微腔有机发光二极管的设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机电致发光二极管成为平板显示中最有前景的技术之一。然而,然而,由于有机材料的宽频带发光,不利于彩色显示,促使人们不断探索获得窄化谱线的途径。大量的研究表明,在器件中引入光学微腔是一种很好的方法。实验证明引入微腔结构以后,不仅使EL谱显著窄化,而且提高了发光的色饱和度,因此微腔结构的设计对有机发光二极管的性能有很大的影响。
     本论文简要分析了膜的传输理论,根据传输矩阵模型,利用Matlab语言编制程序对文中作为反射镜材料的金属银和分布布拉格反射镜(DBR)的传输特性进行探讨。研究了银膜的反射率、透射率及光在不同厚度银膜上的反射相移趋势,讨论了DBR的反射率、反射带宽、与形成DBR膜的高、低介质折射指数差,层数,高、低介质次序等的关系,获得的结果为用于微腔有机发光器件(MOLEDs)的反射镜的实际设计提供了理论指导。
     设计了金属-DBR双层有机微腔发光器件,讨论了腔长、发光层厚度、TPD/Alq3界面位置及发光区域位置对器件的EL谱及发光性能的影响。研究发现,微腔的引入在窄化发射光谱的同时也显著提高了发射光的强度。同时发光强度对发光区域和TPD/Alq3界面位置有强烈的依赖关系。为了得到最佳效率,发光区域应该尽量窄,并且其中心位置必须毗邻谐振腔中电场的波峰位置。
     在微腔OLEDs中引入一层新材料——负折射率介质层(NRIDL),采用经典电动力学辐射理论,建立有效的传输矩阵模型;同时设计了两种类型的含有NRID层的有机微腔发光器件,通过该模型研究了负折射率材料对微腔的光学性能的影响,并为进一步提高微腔OLEDs的发光效率、发光色纯度、薄化器件厚度开拓新思路,提供新方法。
Recently, organic light-emitting diodes(OLEDs) based on organicmaterials are one of the most promise technology for flat-panel displays.However, the broad emission spectra result in difficulties in developingfull color displays. So many researchers explore many approaches tonarrow the emission spectra and consider that the microcavity structure isa main method with most potential and extensive. The experiments provethat introduction of the microcavity structure into OLEDs not only narrowemission, and enhance the color purity, but also enhance device efficiency.It can be noticed that microcavity structures have greatly influence on theperformance of OLEDs.
     In this thesis, we simply analyzed the transmission theory of opticalthin film, and discussed the transmission characteristics of distributedBragg reflectors (DBR) and Ag film which were the reflectors in the textbased on the transmission matrix model using Matlab software. Thereflectivity, transmittance of Ag film and the relation between reflectivephase shift and the thickness of Ag film were studied and the relationbetween reflectivity, reflective bandwidth and refraction index difference,layer number and sequence of high-low medium of DBR were alsostudied. The obtaining result provided theoretical advices for actualdesign of the microcavity formed by reflective mirrors in OLEDs.
     Microcavity OLEDs formed by metal electrode silver (Ag) and DBRmirrors were designed. Some effects of cavity lengths, thickness of theemission layer, the interface of TPD/Alq3 and the emission region on theelectroluminescent (EL) spectrum and performance were investigated. Itwas found theoretically that the introduction of the microcavity intoOLEDs narrows emission spectra, and also significantly enhances theemissive intensity. The emitted radiation strongly depended on theemission region and the position of the emissive layer inside the cavity.Finally, the emission region should be narrow with its center at theantinode of the electric field in the resonant cavity to optimize MOLEDs.
     The negative refractive index dielectric (NRID) was introduced into the microcavity OLEDs. Two kinds of diodes containing thin negativerefractive index dielectric layer were designed. Firstly, the transmissionmatrix model of the negative refractive index dielectric was presented bythe classical electrodynamics theory. And then we theoretically studiedluminescence characteristics and EL spectra of the microcavity OLEDsbased on the transmission matrix model. The result shows that it's a newway to enhance device efficiency, color purity and thinned the thicknessof the MOLEDs.
引文
[1] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12): 913~915
    [2] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539~541
    [3] Berggren M, Inganas O, Gustafsson G, et al. Light emitting diodes with variable colors from polymers blends[J]. Nature, 1994, 372:444~446
    [4] Pei Q, Yu G, Zhang C, et al. Polymer light-emitting electrochemical cells[J]. Science, 1995, 269(5227): 1086~1088
    [5] Grem G, Leditzky G, Ulrich B, et al. Realization of a Blue-Light-Emitting Device Using Poly(p-phenylene) [J]. Adv. Mater., 1992, 4(1): 36~37
    [6] Yang Y, Heeger A J. Polyaniline as a transparent electrode for polymer light-emitting devices: Lower operating voltage and higher efficiency[J]. Appl. Phys. Lett., 1994, 64(10): 1245~1247
    [7] Huang Y H, Li H J, Dai G Z, et al. Performance enhancement by modification of cathode with a thin LiF layer in OLEDs[J]. Chin. J. Luminescence, 2005, 26(6): 737~742
    [8] Burrows P E, Forrest S R, Zhou T X, et al. Operating lifetime of phosphorescent organic light emitting devices[J]. Appl. Phys. Lett., 2000, 76(18): 2493~2495
    [9] Dodabalapur A, Rothberg L J, Miller T M, et al. Microcavity effects in organic semiconductors[J]. Appl. Phys. Lett., 1994, 64(19): 2486~2488
    [10] Weaver M S, Lidzey D G, Fisher T A, et al. Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers[J]. Thin Solid Film, 1996, 273(1): 39~47
    [11] Liang C J, Zhao D, Hong Z R, et al. Improved performance of electroluminescent devices based on an europium complex[J]. Appl. Phys. Lett., 2000, 76(1): 67~69
    [12] Castagna M E, Coffa S, Monaco M, et al. High efficiency light emitting devices in silicon[J]. Mater. Sci. Eng. B, 2003, 105 (1-3): 83~90
    [13] Takada N, Tsutsui T, Saito S. Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure[J]. Appl. Phys. Lett., 1993, 63(15): 2032-2034
    [14] Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963, 38(8): 2042-2043
    [15] Helfrich W, Schneider W G Recombination radiation in anthracene crystals[J]. Phys. Rev. Lett., 1965,14(7): 229-231
    [16] Dresner J. Double injection electroluminescence in anthracene[J]. RCA Rev., 1969, 30(2): 322-334
    [17] Vityuk N V, Mikho V U. Electroluminescence of anthracene excited by Tt-shaped voltage pulses[J]. Soviet. Phys. Semicond., 1973, 6(5): 1479-1499
    [18] Vincett P S, Barlow W A, Han R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Films, 1982, 94(2): 171-183
    [19] Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymer[J]. Nature, 1990, 347(6292): 539-541
    [20] Cao Y, Treacy G M, Smith P, et al. Solution-cast films of Polyaniline: optical-quality transparent electrodes[J]. Appl. Phys. Lett., 1992, 60(22): 2711-2713
    [21] Gu G, Shen Z, Burrow P E, et al. Transparent flexible organic light-emitting devices[J]. Adv. Mater., 1997, 9(9): 725-728
    [22] Fukuda Y, Watanabe T, Wakimoto T, et al. An organic LED display exhibiting pure RGB colors[J]. Synth. Met, 2000, 111-112, 1-6
    [23] Partridge R H. Electroluminescence from polyvinylcarbazole Film: 3 electroluminescent devices[J]. Polymer, 1983,24(6): 748-754
    [24] Adachi C, Tsutsui T, Saito S. Organic electroluminescent device having a hole conductor as an emitting layer[J]. Appl. Phys. Lett., 1989, 55(15): 1489-1491
    [25] Adachi C, Tsutsui T, Saito S, et al. Confinement of charge carriers and molecular excitons within 5-nm-thick emitting layer in organic electroluminescent devices with a double heterostructure[J]. Appl. Phys. Lett., 1990, 57(6): 531-533
    [26] Adachi C, Tokito S, Tsutsui T, et al. Electroluminescence in organic films with three-layer structure[J]. Jpn. J. Appl. Phys., 1988, 27(2): L269-L271
    [27] Hebner T R, Wu C C, Marcy D, et al. Ink-jet printing of doping polymer for organic light-emitting devices[J]. Appl. Phys. Lett., 1998, 72(5): 519-521
    [28] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Phys. Rev., 1946, 69(11-12): 681~685
    [29] 黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001:5~7
    [30] Patel N K, Cina S, Burroughes J H. High efficiency organic light-emitting diodes[J]. IEEE J. Sel. Top. Quant., 2002, 8(2): 346~361
    [31] Yokoyama H, Nishi K, Anan T. Controlling spontaneous and threshold-less laser oscillation with optical microcavities[J]. Opt. Quantum. Electron., 1992, 24(2): 245~272
    [32] DeMartini F, Jacobovitz G R. Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity[J]. Phys. Rev. Lett., 1988, 60(17): 1711~1714
    [33] Yokoyama H. Physics and device application of optical microcavities[J]. Science, 1992, 256(5053): 66~70
    [34] Schubert E F, Wang Y H, Cho A Y, et al. Resonant cavity light-emitting diode[J]. Appl. Phys. Lett., 1992, 60(8): 921~923
    [35] Schubert E F, Hunt N E J, Micovic M, et al. Highly efficient light emitting diodes with microcavities[J]. Science, 1994, 265(5174): 943~945
    [36] Rogers T J, Deppe D, Streetman B G. Effect of an AIAs/GaAs mirror on the spontaneous emission of InGaAs-GaAs quantum well[J]. Appl. Phys. Lett., 1990, 57(18): 1858~1860
    [37] Tessler N, Denton G J, Harrison N T, et al. High excitation density in light-emitting polymers[J]. Synth. Met., 1997, 91(1-3): 61~64
    [38] DeMartini F, Innocenit G, Jacobovitz R G, et al. Anomalous spontaneous emission time in a microscopic optical cavity[J]. Phys. Rev. Lett., 1987, 59(26): 2955~2958
    [39] Suzuki M, Yokoyama H, Brorson S D, et al. Observation of spontaneous emission lifetime change of dye containing Langrnuir-Blodgett films inoptical microcavities[J]. Appl. Phys. Lett., 1991, 58(10): 998~1000
    [40] Takada N, Tsutsui T, Saito S. Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure[J]. Appl. Phys. Lett., 1993, 3(15): 2032~2034
    [41] Dodabalapur A, Rothberg L J, Miller Y M. Color variation with electroluminescent organic semiconductors in multimode resonant cavities[J]. Appl. Phys. Lett., 1994, 65(18): 2308~2310
    [42] Tsutsui T, Takada N, Saito S. Sharply directed emission in organic electroluminescent diodes with an optical-microcavity structure[J]. Appl. Phys. Lett., 1994,65(15): 1868-1870
    
    [43] Tokito S, Noda K, Taga Y. Strongly directed sigle mode emission from organic electroluminescent diodes with a microcavity [J]. Appl. Phys. Lett., 1996, 68(19): 2633-2635
    
    [44] Tokito S, Tsutsui T, Taga Y. Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions[J]. J. Appl. Phys., 1999, 86(5): 2407-2411
    
    [45] Dodabalapur A, Rothberg L J, Jordan R H, et al. Physics and application of organic microcavity light emitting diodes[J]. J. Appl. Phys., 1996, 80(12): 6954-6964
    
    [46] Jordan R H, Rothberg L J, Dodabalapur A, et al., Efficiency enhancement of microcavity organic light emitting diodes[J]. Appl. Phys. Lett., 1996, 69(14): 1997-1999
    
    [47] Dirr S, Wiese S, Johannes H H, et al. Luminescence enhancement in microcavity organic multilayer structures[J]. Synth. Met., 1997,91(1-3): 53-56
    
    [48] Djursic A B, Rakic A D. Organic microcavity light emitting diodes with metal mirrors: emission wavelength dependence on the viewing angle[J]. Appl. Opt., 2002,41(36): 7650-7656
    
    [49] Hobson P A, Barnes W L, Lidzey D G, et al. Strong exciton-photon coupling in a low-Q all-metal mirror microcavity [J]. Appl. Phys. Lett., 2002, 81(19): 3519-3521
    
    [50] Lidzey D G, Brandley D D C, Skolnick M S, et al. Strong exciton-photon coupling in an organic semiconductor microcavity [J]. Nature, 1998, 395(3): 53-55
    
    [51] Cheung C H, Djursic A B, Kwong C Y, et al. Reduced angular dependence of the emission from tris(8-hydroxyquinoline) aluminum based microcavity[J]. Opt. Commun., 2005,248(1-3): 287-293
    [52] Tyan Y S, Shore J D, Farruggia G, et al. Broadband emitting microcavity OLED device[C]. SID 05 DIGEST 142
    
    [53] Lin C L, Lin H W, Wu C C. Examining microcavity organic light-emitting devices having two metal mirrors[J]. Appl. Phys. Lett., 2005, 87(2): 021101(1-3)
    [54] Peng H J, Zhu X L, Sun J X, et al. Efficient organic light-emitting diode using semitransparent silver as anode[J]. Appl. Phys. Lett., 2005, 87(17): 173505(1~3)
    [55] Persano L, Mele E, Cingolani R, et al. Polarization mode splitting in monolithic polymer microcavities[J]. Appl. Phys. Lett., 2005, 87(3): 031103(1~3)
    [56] Persano L, Mele E, Camposeo A, et al. Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distributed Bragg reflectors[J]. Chem. Phys. Lett., 2005, 411 (4-6): 316~320
    [57] Djursic A B, Kwong C Y, Cheung C H, et al. Near-infrared emission from tris(8-hydroxyquinoline) aluminum based microcavity light emitting diodes[J]. Chem. Phys. Lett., 2004, 399(4-6): 446~450
    [58] Xiong Z H, Liao L S, Ding X M, et al. Flat layered structure and improved photoluminescence emission from porous silicon microcavities formed by pulsed anodic etching[J]. Appl. Phys. A, 2002, 74, 807~811
    [59] Jean F, Mulot J Y, Geffroy B, et al. Microcavity organic light-emitting diodes on silicon[J]. Appl. Phys. Lett., 2002, 81 (9): 1717~1720
    [60] 唐晋发,顾培夫.薄膜光学与技术[M].北京:机械工业出版社,1987:72~75
    [61] Jordan R H, Rothberg L J, Dodabalapur A, et al. Efficiency enhancement of microcavity organic light emitting diodes[J]. Appl. Phys. Lett., 1996, 69(14): 1997~1999
    [62] Shiga T, Fujikawa H, Taga Y. Design of multiwavelength resonant cavities for white organic light-emitting diodes[J]. J. Appl. Phys., 2003, 93 (1): 19~22
    [63] Lu M H, Weaver M S, Zhou T X, et al. High-efficiency top-emitting organic light-emitting devices[J]. Appl. Phys. Lett., 2002, 81 (21): 3921~3923
    [64] Chen C W, Hsieh P Y, Chiang H H, et al. Top-emitting organic light-emitting devices using surface-modified Ag anode[J]. Appl. Phys. Lett., 2003, 83(25): 5127~5129
    [65] Djurixic A B, Rakic A D. Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle[J]. Appl. Opt., 2002, 41(36): 7650~7656
    [66] Djurisic A B, Kwong C Y, Cheung C H, et al. Near-infrared emission from tris(8-hydroxyquinoline) aluminum based microcavity light emitting diodes[J]. Chem. Phys. Lett., 2004, 399(4-6): 446~450
    [67] Cheung C H, Djurixic A B, Kwong C Y, et al. Epitaxial growth of Ni films by radio frequency sputtering on GaAs(001) with a TiN buffer[J]. Thin Solid Flims, 2005, 485(1-2): 235~240
    [68] 陈吉欣,冉启钧,林祖伦,等.微腔有机发光器件的设计[J].液晶与显示,2003,18(5):348~350
    [69] 刘明大,石家纬,李永军,等.微腔有机发光二极管[J].半导体光电,2000,21(3):166~168
    [70] Tokito S, Tsutsui T, Taha Y. Microcavity organic light emitting for strongly directed pure red, green, and blue emission[J]. J. Appl. Phys., 1999, 86(5): 2407~2411
    [71] Deppe D G, Lei C, Lin C C, et al. Spontaneous emission from planar microstructures[J]. J. mod. Optics., 1994, 41(2): 325~344
    [72] 刘宝利,徐仲英.分布布拉格反射器(DBR)对半导体微腔一些特性的影响[J].半导体学报,2001,22(3):335~339
    [73] Becker H, Bums S E, Tessler N, et al. Role of optical properties of metallic mirrors in microcavity structures[J]. J. Appl. Phys., 1997, 81(6): 2825~2829
    [74] 廖克俊,王万录.单层有机半导体微腔效应的研究[J].半导体光电,2000,21(3):171~173
    [75] Cimorova V, Seherf V, Neher D. Microcavity devices based on a ladder-type poly(p-phenyle-ne) emitting blue, green and red light[J]. Appl. Phys. Lett., 1996, 69(5): 608~610
    [76] Zhang H M, You H, Wang W, et al. Organic white-light-emitting devices based on a multimode resonant microcavity[J]. Semicond. Sci. Tech., 2006, 21(8): 1094~1097
    [77] Cheng C H, Djurisic A B, Kwong C Y, et al. Reduced angular dependence of the emission from tris(8-hydroxyquinoline) aluminum based microcavity[J]. Opt. Commun., 2005, 248(1-3): 287~293
    [78] Han S J, Huang C J, Lu Z H. Color tunable metal-cavity organic light-emitting diodes with fullerene layer[J]. J. Appl. Phys., 2005, 97 (091302):1~5
    [79] Dodabalapur A, Rothberg L J, Jordan R H, et al. Physics and applications of organic microcavity light emitting diodes[J]. J. Appl. Phys., 1996, 80(12): 6954~6964
    [80] Juang F S, Laih L H, Lin C J, et al. Angular dependence of the sharply directed emission in organic light emitting diodes with a microcavity structure[J]. Jpn. J. Appl. Phys., 2002, 41(4B): 2787~2789
    [81] Li Y J, Shi J W, Liu M D, et al. Linewidth narrowing and intensity enhancement of wavelength tunable MOLEDs[J]. Semicond. Photo. Tech., 2001, 7(23): 13~16
    [82] 刘星元,赵家民,刘云,等.有机薄膜在平面光学微腔中的光致发光特性[J].光谱学与光谱分析,2000,20(2):212~215
    [83] 刘文楷,林世呜,曲延峰,等.半导体微腔中电偶极子的自发发射[J].光电子·激光,2002,13(1):12~15
    [84] Naka S, Okada H, Onnagawa H, et al. Carrier transport properties of organic materials for EL device operation[J]. Synth. Met., 2000, 111-112, 331~333
    [85] Tsutsui T, Takada N, Saito S. Sharply directed emission in organic electroluminescent diodes with an optical microcavity structure[J]. Appl. Phys. Lett., 1994, 65(15): 1868~1870
    [86] Veselago V G. The electrodynamics of substances with simultaneously negative values ofe and μ[J]. Soy. Phys. Usp., 1968, 10(4): 509~514
    [87] Linden S, Enkrich C, Wegener M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351~1353
    [88] Falcone F, Martin F, Bonache J, et al. Left handed coplanar waveguide band pass filters based on bi-layer split ring resonators[J]. IEEE Microw. Wirel. Comp. Lett., 2004, 14(1): 10~12
    [89] Zhang Z M, Fu C J. Unusual photon ttmneling in the presence of a layer with a negative refractive index[J]. Appl. Phys. Lett., 2002, 80(6): 1097~1099
    [90] Gerardin J, Lakhtakia A. Negative index of refraction and distributed bragg reflectors[J]. Micro. Opt. Tech. Lett., 2002, 34(6): 409~411
    [91] Nefedov I S, Tretyakov S A. Photonic band gap structure containing metamaterial with negative permittivity and permeability[J]. Phys. Rev. E, 2002, 66(3): 036611(1~4)
    [92] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77~79
    [93] 杨立功,黄弼勤,叶辉,等.负折射率介质层中光波的相位和传输特性研究.光学学报,2004,24(3):388~392
    [94] 冯宇,吴建,宋健平.负折射指数物质与潜在应用.电子器件,2006,29(3):666~671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700