GaAs/InP、Si/GaAs异质外延生长技术及其在集成光电子器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类通信需求量的急剧增长是光纤通信系统发展的潜在驱动力,而新一代光纤通信系统的发展必然要以新型通信光电子器件作为支撑。当前通信光电子器件正处于由分立转向集成的重大变革时期,而通信光电子集成器件研究所面临的最突出问题是半导体材料兼容、结构兼容和工艺兼容。
     本论文对大失配异质外延技术进行了探讨和部分成果总结,并完成了以下几个方面的工作:
     1、在GaAs/InP的异质外延生长方面,利用低压金属有机物化学气相沉积(LP-MOCVD)技术,探索了InP低温缓冲层的最佳生长条件和结构参数,在GaAs衬底上外延生长出高质量的InP材料。
     2、制备了单片集成GaAs基长波长谐振腔光探测器。它通过两步生长法,在GaAs基上异质外延生长了InP-InGaAs-InP的p-i-n光吸收结构和GaAs/AlAs的分布布拉格反射镜(DBR)。所制备的器件在1549.4 nm处获得了67.3%的量子效率和17nm的光谱相应线宽,同时InGaAs吸收层厚度仅为200 nm。
     3、在Si/GaAs外延方面取得进展。通过探索有偏角衬底、AlGaAs低温缓冲层和循环热退火等技术的最优条件,在Si衬底上外延生长出了高质量的GaAs材料,并摸索出了一种GaAs层分两个阶段生长、中间插入刻槽工序(mid-pattern)的Si/GaAs无裂纹外延方法。
The increasing demand for communication is the driving force behind modern fiber communication systems,which is always based on novel optoelectronic devices.It is the revolutionary period that independent optoelectronic devices are changing into integrated devices,but this revolution has been encountered by several challenges,such as the compatibilities of semiconductor materials,structures and processes.
     In this thesis we summed up the heteroepitaxy technology of large mismatched materials,and the other main research work is listed below:
     1.Important progress has been achieved on GaAs/InP heteroepitaxy.The optimum conditions of low temperature InP buffer layer has been obtained.Based on these methods,high quality InP epilayer has been grown on GaAs substrates by using low pressure metalorganic chemical vapor deposition(LP-MOCVD).
     2.The monolithically integrated long wavelength resonant-cavity -enhanced photodetector has been realized,by using heteroepitaxy growth between InP-InGaAs-InP p-i-n structure and GaAs/AlAs distributed Bragg reflectors(DBR).High quality heterepitaxy was realized by two-step growth.An external quantum efficiency of 67.3%at 1549.4 nm was obtained in the device with an InGaAs absorption layer thickness of 200 nm.
     3.Important progress has been achieved on Si/GaAs heteroepitaxy. High-quality GaAs epilayer is obtained by employing the technologies of the tilted Si substrate,optimization the low temperature AlGaAs buffer layer and thermal cycle annealing.Also,a method of GaAs epilayer grown on mid-patterned Si subatrates has been demonstrated.
引文
[1].Richard Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Topics Quantum Electron., vol.12, no.6, 2006, 1678-1687.
    
    [2].The Concept of MOCVD Reactors, Thomas Swan Scientific Equipment LTD.
    
    [3].Hui Huang, Xiaomin Ren, Xinyan Wang, et al, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface", Appl. Phys. Lett. 88, 2006,061104
    
    [4].Hui Huang, Xiaomin Ren, Wenjuan Wang, et al, "Low temperature InP/Si wafer bonding using boride treated surface"Appl. Phys. Lett. 90, 2007,161102
    
    [5].Cem Ozturk, Andrew Huntington, Atilla Aydinli, et al, "Filtering Characteristics of Hybrid Integrated Polymer and Compound Semiconductor Waveguides", Journal of Lightwave Technology, 20(8), Aug. 2002, 1530-1536.
    
    [6].Detlef Stoll, Patrick Leisching, Harald Bock, etc., "Metropolitan DWD: a Dynamically Configurable Ring for the KomNet Field Trial in Berlin", IEEE Communications Magazine, 39, Feb. 2001, 106-113.
    
    [7].(?)nlü M.S, Strite S., "Resonant Cavity Enhance Photonic Device", J. Appl. Phys., 78,1995,607-639.
    
    [8].Xiaomin Ren, Joe C. Campbell, "A Novel Structure: One Mirror Inclined Three-Mirror Cavity High Performance Photodetector". Technical Proceedings: International Topic Meeting On Photoelectronics (ITMPE'97), Beijing, Oct., 1997, 81-84.
    
    [9].Hui Huang, Ruikang Zhang, Qi Wang, et al. "Wavelength-selective photodetector with integrated vertical taper structure''. OFC 2002[C]. ThGG73 2002.
    
    [10]. A. G. Dentai, R. Kuchibhotla, J. C. Campbell, et al. "High quantum efficiency, long wavelength InP/lnGaAs microcavity photodiode," Electron. Lett.,vol.27, 1991,2125-2127.
    [1]Sun,Yan-Ting,Epitaxial Lateral Overgrowth of Indium Phosphide and Its Applications in Heteroepitaxy,Royal Institute of Technology,Sweden,2003.
    [2]杨少延,大失配异质外延超薄中间层柔性衬底研究,中国科学院半导体研究所,北京,2005.
    [3]Lichtenberger,H.;Muhlberger,M.,and Schaffler,F.,Ordering of Si_(0.55)Ge_(0.45)islands on vicinal Si(001) substrates:Interplay between kinetic step bunching and strain-driven island growth,Appl.Phys.Lett.,86,2005,131919-131923.
    [4]Gopalakrishnan,N.;Baskar,K.;Kawanami,H.,et al.,Effects of the low temperature buffer layer thickness on the growth of gaas on si by MBE,J.Cryst.Growth,250,2003,29-33.
    [5]Akasaki,I.;Amano,H.;Koide,et al.,Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates,J.Cryst.Growth,89,1989,209-4702.
    [6]Kuznia,J.N.;Khan,M.A.,and D.T.Olson,et al.,Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates,J.Appl.Phys.,73,1993,4700-4702.
    [7]Radhakrishnan,K.;Yuan,K.,and Hong,Wang,Characterization of InGaAs/InP single quantum well structure on GaAs substrate with metamorphic buffer grown by molecular beam epitaxy,J.Cryst.Growth,261,2004,16-21.
    [8]Liu,J.L.;Tong,S.;Luo,Y.H.,et al.,High-quality Ge films on Si substrates using Sb-surfactant-mediated graded SiGe buffers,Appl.Phys.Lett.,79,2001,3431-3436.
    [9]Goldman,R.S.;Kavanagh,K.L.,and H.H.Wieder,et al.,Correlation of buffer strain relaxation modes with transport properties of two-dimensional electron gases,J.Appl.Phys.,80,1996,6849-6854.
    [10]许振嘉,近代半导体材料的表面科学基础,北京,北京大学出版社,1999,387.
    [11]Kimura,Tatsuya;Kimura,Tadashi,and Eitaro Ishimura,et al.,Improvement of InP crystal quality grown on GaAs substrates and device applications,J.Cryst.Growth,107,1991,827-831.
    [12]黎大兵,(In,Al)GaN材料的MOCVD生长及其物性研究,中国科学院半导体研究所,北京,2004
    [13]D.KEITH BOWEN and BRIAN K.TANNER,"High Resolution X-ray Diffractometry and Topography"[M],1998
    [14]沈学础,半导体光学性质,北京,科学出版社,2001
    [15]腾敏康,正电子湮没谱学及其应用,北京,原子能出版社,2000
    [16]左演声,陈文哲,梁伟,材料现代分析方法,北京,北京工业大学出版社,2000
    [17]姜传海,程凡雄,吴建生,测定薄膜厚度的基片x射线衍射法,上海交通大学学报,Vol.38 No.7,2004,1045-1047
    [18]刘恩科,朱秉生,罗晋生等著,《半导体物理学》,西安交通大学出版社,1998:17-18,35-36,43-45,124-126,282-287,378-381
    [19]Horiba荧光光谱仪使用手册,J.Y公司,日本
    [1]M.K.Lee,D.S.Wuu,and H.H.Tung,Heteroepitaxial growth of InP on GaAs by low-pressure metalorganic chemical vapor deposition,J.Appl.Phys.62(8),1987,3209-3211.
    [2]Y.F.Chen,J.L.Shen,and I.M.Chang,Photoluminescence study of highly mismatched In_(0.53)Ga_(0.47)As epilayers grown on InP-coated GaAs substrates,J.Appl.Phys.77,1995,1040-1042.
    [3]Heteroepitaxial growth of InP/In_(0.53)Ga_(0.47)As structures on GaAs(100) by gas-source molecular beam epitaxy,Appl.Phys.Lett.82(21),1993,2708-2710.
    [4]M.A.Hafez,K.A.Elamrawi,H.E.Elsayed-Ali,Pulsed laser deposition of InP thin films on sapphire(100) and GaAs(100),Applied Surface Science 233,2004,43-50.
    [5]K.F.YARN,W.C.CHIEN,C.L.LIN,et al.,Direct growth of high-quality InP layers on GaAs substrates by MOCVD,Active and Passive Elec.Comp.,26,2003,71-79.
    [6]K.Radhakrishnan,K.Yuan,Wang Hong,Characterization of InGaAs/InP single quantum well structure on GaAs substrate with metamorphic buffer grown by molecular beam epitaxy,Journal of Crystal Growth 261,2004,16-21.
    [7]Aiguang Ren,Xiaomin Ren,Qi Wang,et al.,Heteroepitaxy of In_(0.53)Ga_(0.47)As on GaAs substrate by low pressure metalorganic chemical vapor deposition for the OEIC applications,Microelectronic Journal 37,2006,700-704.
    [8]Y.Mihashi,K.Goto,E.Lshimura,et al.,Long-wavelength receiver optoelectronic integrated circuit on 3-inch-diameter GaAs substrate grown by InP-on-GaAs heteroepitaxy,Jpn.J.Appl.Phys.,33,1994,2599-2591.
    [9]Jang,J.H.,Cueva,G,Dumka,et al.,Long-wavelength In_(0.53)Ga_(0.47)As metamorphic p-i-n photodiodes on GaAs substrates,IEEE Photonics Technology Letters,13,2001,151-153.
    [10]J.P.Hirth and Xiaoxin Feng,J.Appl.Phys.67(7),1989,3343-3345.
    [11]Kimura,Tatsuya;Kimura,Tadashi,and Eitaro Ishimura,et al.,Improvement of InP crystal quality grown on GaAs substrates and device applications, J.Cryst.Growth, 107, 1991, 827-831.
    
    [12]Y. Takano, T. Sasaki, Y. Nagaki, et al, Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy, J. Cryst. Growth, 169, 1996,621-624.
    
    [13] A. Sacedo'n, F. Gonza'lez-Sanz, E. Calleja, et al., Design of InGaAs linear graded buffer structures, Appl. Phys. Lett. 66, 1995, 3334-3339.
    
    [14] M. Haupt, K.K o¨hler, P. Ganser, et al, Growth of high quality Al_(0.48)In_(0.52)As/Ga_(0.47)In_(0.53)As heterostructures using strain relaxed Al_xGa_yIn_(1-x)As as buffer layers on GaAs, Appl. Phys. Lett. 69, 1996, 412-415.
    
    [15] Norio Hayafuji, Tatsuya Kimura, Naohito Yoshida, et al. , Improvement of InP crystal quality on GaAs substrates by thermal cyclic annealing, Jpn. J. Appl.Phys.,28,1989,1721-1725.
    
    [16]Takumi Shibata, Hiroki Sone, Katsunori Yahashi, et al, Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth, J. Crystal Growth, 189/190,1998, 67-69.
    
    [17] Jaime A. Freitas, Jr., Ok-Hyun Nam, Tsvetanka S. Zheleva, et al., Optical and structural properties of lateral epitaxial overgrown GaN layers, J.Crystal Growth ,189/190, 1998, 92-97.
    
    [18] Hidetada Matsushima, Masahito Yamaguchi, Kazumasa Hiramatsu, Sub-micron fine structure of GaN by metalorganic vapor phase epitaxy (MOVPE) and buried structure by epitaxial lateral overgrowth(ELO), J. Crystal Growth 189/190,1998,78-81.
    
    [19] J. Zhou, X.M.Ren, Q. Wang, Surface characterization of epitaxial lateral overgrowth of InP on InP/GaAs substrate by MOCVD, Microelectronic Journal, 38, 2007, 255-258.
    
    [20]M.Tamura, A. Hashimoto, J.Kasai, et al., Threading dislocation in GaAs on pre-patterned Si and in post-patterned GaAs on Si, J. Crystal Growth, 147, 1995,264-273.
    
    [21] H.Uchida, T.Soga, H.Nishikawa, et al., Reduction of dislocation density by thermal annealing for GaAs/GaSb/Si heterostructure,J.Crystal Growth,150,1995,681-684.
    [22]E.Peiner,H.-H.Wehmann,H.Iber,et al.,High-quality In_(0.53)Ga_(0.47)As on exactly(001)-oriented Si grown by metal-organic vapor-phase epitaxy,J.Crystal Growth,172,1997,44-52.
    [1]K.Kishino,M.S.(U|¨)nl(u|¨),J.I.Chyi et al,"Resonant Cavity-Enhanced(RCE)Photodetectors"[J],IEEE Journal of Quantum Electronics.,Vol.27,no.8,pp.2025-2034,1991.
    [2]Yuxin Zhou,Julian Cheng,A.A Allerman,"High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strained InGaAs quantum wells"[J],IEEE Photonics Technology Letters.,Vol.12,no.2,pp.122-124,2000.
    [3]Yuxin Zhou,Julian Cheng,"1-Gb/s-per-Channel Wavelength Division Multiplexed Optical Interconnect Using Wavelength Graded VCSEL and Resonant Photodetector Arrays"[J],IEEE Photonics Technology Letters.,Vol.12,no.6,pp.740-742,2000.
    [4]M.S.(U|¨)nl(u|¨),S.Strite,"Resonant Cavity Enhanced Photonic Devices"[J],Journal of Applied Physics.,Vol.78,no.2,pp.607-639,1995.
    [5]J.E.Bowers,"Ultrawide-Band Long-Wavelength p-i-n Photodetectors"[J],Journal of Lightwave Technology.,Vol.5,no.10,pp.1339-1350,1987.
    [6]黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001.
    [7]S.M.Ze,Semiconductor Devices Physics and Technology[M],Wiley,New York,1985.
    [8]尹树百,《薄膜光学:理论与实践》,科学出版社,1987.
    [9]P.Yeh,Optical wave in Layered Media[M],Wiley,New York,1988.
    [10]H.Huang,Y.Huang,X.Wang,Q.Wang,and X.Ren,"Long wavelength resonant cavity photodetector based on InP/Air-gap bragg reflectors," IEEE Photon.Technol.Lett.,vol.16,no.1,pp.245-247,Jan.2004.
    [11]Q.Han,_Z.C.Niu,L.H.Peng,H.Q.Ni,X.H.Yang,Y.Du,H.Zhao,R.H.Wu,and Q.M.Wang,"High-performance 1.55 μm low-temperature-grown GaAs resonant-cavity-enhanced photodetector",APPLIED PHYSICS LETTERS 89,131104,2006
    [12]A.G.Dentai,R.Kuchibhotla,J.C.Campbell,C.Tsai,and C.Lei,"High quantum efficiency,long wavelength InP/lnGaAs microcavity photodiode," Electron.LRtt.,vol.27,pp.2125-2127,1991.
    [13]A.Dodabalapur and T.Y.Chang,"Resonant-cavity InGaAIAs/lnGaAs InAlAs phototransistors with high gain for 1.3-1.6 pm,'" Appl.Phys.Lett.,vol.60,pp.92S931,1992.
    [14]M.J.Mondry,D.I.Babit,J.E.Bowers,and L.A.Coldren,"Refractive indexes of(Al,GaJn)As epilayers on InP for optoelectronic applications," IEEE Photon.Technol.Lett.,vol.4,pp.627-630,1992.
    [15]I.-H.Tan,J.J.Dudley,D.I.Babic,and et al,"High-quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In0.53Ga0.47As photodetectors",IEEE Photon Technol Lett 6(1994),811-813.
    [16]W.Wang,X.Ren,H.Huang,X.Wang,H.Cui,A.Miao,Y.Li,and Y.Huang,"Tunable Photodetector Based on GaAs/InP Wafer Bonding" IEEE ELECTRON DEVICE LETTERS,VOL.27,NO.10,pp.827-829,Oct.2006
    [17]Jihe Lv,Hui Huang,Xiaomin Ren,Ang Miao,Yiqun Li,Hailan Song,Qi Wang,Yongqing Huang,and Shiwei Cai "Monothically Integrated Long-Wavelength Tunable Photodetector",IEEE Journal of Lightwave Technology,Vol.26,No.3,Feb.1,2008,338-342
    [18]K.Kato,"Ultrawide-band/high frequency photodetectors," IEEE Trans.Microwave Theory Tech.,vol.47,pp.1265-1281,Jul.1999.
    [19]W.A.Wohlmuth,J.-W.Seo,P.Fay,C.Caneau,and I.Adesida,"A high speed ITO-InAlAs-InGaAs Schottky-barrier photodetector," IEEE Photon.Technol.Lett.,vol.9,pp.1388-1390,Oct.1997.
    [20]J.H.Jang,G.Cueva,D.C.Dumka,W.E.Hoke,P.J.Lemonias,"Long-Wavelength In0.53Ga0.47As Metamorphic p-i-n Photodiodes on GaAs Substrates",IEEE Photon.Technol.Lett.VOL.13,NO.2,pp.151-153,Feb.2001
    [1] Masafumi Yamaguchi, Akiio Yamamoto, Masami Tachikawa, et al., Defect reduction effects in GaAs on Si substrates by thermal annealing, Appl. Phys.Lett. 53(23),1988, 2293-2295.
    
    [2] T.W.Kang, Y.D.Woo, T.W.Kim, Improvement of the crystallinity of GaAs epitaxial layers grown on Si substrates assisted by electron beam irradiation, Thin Solid Films 279, 1996,14-16.
    [3] Y.S.Chang, S.Naritsuka, T.Nishinaga, Optimization of growth condition for wide dislocation-free GaAs on Si substrate by microchannel epitaxy, J. Crystal Growth 192, 1998, 18-22.
    [4] Z.R.Zytkiewicz and J.Domagala, Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates, Appl. Phys. Lett. 75(18), 1999,2749-2751.
    [5] J.Paslaski, H.Z.Chen, H.Morkoc, et al., High-speed GaAs p-i-n photodiodes grown on Si substrates by molecular beam epitaxy, Appl. Phys. Lett. 52(17), 1998, 1410-1412.
    [6] Michael E. Groenert, Christopher W.Leitz, Arthur J. Pitera, et al., Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers, J. Appl. Phys. 93, 2003, 362-367.
    [7] S.F.Fang, K.Adomi, S.Lyer, et al., Gallium arsenide and other compound semiconductors on silicon, J. Appl. Phys., 68, 1990, R31-R58.
    [8] H. Kroemer, Suppression of antiphase disorder in GaAs growth on relaxed GeSi buffers by metal-organic chemical vapor deposition, J. Cryst. Growth, 81, 1987,193-197.
    [9] H. Kroemer, Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation, J. Vac. Sci. Techn., B5, 1987, 1150-1154.
    [10] R.C.Henderson, J. Electrochem, Soc, Silicon Cleaning with Hydrogen Peroxide Solutions: A High-Energy Electron Diffraction and Auger Electron Spectroscopy Study, 119, 1972,772-775.
    
    [11] Mitsuo Kawabe, Toshio Ueda and Hidetoshi Takasugi, Initial Stage and Domain Structure of GaAs Grown on Si(100) by Molecular Beam Epitaxy, Jpn. J. Appl. Phys., 26, 1987, L114-L116.
    
    [12] Tamura M., Yodo T., Saitoh T., "Rearrangement of misfit dislocations in GaAs on Si by post-growth annealing" Journal of Crystal Growth,v 150,n 1-4 pt 1,May 1,1995,654-660
    [13]Takagi Yasufumi "Reduction mechanism of threading dislocation density in GaAs epilayer grown on Si substrate by high-temperature annealing" Jpn.J.Appl.Phys.,Part 1,v33,1994,3368-3372
    [14]Yodo,Tokuo;Tamura,Masao "Effects of high-temperature annealing on the structural and crystalline qualities of GaAs heteroepitaxial layers grown on Si substrates using two-step and direct methods by molecular-beam epitaxy",Jpn.J.Appl.Phys.,Part 1,v 34,n 7A,Jul,1995,3457-3466
    [15]Chand Naresh,Chu S.N.G.,van der Ziel,"Effects of patterning and thermal annealing on the crystalline quality of GaAs grown on Si by MBE",Proceedings of SPIE - The International Society for Optical Engineering,v 1285,1990,184-201
    [16]YD Woo,HI Lee,TW Kang,TW Kim,"Improvement of the crystallinity of AlAs/GaAs superlattices grown on Si substrates by rapid thermal annealing",Thin Solid Films,v 264,n 1,Aug 1,1995,1-3
    [17]Sharan S.,Narayan J.,"Dislocation density reduction in GaAs epilayers on Si using strained layer superlattices",Journal of Electronic Materials,v 20,n 10,Oct,1991,779-784
    [18]Colombo D.,Grilli E.,Guzzi M.,Sanguinetti S.,Marchionna S.,Bonfanti M.,etc."Analysis of strain relaxation by microcracks in epitaxial GaAs grown on GeSi substrates" Journal of Applied Physics,v 101,n 10,2007,103519
    [19]Fitzgerald E.A.,Chand Naresh,"Epitaxial necking in GaAs grown on pre-patterned si substrates" Journal of Electronic Materials,v 20,n 10,Oct,1991,839-853
    [20]G.M.Metze,H.K.Choi,and B-Y.Tsaur "Metal-semiconductor field-effect transistors fabricated in GaAs layers grown directly on Si substrates by molecular beam epitaxy",Appl.Phys.Lett.45,1984,1107.
    [21]熊德平,“异质结半导体材料兼容的理论与实验研究”,[学位论文],北京邮电大学,北京,2007.
    [22]Alberts,Vivian,"Photoluminescence Study of GaAs Grown on(001) Si",Japanese Journal of Applied Physics,Volume 33,Issue 11,1994,6111
    [23]N.Ohtsuka,K.Kitahara,M.Ozeki and K.Kodama,"A new GaAs on Si structure using AlAs buffer layers grown by atomic layer epitaxy",Journal of Crystal Growth, Volume 99, Issues 1-4, January 1990, 346-351
    [24]T.Nishimura, K.Kadoiwa, N.Hayafuji, M.Miyashita, K.Mitsui, H.Kumabe, T.Murotani, "Surface morphology improvement of GaAs-on-Si using a two-reactor MOCVD system and an AlAs/GaAs low temperature buffer layer: an approach to crack-free GaAs-on-Si", Journal of Crystal Growth, 107, 1991,468-472,.
    [25] N.Y.Jin-phillipp, F.Phillipp, T.Marschner, W.stolz, E.O.Gobel, "Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapor phase epitaxy", Journal of Crystal Growth,158,1996,28-36,.
    [26] Yoshiki Naoi, S.Kurai, S.Sakai, T.Yang, Y.Shintani, "Stress distribution and dislocation dynamics in GaAs grown on Si by metalorganic chemical vapor deposition", Journal of Crystal Growth, 145, 1994, 321-325.
    [27] T.Yodo, M.Tamura, T.Saitoh, "Relationship between the optical and structural properties in GaAs heteroepitaxial layers grown on Si substrates", Journal of Crystal Growth, 141, 1994, 331-342.
    [28] T.Marschner, W.Stolz, E.O.Gobel, F.Phillipp, M.Muller, and J.Lorberth, "Improvements in the heteroepitaxial growth of GaAs on Si by MOCVD", Materials Science and Engineering, B21, 1993, 266-269.
    [29] Masafumi Yamaguchi, Akio Yamamoto, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, "Defect reduction effects in GaAs on Si substrates by thermal annealing", American Institute of Physics, 1988, 2293-2295.
    [30] K.Ismail, E.Legoues, N.H.Karam, J.Carter, Henry I.Smith, "High-quality GaAs on sawtooth-patterned Si substrates", American Institute of Physics, 1991,2418-2420.
    [31] J.E.Ayer, L.J.Schowalter, and S.K.Ghandhi, "Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy", Journal of Crystal Growth, 125, 1992, 329-335.
    [32] T.Nishioka, Y.Itoh, M.Sugo, A.Yamamoto, and M.Yamaguchi, "Threading dislocation density reduction in GaAs on Si", Japanese Journal of Applied Physics, 27, 1988, L2271-2273.
    [33] Mitsuru Sugo, Naoto Uchida, Akio Yamamoto, Takashi Nishioka, Massfumi Y amaguchi "Residual strains in heteroepitaxial III-V semiconductor films on Si(100) substrates'", Journal of Applied Physics, 1989, 591-595.
    [34] Masafumi Yamaguchi, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, "Thermal annealing effects of defect reduction in GaAs on Si substrates", American Institute of Physics, 1990, 4518-4522.
    [35] V.K.Yang, M.Groenert, C.W.Leitz, A.J.Pitera, M.T.Currie, E.A.Fitzgerald, "Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates", Journal of Applied Physics, 93, 2003, 3859-3865.
    [36] V.Alberts, J.H.Neethling, and A.W.Leitch, "Correlation between structural, optical, and electrical properties of GaAs grown on Si", Journal of Applied Physics, 75, 1994, 7258-7265.
    [37] D.Colombo, E.Grilli, M.Guzzi, S.Marchionna, M.Bonfanti, "Analysis of strain relaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates", Journal of Applied Physics, 101, 2007, 103519.
    [38] K.Woodbridge, P.Barnes, R.Murray, C.Roberts, GParry, "GaAs/AlGaAs pin MQW structures grown on patterned Si substrates", Journal of Crystal Growth, 127,1993,112-115.
    [39] Allen C.G., Beach J.D., Khandekar A.A., Dorr J.C., Veauvy C, etc. "Selective nucleation and growth of large grain polycrystalline GaAs" Materials Research Society Symposium Proceedings, v 870, Giant-Area Electronics on Nonconventional Substrates, 2005, 18-23
    [40] Cheng S.F.,Gao L., Woo R.L., Pangan A., Malouf G.,etc. "Selective area metalorganic vapor-phase epitaxy of gallium arsenide on silicon", Journal of Crystal Growth, v 310, n 3, Feb 1, 2008, 562-569
    [41] Lee, S.C.; Dawson, L.R.; Brueck, S.R.J.; Jiang, Y.-B "GaAs on Si(111)-crystal shape and strain relaxation in nanoscale patterned growth", Applied Physics Letters, v 87, n 2, Jul 11, 2005, 023101
    [42] Vanamu Ganesh, Datye Abhaya K., Dawson Ralph L., Zaidi Saleem H., "GaAs growth on micro and nano patterned Ge/ Sil-XGeX and Si surfaces", Materials Research Society Symposium Proceedings, v 862, Amorphous and Nanocrystalline Silicon Science and Technology 2005, 2005, 219-224
    [43] Charasse M.N., Bartenlian B., Hirtz J.P., Peugnet A., Chazelas J.,Amendola G., "Detailed structural analysis of GaAs grown on patterned Si", Journal of Electronic Materials, v 19, n 6, Jun, 1990, 567-573
    [44] Fitzgerald E.A., Chand Naresh, "Epitaxial necking in GaAs grown on pre-patterned si substrates", Journal of Electronic Materials, v 20, n 10, Oct, 1991,839-853
    [45]Tamura M.,Hashimoto A.,Kasai J.,Nishida A.,"Threading dislocations in GaAs on pre-patterned Si and in post-patterned GaAs on Si",Journal of Crystal Growth,v 147,n 3-4,Feb 1,1995,264-273
    [46]Tang Y.,Rich D.H.,Lingunis E.H.,Haegel N.M.,"Polarized -cathodoluminescence study of stress for GaAs grown selectively on patterned Si(100)",Journal of Applied Physics,v 76,n 5,Sept 1,1994,3032-3040
    [47]Hashimoto A.,Fukunaga T.,Watanabe N.,"Optical properties of maskless selectively grown GaAs and AlxGal-xAs on V-grooved Si substrates",Journal of Crystal Growth,v 99,n 1-4 pt 1,Jan,1990,352-355
    [48]Egawa Takashi,Hasegawa Yoshiaki,Jimbo Takashi,Umeno Masayoshi,"Low-threshold CW operation at 300 K of all-MOCVD-grown MQW lasers on Si using post-growth patterning" Conference on Solid State Devices and Materials,1991,320-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700