垂直腔半导体光放大器理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直腔半导体光放大器(VCSOA)作为一种新型的光放大器有着许多传统边发式半导体光放大器(SOA)以及掺铒光纤放大器(EDFA)都无法比拟的优点,在众多光纤通信领域都有着潜在的应用前景。到目前为止关于VCSOA的理论和实验方面的研究已经取得了一系列成果,本文的工作是建立在已有的研究成果基础上,围绕着VCSOA的稳态增益、光学带宽、调制响应、光脉冲放大以及小信号频率响应等工作特性而展开,具体内容包括:
     针对现有VCSOA的理论研究模型多采用等效腔的现状,基于VCSOA由多层介质交替生长的结构特点,将其视为一个整体,构建其传输矩阵模型。该模型考虑了谐振腔内介质折射率的不连续性和有源区内载流子浓度和光强的纵向分布。使用该模型不再需要对分布布拉格反射镜(DBR)的反射率、有效腔长度、增益增强因子以及输入信号注入耦合效率等参数分别计算,方便了理论上的讨论。
     在稳态工作条件下,利用这个传输矩阵模型研究了VCSOA在反射模式的输入光功率对腔内载流子浓度分布的影响、光学带宽、以及增益饱和等特性。结果表明,输入光功率的大小直接影响腔内载流子密度纵向空间分布的均匀性,在小信号光情况下可以使用载流子分布均匀的假设,而当输入光功率接近饱和区时载流子的空间分布很不均匀;顶部DBR的周期数对VCSOA的光学带宽和输入饱和功率有很大影响,适当减少其周期可以拓宽VCSOA的工作带宽,改善VCSOA的增益饱和特性;一定范围内输入光功率对VCSOA的带宽特性也有比较大的影响;在传输矩阵模型中必须考虑腔内不同介质间界面上的光反射和折射对模型才能够真实反映周期增益结构中的驻波效应。
     将传输矩阵模型扩展到动态工作范围,数值模拟了反射工作模式下,VCSOA在短脉冲通过后发生的时域波形畸变、有源区内载流子密度和增益在脉冲放大过程中的变化以及脉冲放大的能量增益等VCSOA的脉冲工作特性。结果表明:随着脉冲的注入,因受激辐射增强而引起的增益饱和效应使得输出光脉冲的时域波形发生畸变;抽运光功率、DBR周期数以及输入脉冲能量都对脉冲放大的能量增益有一定影响;在同样偏置条件下减小DBR周期数可以改善脉冲放大中的能量增益饱和特性。另外,在输入脉冲宽度远小于载流子寿命时脉宽对VCSOA的能量增益饱和特性几乎没有影响,而在DBR周期一定时抽运光功率的增大会导致能量增益饱和特性的劣化。
     从VCSOA的速率方程组出发,考虑了量子阱材料中的增益和载流子浓度之间的对数关系后,借助小信号分析法,对VCSOA的调制特性和小信号频率响应特性进行了研究,得到了VCSOA的调制带宽、小信号峰值响应频率和3dB小信号频率响应带宽的解析表达式。结果表明,提高输入信号功率或抽运光强度可以增大VCSOAs的调制带宽;在VCSOAs的未饱和区时调制带宽随自发辐射的增强而有所增大:当输入光功率增大到饱和区时,VCSOAs的调制带宽可以达到1.8GHz,这与文献报导的实验数据符合较好;提高抽运光功率或减小输入光功率能提高VCSOA的峰值响应频率,但同时缩小其动态响应频率范围;自发辐射的增强也会扩展其3dB频率响应带宽。
     本文的理论模型和相关结论对于分析VCSOA的性能、优化其设计方案具有一定的参考作用。
As a new type of optical amplifiers, vertical cavity semiconductor optical amplifiers(VCSOAs) have many intrinsic advantages over the tranditional edge emitting semiconductor optical amplifiers(SOAs) and erbium-doped fiber amplifiers(EDFAs), which lead to their potential applications in many fields of optical fiber communications. Up to now, plenty of research works, both theoretically and experimentally, have been done on VCSOAs and many great results have been obtained. Based on those research findings, this work concentrated on many properties of VCSOAs such as the stationary state gain, optical gain bandwidth, modulation bandwidth, short optical pulse amplification and the small signal frequency response.
     On the basis of the theory of multilayer dielectric films, a transfer matrix model of VCSOAs is established by treating one VCSOA as a whole, which differs from the commonly used effective cavity model in many theoretical studies. The transfer matrix model includes the dicontinuities of the refractive indice of the media in the resonant cavity and the logitudinal distributions of the carriers and optical intensity within the active region. By using such model, the reflectivities of the ditributed Bragg reflector (DBR), the effective cavity length, the gain enhancement factor as well as the coupling efficiency of the input signal into the cavity are no longer necessary to be calculated seperately, which brings more convenience to the theoretical study.
     In the steady state region, this transfer matrix model has been ultilized to study the influence of the input optical power on the distribution of the carrier concentration, the optical bandwidth, and the gain saturation characteristics of VCSOA under continous wave operation in reflection mode. The results show that the power of input signal give a strong impact on the spatial distribution of the carriers and only in the small signal regime the assumption of uniform distribution of the carriers can be used; the periods of DBR influnces the optical bandwidth and the input saturation power greatly, and the reduction in the period would result in the broadening of optical bandwidth and the improvement of the gain saturation characteristics; within certain range the input power affect the optical bandwidth to some extent; and the standing wave effect can not be decribed in a correct way by the transfer matrix model unless the reflection and refraction occuring at the interfaces between different medium in the cavity are taken into account.
     Such transfer matrix model has then been extended to the dynamic region to be suitable for the pulse amplification operation. Based upon the dynamic model the operation properties of VCSOA during short pulse amplification in reflection mode were studied numerically, such as the distortion of the amplified optical pulse, the evolution process of the carrier density and the temporal gain, and the energy gain characteristics. The simulations results indicate that the distortion of the output pulse can be attributed to the gain saturation induce by the enhancement of stimulated emission within the active region during the input pulse injection; the energy gain during pulse amplification is affected by the pump optical power, the DBR periods as well as the input pulse energy; under a fixed pump level the reduction in DBR periods can improve the energy gain saturation characteristics. Additionly, it is also shown that the input pulse width takes little effect on the energy gain saturation property provided that the input pulse has a width much shorter than the carrier lifetime, while with certain DBR period the increment in the pump power would diminish the saturation input pulse energy.
     Finally, from the start of rate equations of VCSOA, with the aid of small signal analysis and the consideration of the logarithmic relation between the gain coefficient and carrier concentration in the quantum well medium, the modulation and the small signal frequency response properties were both investigated. The analytical expressions of modulation bandwidth, the peak response frequency and the 3dB frequency response bandwidth in the small signal regime of VCSOA were obtained. The results show that the strengthment of the pump power or the input optical power would increase the modulation bandwidth; in the unsaturation region the modulation bandwidth would be broadened with the enhancement of the spontaneous emission; when operated in the saturated region the modulation bandwidth of VCSOA can reach 1.8GHz, which agree well with the reported experimental data; the peak response frequency can be increased with the increment of the pump power or the decrement of the input optical power, while the dynamic frequency response range dwindles simultaneously; the enhancement of the spontaneous emission can also broaden the 3dB frequency response bandwidth.
     The theory models and the corresponding results in this paper are helpful for analyzing the performance, optimizing the design sheme of VCSOA.
引文
[1] A. Karim, S. Bjorlin, J. Piprek, et al. Long-Wavelength Vertical-Cavity Lasers and Amplifiers. IEEE J. Sel. Top. Quantum. Electron., 2000, 6(6):1244-1253
    [2] E. S. Bjorlin, B. Riou. P. Abraham, et al.. Long wavelength vertical-cavity semiconductor optical amplifiers. IEEE J. Quantum Electron., 2001, 37(2): 274-281
    [3] J. Piprek, S. Bjorlin, J. E. Bowers. Optical gain-bandwidth product of vertical-cavity laser amplifiers. Electron. Lett., 2001, 37(5): 298-299
    [4] A. Hurtado, A. Gonzalez-Marcos, J. A. Martin-Pereda. Modeling ReflectiveBistablility in Vertical-Cavity Semiconductor Optical Amplifiers. IEEE J. Quantum. Electron., 2005, 41(3):376-383
    [5] E. S. Bjorlin, J. E. Bowers. Noise figure of vertical-cavity semiconductor optical amplifiers [J]. IEEE J. Quantum Electron., 2002, 38(1): 61-66
    [6] C. Tombling, T. Saitoh, T. Mukai. Performance predictions for vertical-cavity semiconductor laser amplifiers. IEEE J. Quantum Electron., 1994, 30(11): 2491-2499
    [7] J. Piprek, S. Bjorlin, J. E. Bowers. Design and analysis of vertical-cavitysemiconductor optical amplifiers. IEEE J. Quantum Electron., 2001, 37(1): 127-134
    [8] A. Karlsson, M. Hoijer. Analysis of a VCLAD: Vertical-cavity laser amplifier detector. IEEE Photon. Technol. Lett., 1995, 7(11): 1336-1338
    [9] P. Royo, R. Koda, L. A. Coldren. Vertical cavity semiconductor optical amplifiers: Comparison of Fabry-Perot and rate equation approaches. IEEE J. Quantum Electron., 2002, 38(3): 279-284
    [10] F.Koyama, S.Kubata, K.Iga. GaAlAs/GaAs active filter based on vertical cavity surface emitting laser. Electron. Lett., 1991, 27(12):1093-1095
    
    [11] E. S. Bjorlin, A. Dahl, J. Piprek, et al. Vertical-cavity Amplifying Modulator at 1.3-μm. IEEE Photon. Tech. Lett., 2001, 13(12):1271-1273
    
    [12] R. Raj, J. A. Levenson, J. L. Oudar, et al. Vertical microcavity amplifying switch. Electron. Lett., 1993, 29(2): 167-169
    [13] R. Raj, J. A. Levenson, M. Bensoussan. Vertical cavity amplifying photonic switch. Appl. Phys. Lett., 1994, 65(18):2359-2361
    [14] N. Bouche, B. Corbett, R. Kuszelewicz, et al. Vertical cavity amplifying photonic switch at 1.5μm. IEEE Photon. Tech. Lett., 1996, 8(8): 1035-1037
    [15] E. S. Bjorlin, J. Piprek, S. Gee, et al. 1.3μm vertical-cavity amplifying switch. OSA TOPS Opt. Amplifiers and Their Applications, 2001, 60, 154-160
    [16] R. Lewen, K. Streubel, A. Karlsson, et al. Experimental Demonstration of a multifunctional vertical-cavity laser amplifier-detector. IEEE Photon. Technol. Lett., 1998, 10(8):1067-1069
    [17] E. S. Bjorlin, J. Geske, J. E. Bowers. Optically preamplified receiver at 10Gbit/s using vertical-cavity SOA. Electron. Lett., 2001, 37(24): 1474-1475
    [18] T. Kimura, E. S. Bjorlin, H. F. Chou, et al. Optically Preamplified Receiver at 10, 20 and 40Gb/s Using a 1550-nm Vertical-Cavity SOA. IEEE Photon Technol. Lett., 2005, 17(2):456-458
    [19] P. Wen, M. Sanchez, M. Matthias, et al. Observation of bistability in a vertical-cavity semiconductor optical amplier(VCSOA). Opt. Exp., 2002, 10(22): 1273-1278
    [20] P. Wen, M. Sanchez, M. Matthias, et al. Optical bistability in vertical-cavity semiconductor optical amplifiers. Appl. Opt., 2006, 45(25):6349-6357
    [21] G. Cole, E. S. Bjorlin, C. Qi, et al. MEMS-Tunable Vertical-Cavity SOAs. IEEE J. Quantum. Electron., 2005, 41(3):390-407
    [22] G. Cole, E. S. Bjorlin, C. S. Wang, et al. Widely Tunable Bottom-Emitting Vertical-Caviy SOAs. IEEE Photon. Technol. Lett., 2005, 17(12): 2526-2528
    [23] M. J. Coupland, K. G. Hembleton, C. Hilsum. Measurement of amplification in a GaAs injection laser. Phys. Lett., 1963, 7(4):231-232
    [24] 唐晋发,郑权。应用薄膜光学。上海科技出版社,1984,65
    [25] D. Marcenac, A. Mecozzi. Switches and Frequency Converters Based on Cross-Gain Modulation in Semiconductor Optical Amplifiers. IEEE Photon. Technol. Lett., 1997, 9(6):749-751
    [26] A. Reale, A. D. Carlo, P. Lugli, et al. Study of Gain Compression Mechanisms in Multiple-Quantum-Well In_(1-x)Ga_xAs Semiconductor Optical Amplifiers. IEEE J. Quantum. Electron., 1999, 35 (11): 1697-1703
    [27] C. Y. J. Chu, H. Ghafouri-Shiraz. Analysis of gain and saturation characteristics of a semiconductor laser optical amplifier using transfer matrices. J. Lightwave Technol., 1994, 12(8): 1378-1386
    [28] J. Yu, P. Jeppesen. Improvement of Cascaded Semiconductor Optical Amplifier Gates by Using Holding Light Injection. J. Lightwave. Technol., 2001, 19(5):614-623
    [29] J. Jennen, H. D. Waardt, G. Acket. Modeling and Performance Analysis ofWDM Transmission Links Employing Semiconductor Optical Amplifiers. J. Lightwave. Technol, 2001, 19(8):1116-1124
    [30] A. Reale, A. D. Carlo, P. Lugli. Gain Dynamics in Travelling-Wave Semiconductor Optical Amplifiers. IEEE J. Sel. Top. Quantum. Electron, 2001,7(2):293-299
    [31] J. L. Pleumeekers, M. Kauer, K. Dreyer, et al. Acceleration of Gain Recovery in Semiconductor Optical Amplifiers by Optical Injection Near Transparency Wavelength. IEEE Photon. Technol. Lett, 2002, 14(1):12-14
    [32] M. Chi, O. B. Jensen, J. Holm, et al. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier. Opt. Exp, 2005, 13(26):10589-10596
    [33] G. Giuliani, D. Alessandro. Noise Analysis of Conventional and Gain-Clamped Semiconductor Optical Amplifier. J. Lightwave Technol, 2000, 18(9):1256-1263
    [34] T. Yamatoya, F. Koyama. Optical Preamplifier Using Optical Modulation of Amplified Spontaneous Emission in Saturated Semiconductor Optical Amplifier. J. Lightwave Technol, 2004, 22(5):1290-1295
    [35] Koren U. High Frequency Modulation of Strained Layer Multiple Quantum Well Optical Amplifiers, Electron Lett, 1991, 27(1):62-64.
    [36] Feuer M D, Wiesenfeld J M, Perino J S, et al. Single-port Laser-amplifier modulator for local access, IEEE Photon Technol Lett, 1996, 8(9): 1175-1177.
    
    [37] MΦrk J, Mecozzi A, Eisenstein G, The Modulation Response of a Semiconductor Laser Amplifer, IEEE J Sel Top Quantum Electorn, 1999, 5(3):851-860.
    [38] G. R. Lin, P. S. Hsueh. Spectral characteristics of a regenerative semiconductor optical amplifier mutually injection locked with a Fabry-Perot laser diode. Appl. Opt, 2004, 43(1): 153-159
    [39] G. P. Agrawal. Population Pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. J. Opt. Soc. Am. B, 1988, 5(1):147-159
    [40] S.Diez, A. Mecozzi, J. M<|>rk. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers. Opt. Lett, 1999, 24(23): 1675-1677
    [41] C. M. Gallep, A. A. Rieznik, H. Fragnito, et al. Black-box model for the complete characterization of the spectral gain and noise in semiconductor optical amplifiers. Opt. Exp., 2006, 14(4).-1626-1631
    [42] M. T. Hill, E. Tangdiongga, H. D. Waardt, et al. Carrier recovery time in semiconductor optical amplifier that employ holding beams. Opt. Lett., 2002, 27(18):1625-1627
    [43] M. L. Nielsen, J. MΦrk. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. J. Opt. Soc. Am. B, 2004, 21(9):1606-1619
    [44] L.Q. Guo, M. J. Connelly. Signal-Induced Birefringence and Dichroism in a Tensile-Strained Bulk Semiconductor Optical Amplifier and Its Application to Wavelength Conversion. J. Lightwave Technol., 2005, 23(12):4037-4045
    [45] X. L. Zhang, Y. Wang, J. Sun, et al. All-optical AND gate at 10Gbit/s based on cascaded single-port-coupled SOAs. Opt. Exp., 2004, 12(3):361-366
    [46]Y. Ueno, M. Toyoda, R. Suzuki, et al. Modeling of the polarization-discriminating-symmetric-Mach-Zehnder-type-3R gate scheme and its available degree of random-amplititude-noise suppression. Opt. Exp., 2006, 14(1):348-360
    [47] E. A. Ultanir, D. N. Christodoulides, G. I. Stegeman. Spatial modulationinstability in periodically pattered semiconductor optical amplifiers. J. Opt. Soc. Am. B, 2006, 23(2):341-346
    [48] M. L. Nielsen, J. MΦrk, R. Suzuki, et al. Experimental and theoretical investigation of the impact of the ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Opt. Exp., 2006,14(1):347
    [49] M. Premaratne, A. J. Lowery. Analytical Characterization of SOA-Based Optical Pulse Delay Discriminator. J. Lightwave Technol., 2005, 23(9):2778-2787
    [50] H. Wang, J. Wu, J. Lin. Spectral Characteristics of Optical Pulse Amplification in SOA Under Assist Light Injection. J. Lightwave Technol., 2005, 23(9):2761-2771
    [51] M. D. Sanchez, P. Wen, M. Gross, et al. Rate Equations for modeling dispersive nonlinearity in Fabry-Perot semiconductor optical amplifiers. Opt. Exp., 2003, 11(21):2689-2696
    [52] E. A. Ultanir, D. Michaelis, F. Lederer. Stable spatial solitons in semiconductor optical amplifiers. Opt. Lett., 2003, 28(4):251-253
    [53] J. Wei, Z. Min, Y. PeiDa. Novel analysis of cross-talk peculiarity of semicondutor optial amplifier switches based on cross-gain modulation in optical packet-switched networks. J. Opt. Soc. Am. B, 2005, 22(10):2257-2262
    [54] M. Sanchez, P. Wen, M. Gross, et al. Polarization anisotropy in vertical-cavity semiconductor optical amplifiers. Opt. Lett., 2004, 29(16):1888-1890
    [55] J. V. Moloney, R. A. Indik, J. Hader, et al. Modeling semiconductor amplifiers and lasers: from microscopic physics to device simulation. J. Opt. Soc. Am. B, 1999, 16(ll):2023-2029
    [56] C. Z. Ning, R. A. Indik, J. V. Moloney. Effective Bloch equations for semiconductor lasers and amplifiers. IEEE J. Quantum. Electron., 1997, 33(9): 1543-1550
    [57] M. L. Nielsen, D. J. Blumenthal, J. MΦrk. A Transfer Function Approach to the Small-Signal Response of Saturated Semiconductor Optical Amplifiers. J. Lightwave Technol., 2000,18(12):2151-2157
    [58] A. Mecozzi, D. Marcenac. Theory of optical amplifier chains. J. Lightwave Technol., 1998, 16(5):745-756
    [59] D. Nesset, T. Kelly, D. Marcenac. All-optical wavelength conversion using SOA nonliearities. IEEE Commum. Mag., 1998, 36(1):56-61
    [60] D. A. O. Davies. Small-signal analysis of wavelength conversion insemiconductor laser amplifiers via gain saturation. IEEE Photon. Technol. Lett, 1995, 7(5):617-619
    [61] T. Durhuus, B. Mikkelsen, C. JΦrgensen, et al. All-optical wavelength conversion by semiconductor optical amplifiers. J. Lightwave Technol., 1996, 14(8):942-954
    [62] A. Mecozzi. Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 1996, 8(9):1471-1473
    [63] K. Morito. Output-Level Control of Semiconductor Optical Amplifier by External Light Injection. 2005, 23(12):4332-4341
    [64] H. Soda, K. Iga, C. Kitahara, et al. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys., 1979, 18(12):2329
    [65] D. Wiedenmann, B. Moeller, R. Michalzik, et al. Performance characteristics of vertical-cavity semiconductor optical amplifiers. Electron. Lett., 1996, 32(4):342-343
    [66] D. Wiedenmann, C. Jung, M. Grabherr, et al. Oxide-confined vertical-cavity semiconductor optical amplifier for 980 nm wavelength. CLEO 98 Technical Digest, Paper CThM5, 1998, 378
    [67] E. S. Bjorlin, B. Riou, A. Keating, et al. 1.3-μm Vertical-Cavity Amplifier. IEEE Photon. Technol. Lett., 2000, 12(8):951-953
    [68] E. S. Bjorlin, P. Abraham, D. Pasquariello. High gain, high efficiency vertical-cavity semiconductor optical amplifiers. In Proc. 14th Indium Phosphide and Related Materials Conf., 2002, 307-310
    [69] S. Calvez, A. H. Clark, J. M. Hopkins, et al.. 1.3-μm GaInNAs optically-pumped vertical cavity semiconductor optical amplifier. Electron. Lett., 2003, 39(1): 100-102
    [70] E. S. Bjorlin, T. Kimura, Q. Chen, et al. High output power 1540 nm vertical cavity semiconductor optical amplitiers. Electron. Lett., 2004, 40(2): 121-123
    [71] O. Kibar. VCSEL-based digital free-space optoelectronic interconnections. Ph. D. dissertation, Dept. Elect. Comput. Eng., Univ. Calif., San Diego, La Jolla, 1999
    [72] E. S. Bjorlin, T. Kimura, J. E. Bowers. Carrier-confined vertical-cavity semiconductor optical amplifiers for higher gain and efficiency. IEEE J. Sel. Top. Quantum. Electron., 2003, 9(5): 1374-1385
    [73] M. J. Adams, J. V. Collins, I. D. Henning. Analysis of semiconductor laser optical amplifiers. Proc. IEE J. Optoelectronics, 1985, 132(1): 58-63
    [74] S. F. Lim, C. J. Chan-Hasnian. A Proposal of Broad-Bandwidth Vertical-Cavity Laser Amplifier. IEEE Photon. Technol. Lett., 1995, 7(11):1240-1242
    [75] 张存善,张延生,段晓峰等.垂直腔面发射激光器DBR结构反射特性分析.光电子.激光,2002,13(1):34-36
    [76] S. W. Corzine, R. H. Yan, L. A. Coldren. A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE. J. Quantum. Electron., 1991, 27(12):2086-2090
    [77] D. I. Babic, S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE. J. Quantum. Electron., 1992, 28(2):514-524
    [78] M. Sanchez, P. Wen, M. Gross, et al. Nonlinear Gain in Vertical-Cavity Semiconductor Optical Amplifier. IEEE Photon. Technol. Lett., 2003, 15(4):507-509
    [79] S. W. Corzine, R. S. Geels, J. W. Scott, et al. Design of Fabry-Perot Surface emitting Lasers with a Periodic Gain Structure. IEEE J. Quantum. Electron., 1989, 35(6):1513-1524
    [80] 宋俊峰,付艳萍,李雪梅等.纵向耦合对垂直腔面发射激光器的影响.光学学报,2000,20(6):739-743
    [81] Y. Z. Huang, Z. Pan, R. H. Wu. Analysis of optical confinement factor in semiconductor lasers. J. Appl. Phys., 1996, 79(8):3827-3830
    [82] A. H. Clark, S. Calvez, N. Laurand, et al. Long-Wavelength Monolithic GaInNAs Vertical-Cavity Optical Amplifiers. IEEE J. Quantum. Electron., 2004, 40(7):878-883
    [83] N. Laurand, S. Calvez, M. D. Dawson, et al. Performance Comparison of GaInNAs Vertical-Cavity Semiconductor Optical Amplifiers. IEEE J. Quantum. Electron., 2005, 41(5):642-649
    [84] 张存善,赵红东等。微腔激光器中研究DBR对发散角影响的新方法。光子学报,1997,26(Z1):231-234
    [85] 赵红东,张以谟,张存善等。量子阱DBR微腔激光器中自发发射的控制。半导体学报,2000,21(10):984-987
    [86] 宋俊峰,付艳萍,刘杨等.垂直腔面发射激光器的动态特性分析。光电子激光,2002,11(4):345-348
    [87] R.H.Yan, Z.M.Chuang, S.W.Corzine et al. Simultaneous gain and phase-shift enhancements in periodic gain structure. J. Appl. Phys., 1990, 67(9):4387-4389
    [88] P. Wen, M. Sanchez, M. Gross, et al. Vertical-cavity optical AND gate. Opt. Commun., 2003, 219:383-387
    [89] 潘炜,张晓霞,罗斌等。垂直腔半导体光放大器双稳及逻辑特性的理论研究。半导体学报,2005,26(2):357-362
    [90] E. S. Bjorlin. Long-Wavelength Vertical-Cavity Semiconductor Optical Amplifiers. Ph. D. dissertation, Univ. Calif., Santa Barbara, 2002
    [91] G. Bramann, H. Wunsche, U. Busolt, et al. Two-Wave Competition in Ultralong Semiconductor Optical Amplifiers. IEEE J. Quantum. Electron., 2005,41(10):1260-1267
    [92] L. M. Frantz, J. S. Nodvik. Theory of Pulse Propagation in a Laser Amplifier. J.Appl. Phys., 1963, 34(8):2349
    [93] I. W. Marshall, D. M. Spirit, M. J. O'Mahony. Picosecond pulse response of a travelling-wave semiconductor laser amplifier. Electron. Lett., 1987, 23(6):818-819
    [94] J. M. Wiesenfeld, G. Eisenstein, R. S. Tucker, et al. Distortionless picosecond pulse amplification and gain compression in a travelling-wave InGaAsP optical amplifier. Appl. Phys. Lett., 1988, 53(8):1239-1242
    [95] M. P. Kesler, E. P. Ippen. Subpicosecond gain dynamics in GaAlAs laser diode. Appl. Phys. Lett., 1987, 51(10):1765-1767
    [96] G. Eisenstein, P. B. Hansen, J. M. Wiesenfeld, et al. Amplification of high repetition rate pulses using a InGaAsP travelling-wave optical amplifier. Appl. Phys. Lett., 1988, 53(9):1539-1541
    [97] E. O. Schulz-Dubois. Pulse shapening and gain saturation in tavelling-wave masers. Bell. Syst Tech. J., 1964, 43(4):625-658
    [98] J. P. Wittke, P. J. Warter. Pulse propagation in a laser amplifier. J. Appl. Phys., 1964, 35(4):460-461
    [99] A. Icsevgi, W. E. Lamb, Jr. Propagation of light pulses in a laser amplifier. Phys. Rev., 1969, 185(5):517-545
    [100] N. J. Frigo. Ultroshort pulse propagation in saturable media: A simple physical model. IEEE J. Quantum. Electron., 1983, 19(4):511-519
    [101] A. J. Lowery. Explanation and modeling of pulse compression and broadening in near-travelling-wave laser amplifiers. Electron. Lett., 1988, 24(10):1125-1126
    [102] A. J. Lowery. New inline wideband dynamic semiconductor laser amplifier model. IEE. Proc, 1988, 135(3):242-250
    [103] E. Scholl. Dynamic theory of picosecond optical pulse shaping by gain-switched semiconductor laser amplifiers. IEEE J. Quantum. Electron., 1988,24(3):435-442
    [104] N. A. Olsson, G. P. Agrawal. Spectral shift and distortion due to self-phasemodulation of picosecond pulse in 1.5μm optical amplifiers. Appl. Phys. Lett., 1989, 55(1):13-15
    [105] G. P. Agrawal, N. A. Olsson. Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers. Opt. Lett., 1989, 14(10):500-502
    [106] G. P. Agrawal, N. A. Olsson. Self-phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers. IEEE J. Quantum. Electron., 1989, 25(11):2297-2306
    [107] A. Mecozzi, J. Mork. Saturation induced by picosecond pulses in semiconductor optical amplifiers. J. Opt. Soc. Am. B, 1997, 14(4):761-770
    [108] A. Uskov, J. Mφrk, J. Mark. Theory of short-pulse gain saturation in semiconductor laser amplifiers. IEEE Photon. Technol. Lett., 1992, 4(3):443-446
    [109] A. Uskov, J. Mφrk, J. Mark. Wave fixing in semiconductor laser amplifier due to carrier heating and spectral hole burning. IEEE J. Quantum. Electron., 1994, 30(11):1769-1781
    [110] M. Shtaif, G. Eisenstein. Analytical solution of wave mixing between short optical pulses in a semiconductor optical amplifier. Appl. Phys. Lett., 1995, 66(11):1458-1460
    [111] A. Mecozzi. Soliton transmission control with semiconductor amplifiers. Opt. Lett., 1995, 20(20):1616-1618
    [112] Y. Lai, K. L. Hall, E. P. Ippen, et al. Short pulse gain saturation in InGaAsP diode laser amplifiers. IEEE Photon. Technol. Lett., 1990, 2(5):711-713
    [113] G. Xia, Z. Wu, G. Lin. Rising and falling time of amplified picosecond optical pulses by semiconductor optical amplifiers. Opt. Commun., 2003, 227:165-170
    [114] 夏光琼,吴正茂,林恭如。利用较完善模型研究半导体光放大器对皮秒光脉冲的放大。物理学报,2004,53(2):490-493
    [115] J. Kim, K. Oh, K. Cho. Spectral characteristics of optical pulse amplifications with a holding light in semiconductor optical amplifiers. Opt. Commun., 1999, 170:99-109
    [116] A. Fernandez, P. Morel, J. Chi. Temporal and spectal properties of contra-propagation picosecond optical pulses in SOA. Opt. Commun., 2006, 259:465-469
    [117] 洪伟,黄德修,孙军强等。半导体光放大器(SOA)皮秒增益和折射率非线性的数值模拟。中国激光,2003,30(9):775-778
    [118] 洪伟,黄德修,孙军强等。重复脉冲注入下半导体光放大器皮秒增益和折射率非线性的数值模拟。光学学报,2003,23(4):459-464
    [119] T.Saitoh, T. Mukai. Gain Saturation Characteristics of Travelling-Wave Semiconductor Laser Amplifiers in Short Optical Pulse Amplification. IEEE J. Quantum Electron., 1990, 26(12):2086-2094
    [120] G. Wang, B. Luo, W. Pan, et al. A Transfer-Matrix Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers. Chin. Phys. Lett., 2005, 22(10):2561-2564
    [121] A. Mecozzi, J. Mork. Saturation Effects in Nondegenerate Four-Wave Fixing Between Short Optical Pulses in Semiconductor Laser Amplifiers. IEEE J. Sel. Top. Quantum Electron., 1997, 3(5):1190-1207.
    [122] R. Boula-Picard, M. Alouini, J. Lopez, et al. Impact of the Gain Saturation Dynamics in Semiconductor Optical Amplifiers on the Characteristics of an Analog Optical Link. J. Lightwave. Technol., 2005, 23(8):2420-2426
    [123] 郭长志,陈水莲。分布反射面发射垂直微腔半导体激光器的微腔效应。物理学报,1997,46(9):1731-1743
    [124] Y. B. Ezra, M. Haridim, B. I. Lembrikov, et al. Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA. IEEE Photon. Technol. Lett., 2005, 17(9):1803-1805
    [125] I.Masahiro. Switching Characteristics of Laser Diode Switch. IEEE J. Quantum Electron., 1983, 19(2): 157-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700