto K, Wakamiya M, Noji S, et al. A novel class of murine POU gene predominantly expressed in central nervous system. The journal of biological chemistry, 1993, 268 (10): 7449-7457.
    [150] http://www.genomatix.de/cgi-bin/eldorado/eldorado.pl?s=2be47b31ff52c01e69fcbf9c0fff2bbd;PROM_ID=GXP_68691;ELDORADO_VERSION=E20R0903;GROUP=vertebrates;GROUP=others

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700