高功率垂直腔面发射激光器的设计及制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直腔面发射激光器(VCSELs)自问世以来,成为许多应用领域特别诱人的光源,如在光通信,光计算,光互联,激光打印及光存储等方面。VCSELs的主要优点是其低成本的制作与封装,低驱动电流,低发散角的圆形光束及可实现一维(1D)、二维(2D)高密度集成。近几年来,性能优异的氧化物限制型VCSELs不断被报道,主要涉及其低阈值电流,高输出功率,高电光转换效率,低工作电压,高调制带宽和高产额。本文主要开展了关于高功率垂直腔面发射半导体激光器的设计及其关键技术的研究工作,具体体现在以下几方面内容:
     1.优化设计分布布拉格反射镜(DBR),测试结果表明这种DBR反射镜在保持很高的峰值反射率的同时其串联电阻也很小,使VCSEL中这一主要热源产生的焦耳热大大减少。
     2.优化设计有源区及光腔,增加载流子注入到量子阱中的效率,减少侧向电流泄漏和光散射损耗,使有源区对激射模式提供较大的光增益效率。
     3.优化设计高Al组分的Al_xGa_(1-x)As氧化物限制层,综合考虑了氧化层的厚度和位置对激射模式的影响以及高铝AlxGal-xAs氧化后体积收缩产生应力的作用等因素,我们将氧化物限制层的位置进行了调整,在有源区外生长3对DBR后再加入氧化物限制层,有效抑制了氧化模式并缓解了氧化层的应力对有源区的影响,同时因氧化层放在腔内光场驻波波腹位置,可以降低衍射损耗和阈值电流。
     4.优化设计氧化孔径和外部台面的尺寸及它们的比,获得最佳的散热结构。
     5.深入研究选择性氧化技术,提出采用环形分布孔取代环形沟槽作为氧化窗口的方案。环形分布孔为电注入提供了便捷的桥接通道,很好的解决了电极过沟时易断线问题,器件也表现了良好的输出特性。测试结果表明:不仅环形分布孔结构器件的输出功率比环形沟槽的提高了0.34倍,且两种结构的阈值电流几乎相同,约为1.6mA,这说明环形分布孔结构对电流的限制作用并未减弱。
     6.研究了垂直腔面发射激光器制作中的选择性氧化工艺,针对氧化温度,载气N_2的流量及台面结构几何形状对氧化特性的影响进行了详细讨论,得到与以往文献报道不同的选择性氧化规律,温度低于435℃时,Al_(0.98)Ga_(0.02)As的选择性氧化遵循线性生长规律,这对于我们在VCSEL中采用的两种台面结构都是如此,温度
Vertical-cavity surface-emitting lasers (VCSELs) have emerged as attractive light sources for various applications in optical communication, optical computing, optical interconnects, laser printing, and optical storage, etc. The main advantages are their low-cost fabrication and packaging, low drive currents, low divergence circular beams, and the possibility of integration in 1-D and 2-D arrays with high density. Over the past few years, the excellent performance of oxide-confined VCSELs has been reported in the literatures in terms of low threshold current, high output power, high wall-plug efficiency, low operating voltages, a high intrinsic modulation bandwidth, as well as very high fabrication yields. Here, designs and key techniques have been presented for high power VCSELs. Contents are in detail as follows:
    1. Distributed Bragg reflectors (DBRs) have been optimally designed. Testing results show that these DBRs have high peak reflectivity with low series resistance, which makes the heat generated by series resistance of the device reduced greatly.
    2. Optimizing active layer and cavity is to increases injected current carriers into quantum wells and reduce lateral current leakage and optical scattering loss. Thus, active region can provide lasing mode with great light gain efficiency.
    3. Optimal design has been done on Al_xGa_(1-x)As layer with high Al content, which will be oxided for current and light confinement, taking into account effects of thickness and position on lasing mode, as well as stress resulting from oxidation of Al_xGa_(1-x)As layer with high Al content. The layer position has been adjusted by being placed in the fourth DBR pair above the active region to suppress oxidation mode and relieve stress effect on active layer. Further more, the oxidation layer placed on anti-node
引文
1 K Iga, F Koyama, S Kinoshita. Surface emitting semiconducter lasers. IEEE J. Quantum Electron. 1988, 24(9): 1845-1855
    2 K Iga. Surface-emitting-laser-its birth and generation of new optoelectronic field. IEEE. J. Select. Topics Quantum Electron. 2000, 6(6):1201-1215
    3 C Jung, R King, R Jager et al. 64 Cbannel Flip-chip Mounted Selectively Oxidized GaAs VCSEL array for Parallel Optical Interconnects, on Vertical-Cavity Surface-Emitting Lasers Ⅲ. SPIE. 1999, 3627: 143-151
    4 黄德修、刘雪峰 半导体激光器及其应用.北京:国防科学技术出版社,1999,62-65
    5 Y P Lan Yung-Fu Chen K F Huang et al. Oxide Confined Vertical-Cavity Surface-Emitting Lasers Pumped Nd: YVO4 Microchip Lasers. IEEE Photon. Tech. Lett. 2002, 14(3):272-274.
    6 K Iga et al. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phus. 1979, 18: 2329
    7 刘育梁,刘恩科,刘志敏等.大截面单模半导体脊形交叉波导传输特性[J].光学学报.1994.14(3):292-295
    8 Pallab Bhattacharya, Herte Gebretsakik, Omar Qasaimeh et al. 1.55μm Vertical Cavity surface Emitting Lasers with Diretly Grown AlGaAs/Gahs and AlxOy/GaAs DBR Mirrors, on Vertical-Cavi ty Surface-emitting Lasers Ⅲ. SPIE. 1999, 3627: 112-117
    9 Gerhard Boehm, Markus Ortsiefer, Robert Shan et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0μm [J]. J. Crystal Growth. 2003, 251: 748-753
    10 Klem J F, Serkland D K, Geib K M. Advances in 1300nm InGaAsN Quantum Well VCSELs[J]. Proc. SPIE. 2002, 4646: 137-144.
    11 K Iga, S Ishikawa, S Ohkouchi et al. Room-temperature pulsed oscillation of GaAlAs/GaAs Surface-emitting injection laser. Appl. Phys. Lett. 1984, 45:348-350
    12 K Iga et al. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phus. 1979, 18: 2329
    13 K Iga, F Koyama, S Kinoshita. Surface emitting semiconducter lasers. IEEE J. Quantum Electron. 1988, 24 (9): 1845-1855
    14 R S Geels, S W Corzine, L A Coldren. IEEE J. Quantum Electron. 1991, 27(6): 1359
    15 T Baba, Y Yogo, K Suzuki. Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser. Electron. Lett. 1993, 29(10): pp913-914
    16 K Uomi. Low threshold, room temperature pulsed opesration of 1.5um vertical-cavity surface-emitting lasers with an optimized multi-quantum well active layer. IEEE Photon. Technol. Lett. 1994, 6(3): 317
    17 毛容伟,左玉华,成步文等.1.3-1.5光通信用VCSEL的研究进展[J].光子技术.2005,(1):1-5
    18 T Someya, K Tachibana, Y Arakawa et al. Lasing oscillation in InGaN vertical cavity surface emitting lasers. 16th International Semiconductor Laser Conference. PD-1, 1998, 1-2
    19 M Hiller, M Grabherr, R King et al. Improved output performance of high-power VCSELs[J]. IEEE Selected Topics Quantum Electron. 2001, 7:210-216
    20 李惠青,张杰,崔大复等.高功率垂直腔面发射半导体激光器优化设计研究[J].物理学报,2004,53(9):2986-2990
    21 宁永强.《面发射激光器·腔内倍频》专题文章导读.光学精密工程.2005,13(3)
    22 张永明.无铝大功率半导体激光器的热特性分析[博士学位论文].2005
    23 Raymond J. Beach. Applications of Microlens-Conditioned Laser Diode Arrays. SPIE. 1995, 2383: 283-297
    24 A Gillner, P Loosen, D Petting et al. Industrial Applications of High Power Lasers, Proc. ICALE099, San Diego, USA, in press, 1999
    25 江剑平.半导体激光器.电子工业出版社,2000
    26 解金山.半导体激光器理论与制造.武汉大学出版社,1990
    27 蔡伯荣,半导体激光器.电子工业出版社,1995
    28 黄德修,半导体光电子学.电子工业出版社,1998
    29 曲融会等.激光与光电子学进展.1999,(12):30-41
    30 F Daiminger. High power laser diodes, laser diode modules and their applications. SPIE. 1998, 3682: 13-23
    31 张兴德.大功率半导体激光器在军事领域的应用.光电子(内部资料),1998,12-16
    32 Breck Hitz, Senior Technical Editor. Military Project Aims to Improve Diode Laser Efficiency. Photonics Spectra. 2005, No. 1
    33 L Arthur D'Asaro. Jean-Francois Seurin and James D. Wynn. High-Power, High-Efficiency VCSELs Pursue the Goal. Princeton Optronics Inc. Photonics Spectra, 2005, No. 2
    1 中井贞雄(日).激光工程.北京:科学出版社,2002
    2 赵红东,陈国鹰.张存善等.量子阱垂直腔面发射激光器及其微腔物理 激光与光电子学进展.2001,(4):19-21
    3 Abram I, Robert I and Kuszelewicz R. IEEE J. Quantum. Electron. 1998, 34:71
    4 赵红东,张以谟,张存善等.半导体学报.2000,21:984
    5 郭长志,陈水莲.物理学报.1997,46:1731
    6 赵红东,康志龙,王胜利等.高速调制响应垂直腔面发射激光器中的微腔效应.物理学报,2003,52(1):77-80
    7 Li H E, Iga K. Vertical-cavity Surface-emitting Laser Devices (Berlin: Springer-Verlag). 2003, 56-59
    8 晏长岭.垂直腔面发射激光器的研制及其特性分析[博士学位论文].2000
    9 J K Dutta. Analysis of current spreading, carrier diffusion and transverse mode guiding in surface emitting lasers. J. hppl. Phys. Lett. 1990, 68(5):1961-1963
    10 T Kobayashiand Y Furukawa. Temperature distributions in the GaAs-AlGaAs double heterostructure laser below and above the threshold current. J.J. Appl. Phys., 1975, 14:1981-1986.
    11 Papannareddy R, Ferguson W, Butlet J K. A generalized thermal model for stripe-geometry injection lasers. J Appl Phys. 1987, 62(9);3565
    12 Nakwaski W, Osinski M. Thermal properties of etched-well surface-emitting semiconductor lasers. IEEE J Quantum Electron. 1991, 27(6):1391
    13 S S Kutateladze and V M Borishanski. A concise encyclopedia of heat transfer, permagon, Oxford, 1966
    14 Carl Wilmsen, Henryk Temkin and Larry A. Vertical-cavity surface-emitting semiconductor lasers design, fabrication, characterization, and applications. Coldren(Eds.); Cambridge University Press, Cambridge. 1999
    1 Y G Zhao, J G Mclnerney. Transient temperature response of vertical-cavity surface-emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics. 1995, 31(9):1668.
    2 Nakwaski W, Osinski M. Thermal properties of etched-well surface-emitting semiconductor lasers. IEEE J Quantum Electron. 1991, 27(6):1391
    3 Peters M G, Thibeault B J, Young D Bet al. Band gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers, Appl Phys Lett. 1993, 63: 3411
    4 杜宝勋.半导体激光器原理[M].北京:兵器工业出版社.2001
    5 高洪海,林世鸣,康学军等.垂直腔面发射激光器热特性的实验研究[J].光子学报,1997,26(6):522-526
    6 刘立新,赵红东,曹萌.垂直腔面发射激光器热场特性分析[J].纳米器件与技术,2003,4
    7 康香宁,陈良惠.VCSEL中布拉格反射体的电流机制和伏案特性.固体电子学研究与进展.2004,24(1):59
    8 马丽娜,郭霞,渠红伟等.渐变分布布拉格反射镜特性分析与测试[J].传感器世界,2005,6:15-18
    9 Carl Wilmsen, Henryk Temkin and Larry A. Vertical-cavity surface-emitting semiconductor lasers' design, fabrication, characterization, and applications. Coldren(Eds.); Cambridge University Press, Cambridge. 1999
    10 K Tai, L Yang, Y H Wang et al. Drastic reduction of series resistance in doped semiconductor distributed Bragg reflectors for surface-emitting lasers[J]. Appl. Phys. Lett. 1990, 56(25): 2496-2498.
    11 M Sugimoto, H Kosaka, K Kurihara et al. Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed bragg reflectors. Electron. Lett. 1992, 28: 385-387.
    12 M G Peters, B J Thibeault, D B Young et al. Band-gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers, Appl. Phys. Lett. 1993, 63: 3411-3413.
    13 R Tsu and L Esaki. Tunneling in a finite superlattice, Appl. Phys. Lett. 1973, 22(11):562-564
    14 David W. Winson and Russel E. Hayes. Optoeletronic device simulation of Bragg reflectors and their influence on surface-emitting lasers characteristics. IEEE J. Qanatum Electron. 1998, 34(4): 705-707
    15 晏长岭.垂直腔面发射激光器的研制及其特性分析[博士学位论文].2000
    16 M Osinski and W Nakwaski. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays. IEEE J. Select. Topics Quantum Electron. 1995, 1: 681-696
    17 M Maiorov, R Menna and V Khalfin. 218W quasi-CW operation of 1.83μm two-dimension laser diode array. Electronics letters. 1999, 358: 636-638
    18 Y Suematsu. J. Light wave. 1983, 1:161
    19 Y Havashi, T Mukaihara, N Hatori et al. Record low threshold index guided InGaAs/GaAlAs vertical caviy surface emitting laser with a native oxide confinement structure. Electron lett. 1995, 31: 560-561
    20 K L Lear, S P Kilcovne and S A Chalmers. High power conversion efficiencies and scaling issues for multimode vertical cavity top surface emitting lasers. IEEE Photon Technol. Lett. 1994, 6:778-781.
    21 金珍花,孙艳芳,宁永强等.980nm大功率垂直腔底发射激光器[J].红外与毫米波学报.2005,24(1):61-64
    22 Barkou S E. Dispersion properties of photonic bandgap guiding fibers[A]. OFC1999 [C]. San Diego, California, USA: 1999.
    23 Bjarklev A. Dispersion properties of photonic crystal fibres [A]. ECOC 1998 [C]. Madrid, Spain: 1998
    24 李孝峰,潘炜,罗斌等.多次外光反馈下垂直腔面发射激光器非线性动态特性理论研究[J].中国激光.2004.31(12):1450-1454
    25 Marek Osinski, Tengiz Svimonishvili, Gennady A. Smolyakov et al. Temperature and Thickness Dependence of Steam Oxidation of AlAs in cylindrical Mesa structures [J]. IEEE Photonics Technology Letters. 2001, 13(7): 687-689
    26 Choquette K D, Schneider P R, Jr Lear KL et al. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron Lett. 1994, 30:2043
    27 康香宁,宋国峰,叶晓军等.高铝Al x Gal-xAs氧化层对垂直腔面发射激光器的影响.半导体学报2004,25(5):589-592
    28 王海嵩,杜国同,许成栋等.钨丝掩模大角度倾斜离子注入850nm垂直腔面发射激光器及其高频调制特性.半导体学报.2004,25(9):1143
    29 Piprekl J. Electro-thermal analysis of oxide-confined vertical-cavity lasers. Phys Status Solidi. A, 2001, 188(3): 905
    30 Pinches S M, Onishenko A, Sale TE et al. Free carrier absorption in red VCSELs'. IEEE Conference on lasers and Electro-Optics. San Francisco, Technical Digest. 1999, 794-795
    31 S M Pinches, J E Frost, P M Martin et al. Thermal effects in AlGaAs/AlGaInP VCSELs. IEEE. Proc. -Optoelectron. 2000, 147(1):11-14
    32 李相民.陈静.可见光垂直腔面发射激光器的性能模拟.北京理工大学学报.2005,25(1):71-74
    33 R Rossbach, T Ballmann, R Butendeich et al. Red VCSEL for high-temperature applications. Journal of Crystal Growth. 2004, 272: 549-554
    34 MacDougal M H, Geske J, Lin C k et al. Low resistance intracavity-contacted oxide-aperture VCSELs. IEEE Photonics Technol Lett. 1998, 10(1): 9
    1 Marek Osinski, Tengiz Svimonishvili, Gennady A. Smolyakov et al. Temperature and Thickness Dependence of Steam Oxidation of AlAs in cylindrical Mesa structures[J]. IEEE Photonics Technology Letters. 2001, 13(7): 687-689
    2 B Demeulenaere, P Bienstman, B Dhoedt et al. Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized modal performance[J]. IEEE Quantum Electronics. 1999, 3(35): 358-367
    3 Wen-Jang Jiang, Lung-Chien Chen, Meng-Chyi Wu et al. A new process to improve the performance of 850nm wavelength GaAs VCSELs[J]. Solid-State Electronics. 2002,46:2287-2289
    4 李轶华,氧化物限制型垂直腔面发射激光器[硕士学位论文].2004
    5 Gennady A. Smolyakov, Vladimir A. Smagley, Wlozimizerz Nakwaski et al. SPIE Conference on Physics and Simulation of Optoelctronic Devices Ⅶ. San Jose, California, 1999, 3625: 324-335
    6 Marek Osinski and Gennady A. Smolyakov. SPIE Conference on Design, Fabracation and Characterization of Photonic Devices, Singapore, 1999, 3896: 143-154
    7 Giorgio Giaretta, M Y Li, Gabriel S Li et al. A novel 4×8 single-mode independently addressable oxide-isolated VCSEL array[J]. IEEE Photonics Technology Letters. 1997, 9(9): 256-260
    8 刘成,吴惠桢,劳燕锋等.气态源分子束外延1.3μVCSEL器件结构.功能材料与器件学报.2005,11(2):174
    9 M Grabherr, M Miller, R Jager et al. High-power VCSEL's: single devices and densely packed 2-D-arrays[J]. IEEE Sel. Top. Quantum Electron. 1999, 5: 495-502
    10 M Miller, M Grabherr, R King et al. Improved output performance of high-power VCSELs[J]. IEEE Selected Topics Quantum Electron. 2001, 7: 210-216
    11 施敏.半导体器件与物理.北京:科学出版社.1992
    12 Stephen A.Campbell.微电子制造科学原理与工程技术.北京:电子工业出版社,2003
    13 Hao Yongqin, Zhong Jingchang, Ma Jianli et al. Characteristics of selective oxidation during the fabrication of vertical cavity surface emitting laser[J]. Chinese Physics. 2006,15(8):1-4
    14 Choquette K D, Geib K M and Ashby C I H. IEEE J. Select. Topics Quantum Electron. 1997, 3:916
    15 MacDougal M H, Dapkus P D and Pudikov V. IEEE Photon. Technol. Lett. 1995, 7: 229
    16 Li H Q. Zhang J, Cui D F et al. Acta Physica Sinica. 2004, 53: 2986
    17 Lear K L, Choquette K D, Schneider R P et al. Electron Lett. 1995, 31: 208
    18 Yue A W, Zhang W, Zhan D P et al. Chinese Journal of Semiconductors. 2003, 24: 693
    19 Osinski M, Svimonishvili T, Smolyakov G A et al. IEEE Photon. Technol. Lett. 2001, 13:687
    20 Choquette K D, Lear K L, Schneider R P et al. IEEE Photon. Technol. Lett. 1995, 7: 1237
    21 Ochiai M, Giudice G E, Temkin H et al. Appl. Phys. Lett. 1996, 68: 1898
    22 Hao Y Q, Zhong J C, Xie H R et al. Chinese Journal of Semiconductors. 2005, 26: 2290
    23 康香宁,宋国峰,叶晓军等.高铝AlXGal-XAs氧化层对垂直腔面发射激光器的影响.半导体学报,2004,25(5):589-592
    24 Zhang Y, Pan Z, Du Y et al. Chinese Journal of Semiconductors. 1999, 20: 260
    25 Alonzo A C, Ceng X C and McGill T C. Journal of Applied Physics. 1998, 84: 6901
    1 PAWEL MACAKOW IAK AND WLODZIMIERZ NAKWASKI. Thermal aspects of designing CW-operated nitride VCSELs. Optical and Quantum Electronics. 1999, 31: 1179-1188
    2 赵鼎,林世鸣.VCSEL稳态热特性分析.光电子·激光.2004,15(1):21-24
    3 渠红伟,郭霞,董立闽等.垂直腔面发射激光器温度特性的研究.激光与红外.2005,35(2):83-86
    4 B Tell, K F Brown-Goeheler, Y H Lee et al. Temperature dependence of GaAs-AlGaAs vertical-cavity surface-emitting lasers[J].Appl. Phys. Lett. 1992, 60(8):683-685
    5 B Lu, P Zhou, K J Malloy et al. High temperature pulsed and CW operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett. 1994, 65(11): 1337—1339
    6 张永明,钟景昌,赵英杰等.850nm氧化物限制VCSEL温度特性研究.半导体学报.2005,26(5):1024-1027
    7 石家纬,金恩顺,李正庭等.半导体激光器可靠性检测分析方法及其装置.专利号:95107991.3
    8 张永明.无铝大功率半导体激光器热性能研究[博十学位论文].2005
    1 伊贺健一,小山二三夫.面发射激光器基础与应用.北京:科学出版社.2002
    2 L Arthur D Asaro, Jean-Francois Seurin and James D Wynn. High-Power, High-Efficiency VCSELs Pursue the Goal. Princeton Optronics Inc. Photonics Spectra. 2005, 2
    3 Y H Lee, J L Jewel1, K F Brown-Goebeler and A. Sherer. Effects of etch depth and ion implantation on surface emitting microlasers. Electron. Lett. 1990, 26:225-227
    4 C C Wu, K Tai, Z C Huangand K F Huang. Reliahility studies of gain guided 850nm GaAs/AlGaAs quantum well surface emitting lasers. IEEE Photon. Technol. Lett. 1994, 6: 37-39.
    5 李雪梅.博士学位论文.1998
    6 C Chang-Hasnain, M Orenstein and A C Von Lehwen. Tunable surface emitting laser arrays. IEEEJ. Quantum Elctron. 1991, 27: 1369,
    7 晏长岭,博士学位论文.2000
    8 D Yakshoori. Low threshold reliable vertical cavity surface emitting laser arrays system application. SPIE. Bellingham, WA. 1994, 2147
    9 Z Yoshikawa, H Kosaka, K Kurihara et al. Complete polarization control of 8×8 vertical cavity surface emitting laser matrix arrays. Appl. Phys. Lett. 1995, 66:908-910
    10 D L Huffaker, L A Graham and D G Deppe. Fabrication of high-packing-density vertical cavity surface-emitting laser arrays using selective oxidation. IEEE Photon. Zechnol. Lett. 1996, 8(5): 596-598
    11 李轶华.硕士学位论文.2004
    12 H Yang, L J Mawst and M Nesnidal. Ten watt near diffraction-limited peak pulse power from Al-free, 0.98μm emitting, phase-locked, antiguided arrays. Electronics letters. 1997, 332: 136-137
    13 M Grabherr, M Miller and R Jager. Efficient bottom-emitting VCSEL arrays for high CW operation output power. Electronics Letters, 1998, 34: 1227-1228
    14 Changling Yan, Jingchang Zhong and Yingjie Zhao. A study of thermal interaction in semiconductor laser arrays. SPAT, 2000, 12(2):90-95,
    1 Wiedenmann D, King R, Jung C, et al. Design and analysis of single-mode oxidized VCSEL's for high-speed optical interconnects. IEEE J Select Topics in Quantum Electron. 1999, 5(3): 503-511
    2 Chow W W, Choquette K D, Crawford M H, et al. Design, fabrication, and performance of infrared and visible VCSELs. IEEE J Quantum Electron, 1997, 33(9): 1810-1823
    3 Blixt P, Babic D, Streubel K, et al. Single-mode 1GB/s operation of double-fused vertical-cavity lasers at 1.54μm. IEEE Photon Technol Lett. 1995, 8(5): 700-702
    4 Geels R S, Corzine W S, Coldren A L. InGaAs vertical cavity surface emitting lasers. IEEE J Quantum Electron. 1991, 27(6):1359~1367
    5 Peters H F, Peters GM, Young B D et al. High power vertical cavity surface emitting lasers. Electron Lett. 1993, 29:200-201
    6 Grabherr M, Miller M, Jager R. High power VCSEL's: single device and densely packed 2-D arrays. IEEE J Select Topics in Quantum Electron, 1999, 5(3):495-502
    7 Grabherr M, Jager R, Miller M. Bottom-emitting VCSEL's for high-CW optical output power. IEEE Photon Technol Lett. 1998, 10:1061-1063
    8 Choquette D K, Hou Q H, Geib M K, et al. Uniform and high power selectively oxided 8×8 VCSEL arrays. Proc. IEEE/LEOS Summer Topical Meetings, Montreal, Canada. 1997, 11-12
    9 Miller M, Grabherr M, King R, et al. Improved output performance of high-power VCSELs. IEEE J Select Topics in Quantum Electron, 2001, 7(2): 210-216
    10 李惠青,张杰,崔大复.高功率垂直腔面发射半导体激光器优化设计研究.物理学报,2004,53(9):2986-2990
    11 宁永强.《面发射激光器·腔内倍频》专题文章导读.光学精密工程.2005,13(3)
    12 Aram Mooradiann, chief technical officer of Novalux, Sunnyvale, CA. Pump up the power. OE magazine, the Monthly Publication of SPIE, 2002, 4: 30—33
    13 Peters F H, Peters M G, Young D B, et al. Electron Lets. 1993, 29: 200
    14 Grahherr M, Weigl B, Refiner G, Miller M et al. 1996 Electron lett. 32: 1723
    15 Grahherr M, Jager R, Miller M et al. IEEE Photon. Teclnol. Lett. 1998, 10: 1061
    16 Choquette K D, Hou H Q, Ceib K M et al. 1997 Proc. IEEE/LEOS Summer Topical Meetings, Montreal. Canada, Aug. 11—12
    17 Francis D, Chen H L, Yuen W et al. Elec(?)ron lett. 1998, 34: 2132
    18 Huffaker D L, Deppe D G and Kumar K. Appl. Phys. Lett. 1994, 65: 97
    19 Micro-Optics Conference, High power extended Vertical cavity surface emitting diode lasers and arrays and their application. Tokyo, November 2005,2
    20 J Wu, G Iordache and H D Summers. VCSEL Pumped, Planar Cavity, Low Threshold Nd: YV04 Microchip Lasers. Department of Physics & Astronomy, Cardiff University, Cardiff, CF24 3YB, Wales, UK
    21 Hardley G R, Warren M E, Choquette K D et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics. 1996, 32(4): 607-616
    22 李相民,陈静.可见光垂直腔面发射激光器的性能模拟.北京理工大学学报.2005,25(1):71-74
    23 W NAKWASK AND P MAC' KOWIhK. Transverse-mode selectivity in possible nitride vertical-cavity surface-emitting lasers. Optical and Quantum Electronics. 2003, 35: 1037-1054
    24 Wen-Jang Jiang, Meng-Chyi Wu, Hsin-Chieh Yu et al. Solid-State Electranics. 2002, 46:1945-1948
    25 G C Wilson, D M Kutchta, J D Walker et al. Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes. Appl. Phys. Lett. 1994, 64(5): 545-544
    26 A Valle, J Sarma and K A Shore. Spatial hole burning effects on the dynamics of vertical cavity surface-emitting laser diodes. IEEE J. Quantum Electron. 1995, 31(8): 1423-1431
    27 J Y Law and G P Agrawal. Effects of Spatial hole burning on gain switching in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 1997, 33: 462-468
    28 R Schatz. Dynamics of spatial hole burning effects in DFB lasers. IEEE J. Quantum Electron. 1995, 31(11): 1981-1993
    29 W Nakwaski. Thermal aspects of efficient operation of vertical-cavity surface-emitting lasers. Optical. and Quantum Electronics. 1996, 28: 335-352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700