850nm垂直腔面发射激光器的设计、工艺及特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直腔面发射激光器(Vertical Cavity Surface Emitting Lasers,简称VCSEL)是一种新型的半导体激光器,和普通激光器相比,它的阈值电流低、效率高、功耗低、发散角小、容易和光纤耦合以及易于和其他光学元件集成等优异特性,在光信息处理、光互连、光计算等方面都有广泛的应用前景。本论文设计和制作了850nm垂直腔面发射激光器,主要内容如下:
     阐述了垂直腔面发射激光器的工作原理,结构设计,并重点对850nm高功率垂直腔面发射激光器分布布拉格反射镜(DBR)进行了理论设计及分析。
     设计出AlAs/【GaAs/AlAs】半导体/超晶格DBR,并使用MBE设备在n~+-GaAs(100)衬底上外延生长了这种DBR反射镜。结果表明,此DBR在保持较高的反射率的同时也具有较小的串联电阻。
     在VCSEL器件研制方面,我们采用氧化物限制结构来对其电流和光场进行限制。研制出的VCSEL室温激射波长峰值在840nm、单管阈值电流不大于5mA、单管峰值输出功率不小于3.5mW。
Vertical-cavity surface-emitting lasers(VCSEL) have distinct advantages over conventional edge emitting lasers, such as small divergence angle, single longitudinal mode operation ,very low threshold current, compatible with optical fiber and other optical elements. They have become the ideal light sources for optical interconnections, optical free space communications, optical signal processing and neural networks. In this paper, we give some results on the design and fabrication of 850nm VCSELs, the main work is as follows:
    First we simply described the theory of VCSEL, and gave special analysis on 850nm high power VCSEL DBR design.
    A novel semiconductor/superlattice DBR has also been designed. In the experiment, the p-type and n-type DBR with different pairs and at different wavelengths have been grown on an n~+-GaAs(100) substrate with MBE system. From the result, the DBR has low series resistance while retaining high reflectivity.
    For the VCSEL fabrication, oxide-confined structure provides electrical and optical confinement. The laser wavelength peak is about 840nm. The lowest threshold current of 5mA is achieved. The minimum output power is over 3.5mW.
引文
1.伊贺健一,小山二三夫.面发射激光器基础与应用.北京:科学出版社,2002
    2.江剑平.半导体激光器.北京:电子工业出版社,2000
    3.刘恩科.半导体物理学.第四版.北京:国防工业出版社.1994
    4.张月清,王立军.半导体激光器进展.科学出版社,2002.7
    5. Dr. TORSTEN WIPIEJEWSKI, Vertical-cavity surface-emitting lasers The laser of tomorrow, Optoelectronics(4), pp. 23-26(1998).
    6. T. Milster et al., A single-mode high-power vertical cavity surface emitting laser72(26), pp. 3425-3427(1998).
    7. Martin Grabherr and Michael Miller, Bottom emitting VCSELs for high cw optical output power, Annual report 1997, pp. 52-56(1997).
    8. Michael Miller and Martin Grabherr, Kw/cm2 VCSEL arrays for high power applications, Annual report 1999, pp. 94-100(1999).
    9. Michael Miller and Ihab Kardosh, Improved output performance of high-power VCSELs, Annual report 2001, pp. 1-8(2001).
    10. M. Grabherr and M. Miller, Thermal crosstalk in densely packed high power VCSEL arrays, Annual report 1999, pp. 26-30(1999).
    11. Dubravko I. Babic, Joachim Piprek et al., Long-wavelength vertical-cavity lasers, (2001).
    12. B. Koley, M. Dagenais et al., Dependence of lateral oxidation rate of AlAs layer used as a current aperture in vertical cavity surface emitting lasers on different physical parameters, (2003).
    13. Hong Bee NEO, Analysis of relative intensity noise and simulation of vertical-cavity surface-emitting lasers, submitted for the degree of Bachelor of Engineering, (2001).
    14. J. S. Blackmore. Semiconducting and other major properties of Gallium Arsemde. J. Appl. Phys., 53(10), pp. 123-181, (1982).
    15. F. Gonzatez. Sanz. Estruturas de pozo cuantico y sn application a transistors pseudomorficos FET de InxGal-xAs-GaAs. PHD Thesis. Universidad Politecnica de Madrid, (1990).
    16. E. P. O'Reilly &G. . P. Witchlow. Theory of the hole subband dispersion in strained and unstrained quantumwells. Phys. Rev. B, 34(8), pp. 6030-6033, (1986).
    17. J. M. Luttinger & W. Kohn. Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4), pp. 860-883, (1995).
    18. A. R. Adams. Band structure engineering for low-threshold hith-efficiency semiconductor lasers. Electr, Lett., 22, pp. 249-250, (1986).
    19. P. C. W. Davies. Quantum mechanics. Routledgc & Kegan Paul. London, (1984).
    20. M. G. A. Bernard & G. Duraffourg. Laser conditions in semiconductors. Phys Status Sohdi. 1., pp. 699-703, (1961).21. E. P. O'Reilly. Valence band engineering in strained layer structures Semicond . Sci. Technol., 4, pp. 121-137, (1961).
    22. G. Crow, R. W. Kelsall & R. A. Abram. Monte Carlo simulations of low field hole transport in strained InGaAs quantum wells, submitted to Semicond. Sci. Technol, (1992).
    23. P. LDerry, R. J. Fu, C. S. Hong, E. Y. Chan and L. Figueroa. Analysis of the high temperature characteristics of InGaAs-AlGaAs strained quantum-well lasers. IEEE. J. Q. E., 28(12), pp. 2678-2705, (1992).
    24. R. H. Yan, S. W. Corzine, L. A. Coldren, and I. Suemune, IEEE J, Q. E., 26(2), pp. 213-216, (1990).
    25. P. W. A. Mellroy, A. Kurobe, and Y. Uematsu. Analysisi and application of theoretical gain curves to the design of multi-quantum-welllasers. IEEE. J. Q. E, QE-21 (12), pp. 1958-1963, (1985).
    26.王启明,林世鸣.半导体量子阱结构光学性质及其在光电子学中的应用.半导体晶格/量子阱物理与光电子器件讲习班教程.,1991:49-69。
    27. S. L. Chuang, Physies of Optoelectronic Devices, 1995, New York: Wiley.
    28. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, "GalnAsP/InP surface emitting injection lasers, " Jpn. J. Appl. Phys., 1979, Vol. 18, pp. 2329-2330.
    29. F. Koyama, S. Kinoshita, and K. Iga, "Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser, " Appl Phys. Lett., 1989, Vol. 55, no. 3, pp. 221-222.
    30.余金中等.半导体光电子技术.第一版.北京:化学工业出版社,2003
    31.黄德修.刘雪峰.半导体激光器及其应用.北京:国防科学技术出版社,1999
    32.邓云龙,范广涵,廖常俊等.垂直腔面发射激光器的原理与设计.华南师范大学学报(自然科学版).2001 (3)
    33.杜宝勋.半导体激光器原理.北京:兵器工业出版社,2001
    34. Carl W. Wilmsen, Henryk Temkin and Larry A. Coldren. Vertical-Cavity Surface- Emitting Lasers. Cambridge: Cambridge University Press, 1999
    35. D. L. Huffaker, D. G. Deppe, K. Kumar, et al. Appl. Phys. Lett., Vol. 65(1)
    36. R. A. Morgan, G. D. Guth, C. Zimmer, et al. Two-dimensional matrix addressed vertical cavity top-surface emitting laser array display. IEEE Photo. Technol. Lett., 1994, vol. 6
    37. J. A. Skidmore, B. L. Freitas, C. E. Reinhardt. High-power operation of InGaAs-InP laser diode array at 1. 73μm IEEE Photonics Technology Letters. 1997, vol. 9
    38. J. L. Jewell, J. P. Harbison, A. Scherer, et al. Vertical cavity surface emitting lasers: design, growth, fabrication, and characterization. IEEE J. Quantum Electron., 1991, vol. 27: 1332~1346
    39. J. K. Guenter, R. A. Hawthome, and D. N. Granville. Reliability of proton implanted VCSELs for data communication. SPIE, 1996, vol. 2683: 102~113
    40. C. L. Chua, R. L. Thomton, and D. W. Treat. Independently addressable VCSEL arrays on 3μm pitch. IEEE Photonics Technology Letters, 1998, vol. 10: 917~91941. Yoshitaka Kohama, Yoshitaka Ohiso, Kouta Tateno, ct al. 0. 85-μm vertical cavity surface emitting laser diode arrays grown on p type GaAs substratc. IEEE Photonics Technology Letters, 1997, 9(3): 200~202
    42. Changling yan, JingChang Zhong, Yingjic Zhan. A Study of Thermal Interaction in Semiconductor Laser Arrays. SPAT, 2000, 12(2): 90~95
    43.张益,潘钟,杜云等.AlAs选择性湿氮氧化的工艺条件对氧化速率的影响.半导体学报.1999,20 (3):260~264
    44. Marek Osinski, Tengiz Svimonishvili. Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures. J, IEEE Photonics Technology Letters, 2001, Vol. 13: 688~689

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700