基于壳聚糖的新型Pickering乳液及相应功能材料的制备和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于天然高分子来源广泛,而且具有无毒、生物相容性、生物可降解性及可回收利用等性能,利用这些高分子来设计和制备新型胶体粒子,并进一步用于稳定Pickering乳液和制备相关功能材料是材料科学领域备受关注的一个研究方向。本课题以壳聚糖为主线,利用Pickering乳液为模板,制备几种基于壳聚糖的新型Pickering乳液及相应功能材料,并且探讨了这几种乳液的稳定机理以及相关功能材料的应用研究。本研究的创新点为:拓宽了Pickering乳液的胶体粒子乳化剂的选择范围,首次探讨了壳聚糖分子在稳定Pickering乳液方面的基理与应用。而且,我们进一步探索了pH可逆的Pickering乳液在制备功能材料以及这些材料在实际生活中的应用。这种利用天然聚电解质制备pH响应性的Pickering乳液或者其它基于壳聚糖的功能性材料,也为其它刺激响应性的乳化剂或乳液体系在绿色经济以及环保领域的应用提供了一种新思路。本课题的主要内容和结果如下:
     1.首次采用纯的未经任何化学改性的壳聚糖,通过简单的调节壳聚糖水溶液的pH值,制备了一种新型的、具有优异pH可逆性的Pickering乳液。壳聚糖分子链上带上大量的氨基,它是一种天然的弱电解质。在酸性条件下,壳聚糖分子以溶胶的形式存在。而在中性或碱性条件下,壳聚糖分子形成纳米粒子或絮状沉淀。在此条件下,不同分子量壳聚糖形成的这两种形式的胶体粒子,均可以稳定不同极性与粘度的油相。所形成的Pickering乳液能够至少经历5次破乳-乳化的过程,并且能够至少放置两个月以上时间。在壳聚糖水溶液中盐浓度低于400mmol/L时,增加盐浓度能够增加Pickering乳滴的粒径。
     2.首次利用壳聚糖稳定的Pickering乳液,利用其优异的pH可逆性,通过绿色循环乳液聚合制备硫醇-烯微球。在油相中溶解有一定量的硫醇和烯烃单体,通过紫外光引发Pickering乳液聚合制备壳聚糖/硫醇-烯微球。然后,将制备的微球在酸性条件下浸泡,用盐酸溶解掉微球表面的壳聚糖,得到硫醇-烯微球。然后回收溶解的壳聚糖分子,继续进行下一次乳液和微球制备。绿色循环乳液聚合甚少可以持续三次。利用此方法制备功能性微球,具有以下优点:(1)采用天然高分子为稳定剂,实现了废弃物(虾壳、蟹壳等)的再利用;(2)稳定乳液所需要的乳化剂量少(只需要万分之五);(3)通过绿色循环乳液聚合多次制备功能性微球,不需要多次添加乳化剂,制备过程经济环保;(4)制备的微球在药物装载与释放领域具有一定的应用,展现出对布洛芬药物的控制释放;(5)乳液体系有一定的生物相容性,制备的微球具有较强的可降解性。可以根据实际需要制备生物相容或生物可降解性的微球。
     3.首次以壳聚糖胶体粒子稳定的高内相Pickering乳液为模板,制备纯的壳聚糖的多孔洞结构的支架材料。通过提高壳聚糖溶液的浓度,可以制备更高内相体积分数的Pickering乳液。以1.0wt%的壳聚糖稳定的80%的内相体积分数的高内相乳液为模板,然后利用戊二醛交联壳聚糖粒子,除去油水相后,就得到多孔支架材料。Chitosan-GLA多级孔洞材料的大孔尺寸约为15μm,而相互贯通的小孔大小约几微米。控制戊二醛与壳聚糖的质量比,可以调节所形成的支架材料的抗酸能力,以及对铜离子的吸附能力。通过向支架材料中引入更多的吸附位点或者提供更多吸附空间,都能够提高多孔材料的吸附能力。壳聚糖多孔材料对铜离子的吸附过程可以由Freundlich理论描述:吸附过程是非均质吸附,并且在高浓度的铜离子溶液中更容易吸附。壳聚糖多孔支架材料有良好的吸附可逆性,经历十次去吸附-吸附后,吸附能力保持原始吸附量的90.3%。采用Pickering乳液模板法制备纯的壳聚糖多孔支架材料的操作简单可控。而且,所制备的壳聚糖多孔材料在实际中有一定的应用。
     4.首次以壳聚糖为一种弱聚电解质改性剂,以壳聚糖改性的氧化石墨烯(CS/GO)复合粒子为胶体粒子稳定剂制备新型Pickering乳液。当壳聚糖与GO质量比在0.0625-0.25区间时,CS/GO复合粒子能够稳定不同极性与粘度的油相。而且,无论是芳香族油相,还是脂肪族油相,在上述质量比区间产生的CS/GO复合粒子均能够形成稳定的水包油的Pickering乳液,这些乳液至少可以稳定2个月。说明了壳聚糖分子不仅能够单独的作为一种胶体粒子稳定剂,而且能够作为一种聚电解质改性剂改性粒子去制备有效的胶体粒子稳定剂,进而用于稳定Pickering乳液。
     5.首次以Pickering乳液为模板,通过层层(LbL)自组装法制备纳米复合的天然聚电解质微胶囊。采用聚醚酰亚胺(PEI)改性Laponite粒子,以PEI/Laponite复合粒子为胶体粒子制备Pickering乳液,制备的乳液可以至少稳定2个月,并且乳滴表面带有足量的正电荷。以此乳滴为模板,在其表面依次吸附海藻酸和壳聚糖天然聚电解质。吸附一定层数的聚电解质后,溶解掉内部的油相,得到中空的(海藻酸-壳聚糖)n微胶囊。本方法制备天然聚电解质微胶囊的优点:(1)相比传统的乳液,Pickering乳液模板具有更强的稳定性,能够有效防止自组装过程中,乳滴或聚电解质的团聚;(2)能够同时在微胶囊的壳层及内部的油相中装载有水溶性或油溶性的药物。我们向中空微胶囊中装载一定量的布洛芬,这种微胶囊对布洛芬的释放显示一定的缓释作用;(3)为制备其它微胶囊或功能性材料提供新思路。
Because the excellent properties of nontoxicity, biocompatibility, biodegradability andrecoverability of natural polymers, there are growing interests in design and preparation ofnovel natural polymers-based colloid particles to stabilize Pickering emulsions, and fabricaterelated functional materials. For the first time, this study discusses the stability mechanism ofPickering emulsions stabilized by pure chitosan nanoparticles (CNPs) or other colloidparticles modified by chitosan. Based on these emulsions, this thesis describes thedevelopment of new strategies for the preparation of hierarchical macroporous material ordegradable polymer microspheres, and studies the practical application of these materials. Theinnovative ideas of this study can be concluded as follows: we develop novel kinds ofparticulate emulsifiers to stabilize Pickering emulsions; the proposed approach for preparationof various functional materials based on Pickering emulsion stabilized by pH-responsivechitosan expands the application of a wide range of reversible emulsifiers or emulsionsystems, and has a potential application in green economy or environmental protection. Themain contents and results of this study are listed as follows:
     1. For the first time, a simple reversible Pickering emulsion system stabilized by pureCNPs without any hydrophobic modification is developed. Chitosan has a pH-tunable sol-geltransition due to free amino groups along its backbone. At pH6.0, chitosan is insoluble inwater. CNPs or micrometer-sized floccular precipitates are formed in situ. These chitosanaggregates can adsorb at the interface of oil and water to stabilize O/W Pickering emulsions.At pH6.0, chitosan is soluble in water. Demulsification happens. Four organic solvents(liquid paraffin, n-hexane, toluene, and dichloromethane) are chosen as the oil phase.Reversible emulsions are formed for all four oils. Chitosan-based Pickering emulsions canundergo five cycles of emulsification-demulsification with only a slight increase in theemulsion droplet size. They also have good long-term stability for more than2months. Whenthe salt concentration of chitosan aqueous solution is less than400mmol/L, the droplet size ofPickering emulsion increases with increasing of salt concentration.
     2. Pickering emulsion stabilized by pH-reversible chitosan is developed to preparedegradable polymer microspheres by emulsion photopolymerization, where chitosan acts as a green and recyclable particulate emulsifier. The thiol-ene photopolymerization oftrimethylolpropane tris(3-mercaptopropionate) and trimethylolpropane triacrylate is initiatedby UV irradiation. The property of excellent pH-reversibility of chitosan endows it to be usedfor recycles in emulsion polymerization at least three times. Pure microspheres are obtainedby dissolving the chitosan-coated microspheres in HCl aqueous solution to remove chitosan.Ibuprofen is loaded into the microspheres. The higher release temperature or pH value, thefaster release rate and higher release extent of IBU from the microspheres are found.Meanwhile, the resulting microspheres exhibit a good degradability in1M NaOH aqueoussolution, with a weight loss of about90wt%after35days. This study opens up a new routefor the green and recyclable application of chitosan in fabrication of degradable polymermicrospheres.
     3. Chitosan scaffolds with hierarchical macroporous structures for recyclable adsorptionof Cu2+are prepared by templating from Pickering high internal phase emulsions (HIPEs) forthe first time. The liquid paraffin-in-water HIPEs are stabilized by CNPs. The internal phasefraction can be up to90.0%, meanwhile the chitosan concentration only needs1.0wt%. Thechitosan scaffolds are obtained by crosslinking the dispersed CNPs, followed by removing theinternal phase. The resulting scaffold exhibits the average pore size of around15m andinterconnecting throat size of several micrometers. The adsorption capacities of thechitosan-glutaraldehyde (chitosan-GLA) scaffolds for Cu2+increase with increasing the molarratio of-NH2of CNPs to-CHO of GLA. At the optimized ratio of2:1, the adsorption capacityis60.2mg/g at room temperature and pH5.0. The adsorption capacity can be greatlyimproved by addition of carboxymethylated chitosan or adopting imprinting method, and theadsorption capacities are100.2,90.3mg/g, respectively. The adsorption isotherm of thechitosan scaffold closely follows Freundlich model. Furthermore, the adsorption capacity ofthe scaffold undergoing10consecutive desorption-adsorption cycles still maintains at a highlevel of90.3%, suggesting the chitosan scaffold is a green and recyclable biosorbent inpractical wastewater treatment.
     4. For the first time, chitosan acts as a new kind of weak polyelectrolyte modifier tomodify graphene oxide (GO), and Pickering emulsions are stabilized by the CS/GOnanocomposite colloid particles. When the mass ratio of chitosan and GO is in the range of 0.0625-0.25, no matter what the polarity and viscosity of oils are, besides, whatever the oilsare aromatic solvents or aliphatic solvents, the obtained CS/GO colloid particles can stabilizePickering eumulions, which have good long-term stability for more than two months. Thisstudy suggests that chitosan molecules can not only act as an effective particulate emulsifierto stabilize Pickering emulsions alone, but also as a kind of modifier to preparenanocomposite colloid particles with other particles, and preparation of Pickering emulsions.
     5. Nanocomposite polysaccharide microcapsules composed of biocompatiblepolyelectrolyte complex via electrostatic Layer-by-Layer self-assembly on Pickeringemulsions template method are firstly prepared. PEI/Laponite-based Pickering emulsions areobtained regardless of the polarity and viscosity of the oils at PEI/Laponite mass ratio of0.5and Laponite concentration of0.25wt%, and these emulsions show good long-term stabilityfor more than two months. Four bilayers sodium alginate-chitosan microcapsules with thedimension of about43.9μm and wall thickness of55nm were prepared by alternateadsorption of negatively charged alginate and positively charged chitosan on Pickeringemulsions. Hollow microcapsules are obtained after core removal at a mild condition ofwashing with excess2-propanol. IBU as a model drug is loaded into hollow microcapsules,and the release rate of IBU from the microcapsules at pH7.4is obviously faster than therelease rate at pH2.0. The more polyelectrolyte layers of IBU-loaded microcapsules, the moredifficult for IBU release.
引文
[1] Kaur S., Dhillon G.S. The versatile biopolymer chitosan: potential sources, evaluation ofextraction methods and applications[J]. Crit. Rev. Microbiol.,2014,40(2):155-175.
    [2] Habibi Y. Key advances in the chemical modification of nanocelluloses[J]. Chem. Soc.Rev.,2014,43(5):1519-1542.
    [3] Neffe A.T., Wischke C., Racheva M., et al. Progress in biopolymer-based biomaterials andtheir application in controlled drug delivery[J]. Expert Rev. Med. Devices,2013,10(6):813-833.
    [4] Yi H., Wu L.Q., Bentley W.E., et al. Biofabrication with chitosan[J]. Biomacromolecules,2005,6(6):2881-2894.
    [5] Pickering S.U. Emulsions[J]. Journal of the Chemical Society, Transactions,1907,91(0):2001-2021.
    [6] Gurevitch I., Silverstein M.S. Shape memory polymer foams from emulsion templating[J].Soft Matter,2012,8(40):10378.
    [7] Yin D.Z., Ma L., Liu J.J., et al. Pickering emulsion: A novel template formicroencapsulated phase change materials with polymer–silica hybrid shell[J]. Energy,2014,64(0):575-581.
    [8] Yang Y., Wei Z.J., Wang C.Y., et al. Lignin-based Pickering HIPEs for macroporous foamsand their enhanced adsorption of copper(ii) ions[J]. Chem. Commun.,2013,49(64):7144-7146.
    [9] Wei Z.J., Yang Y., Yang R., et al. Alkaline lignin extracted from furfural residues forpH-responsive Pickering emulsions and their recyclable polymerization[J]. Green Chem.,2012,14(11):3230-3236.
    [10] Ning Y., Wang C.Y., Ngai T., et al. Hollow magnetic Janus microspheres templated fromdouble Pickering emulsions[J]. RSC Adv.,2012,2(13):5510-5512.
    [11] Ning Y., Yang Y., Wang C.Y., et al. Hierarchical porous polymeric microspheres asefficient adsorbents and catalyst scaffolds[J]. Chem. Commun.,2013,49(78):8761-8763.
    [12] Wang Y.H., Zhang C.L., Tang C., et al. Emulsion interfacial synthesis of asymmetricJanus particles[J]. Macromolecules,2011,44(10):3787-3794.
    [13] Dinsmore A.D., Hsu M.F., Nikolaides M.G., et al. Colloidosomes: selectively permeablecapsules composed of colloidal particles[J]. Science,2002,298(5595):1006-1009.
    [14] Liu S.Q., Deng R.H., Li W.K., et al. Polymer microparticles with controllable surfacetextures generated through interfacial instabilities of emulsion droplets[J]. Adv. Funct. Mater.,2012,22(8):1692-1697.
    [15] Capron I., Cathala B. Surfactant-free high internal phase emulsions stabilized bycellulose nanocrystals[J]. Biomacromolecules,2013,14(2):291-296.
    [16] Kalashnikova I., Bizot H., Cathala B., et al. New Pickering emulsions stabilized bybacterial cellulose nanocrystals[J]. Langmuir,2011,27(12):7471-7479.
    [17] Kalashnikova I., Bizot H., Cathala B., et al. Modulation of cellulose nanocrystalsamphiphilic properties to stabilize oil/water interface[J]. Biomacromolecules,2012,13(1):267-275.
    [18] Tasset S., Cathala B., Bizot H., et al. Versatile cellular foams derived fromCNC-stabilized Pickering emulsions[J]. RSC Adv.,2014,4(2):893-898.
    [19] Li C., Li Y.X., Sun P.D., et al. Pickering emulsions stabilized by native starch granules[J].Colloids Surf., A,2013,431(0):142-149.
    [20] Li C., Sun P.D., Yang C. Emulsion stabilized by starch nanocrystals[J]. Starch-St rke,2012,64(6):497-502.
    [21] Tan Y., Xu K., Liu C., et al. Fabrication of starch-based nanospheres to stabilizepickering emulsion[J]. Carbohydr. Polym.,2012,88(4):1358-1363.
    [22] Han Y.S., Radziuk D., Shchukin D., et al. Sonochemical Synthesis of Magnetic ProteinContainer for Targeted Delivery[J]. Macromol. Rapid Commun.,2008,29(14):1203-1207.
    [23] Li Z.F., Xiao M.D., Wang J.F., et al. Pure protein scaffolds from pickering high internalphase emulsion template[J]. Macromol. Rapid Commun.,2013,34(2):169-174.
    [24] Rossier-Miranda F.J., Schro n K., Boom R. Microcapsule production by an hybridcolloidosome-layer-by-layer technique[J]. Food Hydrocolloids,2012,27(1):119-125.
    [25] Kawakatsu T., Tr g rdh G., Tr g rdh C. The formation of oil droplets in a pectin solutionand the viscosity of the oil-in-pectin solution emulsion[J]. J. Food Eng.,2001,50(4):247-254.
    [26] Leroux J., Langendorff V., Schick G., et al. Emulsion stabilizing properties of pectin[J].Food Hydrocolloids,2003,17(4):455-462.
    [27] Binks B.P., Clint J.H., Mackenzie G., et al. Naturally occurring spore particles at planarfluid interfaces and in emulsions[J]. Langmuir,2005,21(18):8161-8167.
    [28] Dorobantu L.S., Yeung A.K., Foght J.M., et al. Stabilization of oil-water emulsions byhydrophobic bacteria[J]. Appl. Environ. Microbiol.,2004,70(10):6333-6336.
    [29] Qian L., Zhang H.F. Green synthesis of chitosan-based nanofibers and theirapplications[J]. Green Chem.,2010,12(7):1207-1214.
    [30] Ignatova M., Manolova N., Rashkov I. Electrospun Antibacterial Chitosan-BasedFibers[J]. Macromol. Biosci.,2013,13(7):860-872.
    [31] Klinkesorn U. The Role of Chitosan in Emulsion Formation and Stabilization[J]. FoodRev. Int.,2013,29(4):371-393.
    [32] Yeul V.S., Rayalu S.S. Unprecedented Chitin and Chitosan: A Chemical Overview[J]. J.Polym. Environ.,2013,21(2):606-614.
    [33] Tzoumaki M.V., Moschakis T., Kiosseoglou V., et al. Oil-in-water emulsions stabilizedby chitin nanocrystal particles[J]. Food Hydrocolloids,2011,25(6):1521-1529.
    [34] Del Blanco L.F., Rodriguez M.S., Schulz P.C., et al. Influence of the deacetylation degreeon chitosan emulsification properties[J]. Colloid. Polym. Sci.,1999,277(11):1087-1092.
    [35] Schulz P.C., Rodriguez M.S., Del Blanco L.F., et al. Emulsification properties ofchitosan[J]. Colloid. Polym. Sci.,1998,276(12):1159-1165.
    [36] Binks B.P. Modern aspects of emulsion science [M]. Royal Society of Chemistry,1998.
    [37] Chen G., Tao D. An experimental study of stability of oil–water emulsion[J]. FuelProcess. Technol.,2005,86(5):499-508.
    [38] Tchesskaya T.Y., Zatovsky A.V. The thermal fluctuations of diluted emulsion[J]. Adv.Colloid Interface Sci.,2004,108(0):23-27.
    [39] Chen G.L., Tao D. An experimental study of stability of oil–water emulsion[J]. FuelProcess. Technol.,2005,86(5):499-508.
    [40] Aveyard R., Binks B.P., Clint J.H. Emulsions stabilised solely by colloidal particles[J].Adv. Colloid Interface Sci.,2003,100-102(0):503-546.
    [41] Binks B.P. Particles as surfactants—similarities and differences[J]. Curr. Opin. ColloidInterface Sci.,2002,7(1):21-41.
    [42] Ramsden W. Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and MechanicalCoagulation).--Preliminary Account[J]. Proc. R. Soc. London,1903,156-164.
    [43] Kaewsaneha C., Tangboriboonrat P., Polpanich D., et al. Preparation of Janus colloidalparticles via Pickering emulsion: An overview[J]. Colloids Surf., A,2013,439(0):35-42.
    [44] Langevin D., Poteau S., Hénaut I., et al. Crude oil emulsion properties and theirapplication to heavy oil transportation[J]. Oil Gas Sci. Technol.,2004,59(5):511-521.
    [45] Dickinson E. Stabilising emulsion-based colloidal structures with mixed foodingredients[J]. J. Sci. Food Agric.,2013,93(4):710-721.
    [46] Dickinson E. Food emulsions and foams: Stabilization by particles[J]. Curr. Opin.Colloid Interface Sci.,2010,15(1-2):40-49.
    [47] Huang W.A., Lan Q., Zhang Y. Colloid particles adsorption and interfacial assembly atthe fluids interface[J]. Prog. Chem.,2007,19(2/3):212-219.
    [48] Israelachvili J.N. Intermolecular and surface forces: revised third edition [M]. Academicpress,2011.
    [49] Binks B.P., Lumsdon S. Stability of oil-in-water emulsions stabilised by silica particles[J].Phys. Chem. Chem. Phys.,1999,1(12):3007-3016.
    [50] Binks B.P., Philip J., Rodrigues J.A. Inversion of silica-stabilized emulsions induced byparticle concentration[J]. Langmuir,2005,21(8):3296-3302.
    [51] Chen T., Colver P.J., Bon S.A. Organic–Inorganic Hybrid Hollow Spheres Preparedfrom TiO2‐Stabilized Pickering Emulsion Polymerization[J]. Adv. Mater.,2007,19(17):2286-2289.
    [52] Zhou J., Qiao X.Y., Binks B.P., et al. Magnetic Pickering emulsions stabilized by Fe3O4nanoparticles[J]. Langmuir,2011,27(7):3308-3316.
    [53] Yang F., Liu S.Y., Xu J., et al. Pickering emulsions stabilized solely by layered doublehydroxides particles: the effect of salt on emulsion formation and stability[J]. J. ColloidInterface Sci.,2006,302(1):159-169.
    [54] Liu H., Wang C.Y., Zou S.W., et al. Facile fabrication of polystyrene/halloysite nanotubemicrospheres with core-shell structure via Pickering suspension polymerization[J]. Polym.Bull.,2012,69(7):765-777.
    [55] Ashby N.P., Binks B.P. Pickering emulsions stabilised by Laponite clay particles[J]. Phys.Chem. Chem. Phys.,2000,2(24):5640-5646.
    [56] Bon S.A.F., Colver P.J. Pickering miniemulsion polymerization using laponite clay as astabilizer[J]. Langmuir,2007,23(16):8316-8322.
    [57] Duan H.W., Wang D.Y., Kurth D.G., et al. Directing Self‐Assembly of Nanoparticles atWater/Oil Interfaces[J]. Angew. Chem. Int. Ed.,2004,43(42):5639-5642.
    [58] Reincke F., Hickey S.G., Kegel W.K., et al. Spontaneous assembly of a monolayer ofcharged gold nanocrystals at the water/oil interface[J]. Angew. Chem. Int. Ed.,2004,43(4):458-462.
    [59] Dai L.L., Sharma R., Wu C.Y. Self-assembled structure of nanoparticles at a liquid-liquidinterface[J]. Langmuir,2005,21(7):2641-2643.
    [60] Lin Y., Skaff H., Emrick T., et al. Nanoparticle assembly and transport at liquid-liquidinterfaces[J]. Science,2003,299(5604):226-229.
    [61] Tangirala R., Revanur R., Russell T.P., et al. Sizing nanoparticle-covered droplets byextrusion through track-etch membranes[J]. Langmuir,2007,23(3):965-969.
    [62] Bon S.A.F., Cauvin S., Colver P.J. Colloidosomes as micron-sized polymerisation vesselsto create supracolloidal interpenetrating polymer network reinforced capsules[J]. Soft Matter,2007,3(2):194-199.
    [63] Helseth L.E., Muruganathan R.M., Zhang Y., et al. Colloidal rings in a liquid mixture[J].Langmuir,2005,21(16):7271-7275.
    [64] Velev O.D., Furusawa K., Nagayama K. Assembly of latex particles by using emulsiondroplets as templates.1. Microstructured hollow spheres[J]. Langmuir,1996,12(10):2374-2384.
    [65] Pieranski P. Two-dimensional interfacial colloidal crystals[J]. Phys. Rev. Lett.,1980,45(7):569-572.
    [66] Aveyard R., Clint J.H., Horozov T.S. Aspects of the stabilisation of emulsions by solidparticles: Effects of line tension and monolayer curvature energy[J]. Phys. Chem. Chem.Phys.,2003,5(11):2398-2409.
    [67] Binks B.P., Lumsdon S.O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions[J]. Langmuir,2000,16(23):8622-8631.
    [68] Morse A.J., Dupin D., Thompson K.L., et al. Novel Pickering emulsifiers based onpH-responsive poly(tert-butylaminoethyl methacrylate) latexes[J]. Langmuir,2012,28(32):11733-11744.
    [69] Morse A.J., Armes S.P., Thompson K.L., et al. Novel Pickering emulsifiers based onpH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes[J]. Langmuir,2013,29(18):5466-5475.
    [70] Sun G.Q., Li Z.F., Ngai T. Inversion of particle-stabilized emulsions to formhigh-internal-phase emulsions[J]. Angew. Chem. Int. Ed. Engl.,2010,49(12):2163-2166.
    [71] Ma C.F., Bi X.B., Ngai T., et al. Polyurethane-based nanoparticles as stabilizers foroil-in-water or water-in-oil Pickering emulsions[J]. J. Mater. Chem. A,2013,1(17):5353.
    [72] Li W., Yu L.J., Liu G.P., et al. Oil-in-water emulsions stabilized by Laponite particlesmodified with short-chain aliphatic amines[J]. Colloids Surf., A,2012,400(0):44-51.
    [73] Wang J., Liu G.P., Wang L.Y., et al. Synergistic stabilization of emulsions bypoly(oxypropylene)diamine and Laponite particles[J]. Colloids Surf., A,2010,353(2-3):117-124.
    [74] Lagaly G., Reese M., Abend S. Smectites as colloidal stabilizers of emulsions: I.Preparation and properties of emulsions with smectites and nonionic surfactants[J]. Appl.Clay Sci.,1999,14(1):83-103.
    [75] Binks B.P., Lumsdon S.O. Effects of oil type and aqueous phase composition on oil–water mixtures containing particles of intermediate hydrophobicity[J]. Phys. Chem. Chem.Phys.,2000,2(13):2959-2967.
    [76] Tambe D.E., Sharma M.M. Factors Controlling the Stability of Colloid-StabilizedEmulsions III. Measurement of the Rheological Properties of Colloid-Laden Interfaces[J]. J.Colloid Interface Sci.,1995,171(2):456-462.
    [77] de Gennes P.G. Soft Matter[J]. Rev. Mod. Phys.,1992,64(3):645-648.
    [78] Gao Q.X., Wang C.Y., Liu H.X., et al. Suspension polymerization based on inversePickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunablesupracolloidal structures[J]. Polymer,2009,50(12):2587-2594.
    [79] Liu H., Wang C., Gao Q., et al. Fabrication of novel core-shell hybrid alginate hydrogelbeads[J]. Int. J. Pharm.,2008,351(1-2):104-112.
    [80] Wurm F., Kilbinger A.F.M. Polymeric janus particles[J]. Angew. Chem. Int. Ed.,2009,48(45):8412-8421.
    [81] Ruhland T.M., Gro schel A.H., Walther A., et al. Janus Cylinders at Liquid–LiquidInterfaces[J]. Langmuir,2011,27(16):9807-9814.
    [82] Walther A., Matussek K., Muller A.H.E. Engineering nanostructured polymer blends withcontrolled nanoparticle location using Janus particles[J]. Acs Nano,2008,2(6):1167-1178.
    [83] Walther A., Drechsler M., Rosenfeldt S., et al. Self-assembly of janus cylinders intohierarchical superstructures[J]. J. Am. Chem. Soc.,2009,131(13):4720-4728.
    [84] He Y.J., Li K.S. Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickeringemulsion route[J]. J. Colloid Interface Sci.,2007,306(2):296-299.
    [85] Hong L., Jiang S., Granick S. Simple method to produce Janus colloidal particles in largequantity[J]. Langmuir,2006,22(23):9495-9499.
    [86] Hong L., Cacciuto A., Luijten E., et al. Clusters of amphiphilic colloidal spheres[J].Langmuir,2008,24(3):621-625.
    [87] Chen Y.H., Wang C.Y., Chen J.X., et al. Growth of lightly crosslinked PHEMA brushesand capsule formation using pickering emulsion interface‐initiated ATRP[J]. J. Polym. Sci.,Part A: Polym. Chem.,2009,47(5):1354-1367.
    [88] Studart A.R., Gonzenbach U.T., Tervoort E., et al. Processing routes to macroporousceramics: a review[J]. J. Am. Ceram. Soc.,2006,89(6):1771-1789.
    [89] Türkmen D., Yavuz H., Denizli A. Synthesis of tentacle type magnetic beads asimmobilized metal chelate affinity support for cytochrome c adsorption[J]. Int. J. Biol.Macromol.,2006,38(2):126-133.
    [90] Unsal E., aml S.T., Tuncel M., et al. Monodisperse–porous particles with differentpolarities by―modified seeded polymerization” and their use as chromatographic packing inHPLC[J]. React. Funct. Polym.,2004,61(3):353-368.
    [91] Zou S.W., Liu H., Yang Y., et al. Multihollow nanocomposite microspheres with tunablepore structures by templating Pickering double emulsions[J]. React. Funct. Polym.,2013,73(9):1231-1241.
    [92] Zhou S.Z., Bismarck A., Steinke J.H. Interconnected macroporous glycidylmethacrylate-grafted dextran hydrogels synthesised from hydroxyapatite nanoparticlestabilised high internal phase emulsion templates[J]. J. Mater. Chem.,2012,22(36):18824-18829.
    [93] Fujii S., Armes S.P., Binks B.P., et al. Stimulus-responsive particulate emulsifiers basedon lightly cross-linked poly (4-vinylpyridine)-silica nanocomposite microgels[J]. Langmuir,2006,22(16):6818-6825.
    [94] Fujii S., Okada M., Furuzono T. Hydroxyapatite nanoparticles as stimulus-responsiveparticulate emulsifiers and building block for porous materials[J]. J. Colloid Interface Sci.,2007,315(1):287-296.
    [95] Zhang K., Wu W., Guo K., et al. Synthesis of temperature-responsive poly(N-isopropylacrylamide)/poly(methyl methacrylate)/silica hybrid capsules from inverse pickeringemulsion polymerization and their application in controlled drug release[J]. Langmuir,2010,26(11):7971-7980.
    [96] Binks B.P., Murakami R., Armes S.P., et al. Effects of pH and salt concentration onoil-in-water emulsions stabilized solely by nanocomposite microgel particles[J]. Langmuir,2006,22(5):2050-2057.
    [97] Fujii S., Read E.S., Binks B.P., et al. Stimulus‐Responsive Emulsifiers Based onNanocomposite Microgel Particles[J]. Adv. Mater.,2005,17(8):1014-1018.
    [98] Li J., Sto ver H.D.H. Pickering emulsion templated layer-by-layer assembly for makingmicrocapsules[J]. Langmuir,2010,26(19):15554-15560.
    [99] Ravi Kumar M.N.V. A review of chitin and chitosan applications[J]. React. Funct.Polym.,2000,46(1):1-27.
    [100] Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and itsderivatives: a review[J]. Carbohydr. Polym.,2004,55(1):77-93.
    [101] Gu C.J., Sun B., Wu W.H., et al. Synthesis, Characterization of Copper‐LoadedCarboxymethyl‐Chitosan Nanoparticles with Effective Antibacterial Activity; proceedingsof the Macromolecular symposia, F,2007[C]. Wiley Online Library.
    [102] Lamprecht A., Sch fer U.F., Lehr C.M. Characterization of microcapsules by confocallaser scanning microscopy: structure, capsule wall composition and encapsulation rate[J]. Eur.J. Pharm. Biopharm.,2000,49(1):1-9.
    [103] Akamatsu K., Kaneko D., Sugawara T., et al. Three preparation methods formonodispersed chitosan microspheres using the shirasu porous glass membraneemulsification technique and mechanisms of microsphere formation[J]. Ind. Eng. Chem. Res.,2010,49(7):3236-3241.
    [104] Reverchon E., Antonacci A. Chitosan microparticles production by supercritical fluidprocessing[J]. Ind. Eng. Chem. Res.,2006,45(16):5722-5728.
    [105] Duncan J.S. Introduction to colloid and surface chemistry [M]. Butterworth, Heinemann.1992.
    [106] Yi C.G., Yang Y.Q., Zhu Y., et al. Self-Assembly and Emulsification of Poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}[J].Langmuir,2012,28(25):9211-9222.
    [107] Tan J.J., Wang J., Wang L.Y., et al. In situ formed Mg(OH)2nanoparticles aspH-switchable stabilizers for emulsions[J]. J. Colloid Interface Sci.,2011,359(1):155-162.
    [108] Vignati E., Piazza R., Lockhart T.P. Pickering emulsions: interfacial tension, colloidallayer morphology, and trapped-particle motion[J]. Langmuir,2003,19(17):6650-6656.
    [109] Yang F., Liu S.Y., Xu J., et al. Pickering emulsions stabilized solely by layered doublehydroxides particles: The effect of salt on emulsion formation and stability[J]. J. ColloidInterface Sci.,2006,302(1):159-169.
    [110] Gautier F., Destribats M., Perrier-Cornet R., et al. Pickering emulsions with stimulableparticles: from highly-to weakly-covered interfaces[J]. Phys. Chem. Chem. Phys.,2007,9(48):6455-6462.
    [111] Binks B.P., Lumsdon S.O. Pickering emulsions stabilized by monodisperse latexparticles: effects of particle size[J]. Langmuir,2001,17(15):4540-4547.
    [112] Hoyle C.E., Lee T.Y., Roper T. Thiol-enes: Chemistry of the past with promise for thefuture[J]. J. Polym. Sci., Part A: Polym. Chem.,2004,42(21):5301-5338.
    [113] Lowe A.B. Thiol-ene―click‖reactions and recent applications in polymer and materialssynthesis[J]. Polym. Chem.,2010,1(1):17.
    [114] Hoyle C.E., Lowe A.B., Bowman C.N. Thiol-click chemistry: a multifaceted toolbox forsmall molecule and polymer synthesis[J]. Chem. Soc. Rev.,2010,39(4):1355-1387.
    [115] Silverstein M.S. Emulsion-templated porous polymers: A retrospective perspective[J].Polymer,2014,55(1):304-320.
    [116] Caldwell S., Johnson D.W., Didsbury M.P., et al. Degradable emulsion-templatedscaffolds for tissue engineering from thiol–ene photopolymerisation[J]. Soft Matter,2012,8(40):10344.
    [117] Kircher L., Theato P., Cameron N.R. Reactive thiol-ene emulsion-templated porouspolymers incorporating pentafluorophenyl acrylate[J]. Polymer,2013,54(7):1755-1761.
    [118] Yang Y., Wang C.Y., Tong Z. Facile, controlled, large scale fabrication of novel capsuleclusters[J]. RSC Adv.,2013,3(14):4514-4517.
    [119] Wei Z.J., Wang C.Y., Liu H., et al. Facile fabrication of biocompatible PLGAdrug-carrying microspheres by O/W pickering emulsions[J]. Colloid Surf., B,2012,91(0):97-105.
    [120] Wei Z.J., Wang C.Y., Liu H., et al. Halloysite nanotubes as particulate emulsifier:Preparation of biocompatible drug-carrying PLGA microspheres based on pickeringemulsion[J]. J. Appl. Polym. Sci.,2012,125(S1): E358-E368.
    [121] Gupta V.K. Equilibrium uptake, sorption dynamics, process development, and columnoperations for the removal of copper and nickel from aqueous solution and wastewater usingactivated slag, a low-cost adsorbent[J]. Ind. Eng. Chem. Res.,1998,37(1):192-202.
    [122] Wan Ngah W.S., Endud C.S., Mayanar R. Removal of copper (II) ions from aqueoussolution onto chitosan and cross-linked chitosan beads[J]. React. Funct. Polym.,2002,50(2):181-190.
    [123] Anirudhan T.S., Rijith S. Glutaraldehyde cross-linked epoxyaminated chitosan as anadsorbent for the removal and recovery of copper (II) from aqueous media[J]. Colloids Surf.,A,2009,351(1):52-59.
    [124] Ho Y.S., Huang C.T., Huang H.W. Equilibrium sorption isotherm for metal ions on treefern[J]. Process Biochem.,2002,37(12):1421-1430.
    [125] Dai J., Yan H., Yang H., et al. Simple method for preparation of chitosan/poly (acrylicacid) blending hydrogel beads and adsorption of copper (II) from aqueous solutions[J]. Chem.Eng. J.,2010,165(1):240-249.
    [126] Soylak M., Tuzen M. Coprecipitation of gold (III), palladium (II) and lead (II) for theirflame atomic absorption spectrometric determinations[J]. J. Hazard. Mater.,2008,152(2):656-661.
    [127] Feng X., Wu Z.C., Chen X.F. Removal of metal ions from electroplating effluent byEDI process and recycle of purified water[J]. Sep. Purif. Technol.,2007,57(2):257-263.
    [128] Srivastava N.K., Majumder C.B. Novel biofiltration methods for the treatment of heavymetals from industrial wastewater[J]. J. Hazard. Mater.,2008,151(1):1-8.
    [129] Akhila Maheswari M., Subramanian M.S. Selective enrichment of U (VI), Th (IV) andLa (III) from high acidic streams using a new chelating ion-exchange polymeric matrix[J].Talanta,2004,64(1):202-209.
    [130] Li D.D., Chang X.J., Hu Z., et al. Selective solid-phase extraction of trace Au (III), Pd(II) and Pt (IV) using activated carbon modified with2,6-diaminopyridine[J]. Microchim.Acta,2011,174(1-2):131-136.
    [131] Aggarwal D., Goyal M., Bansal R. Adsorption of chromium by activated carbon fromaqueous solution[J]. Carbon,1999,37(12):1989-1997.
    [132] Rao M.M., Reddy D.H.K., Venkateswarlu P., et al. Removal of mercury from aqueoussolutions using activated carbon prepared from agricultural by-product/waste[J]. J. Environ.Manage.,2009,90(1):634-643.
    [133] Alvarez-Ayuso E., Garc a-Sánchez A., Querol X. Purification of metal electroplatingwaste waters using zeolites[J]. Water Res.,2003,37(20):4855-4862.
    [134] Sprynskyy M., Buszewski B., Terzyk A.P., et al. Study of the selection mechanism ofheavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite[J]. J. Colloid InterfaceSci.,2006,304(1):21-28.
    [135] Ma X.M., Li L.P., Yang L., et al. Adsorption of heavy metal ions using hierarchicalCaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kineticstudies[J]. J. Hazard. Mater.,2012,209(0):467-477.
    [136] Kapoor A., Viraraghavan T. Use of immobilized bentonite in removal of heavy metalsfrom wastewater[J]. J. Environ. Eng.,1998,124(10):1020-1024.
    [137] Inglezakis V.J., Stylianou M.A., Gkantzou D., et al. Removal of Pb (II) from aqueoussolutions by using clinoptilolite and bentonite as adsorbents[J]. Desalination,2007,210(1):248-256.
    [138] Barakat M.A. New trends in removing heavy metals from industrial wastewater[J].Arab. J. Chem.,2011,4(4):361-377.
    [139] Qdais H.A., Moussa H. Removal of heavy metals from wastewater by membraneprocesses: a comparative study[J]. Desalination,2004,164(2):105-110.
    [140] Wan Ngah W.S., Hanafiah M.A.K.M. Removal of heavy metal ions from wastewater bychemically modified plant wastes as adsorbents: a review[J]. Bioresour. Technol.,2008,99(10):3935-3948.
    [141] Dai J., Yan H., Yang H., et al. Simple method for preparation of chitosan/poly(acrylicacid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions[J]. Chem.Eng. J.,2010,165(1):240-249.
    [142] Alhwaige A.A., Agag T., Ishida H., et al. Biobased chitosan hybrid aerogels withsuperior adsorption: Role of graphene oxide in CO2capture[J]. RSC Adv.,2013,3(36):16011-16020.
    [143] Sun S.L., Wang A.Q. Adsorption properties of carboxymethyl-chitosan and cross-linkedcarboxymethyl-chitosan resin with Cu(II) as template[J]. Sep. Purif. Technol.,2006,49(3):197-204.
    [144] Wan Ngah W.S., Fatinathan S. Adsorption of Cu(II) ions in aqueous solution usingchitosan beads, chitosan–GLA beads and chitosan–alginate beads[J]. Chem. Eng. J.,2008,143(1-3):62-72.
    [145] Baldrian P. Interactions of heavy metals with white-rot fungi[J]. Enzyme Microb.Technol.,2003,32(1):78-91.
    [146] Liu L., Li C., Bao C.L., et al. Preparation and characterization of chitosan/grapheneoxide composites for the adsorption of Au (III) and Pd (II)[J]. Talanta,2012,93(0):350-357.
    [147] Kimmins S.D., Cameron N.R. Functional Porous Polymers by Emulsion Templating:Recent Advances[J]. Adv. Funct. Mater.,2011,21(2):211-225.
    [148] Zou S.W., Yang Y., Liu H., et al. Synergistic stabilization and tunable structures ofPickering high internal phase emulsions by nanoparticles and surfactants[J]. Colloids Surf., A,2013,436(0):1-9.
    [149] Pratt D.Y., Wilson L.D., Kozinski J.A. Preparation and sorption studies ofglutaraldehyde cross-linked chitosan copolymers[J]. J. Colloid Interface Sci.,2013,395(0):205-211.
    [150] Dai J., Yang H., Yan H., et al. Phosphate adsorption from aqueous solutions by disusedadsorbents: chitosan hydrogel beads after the removal of copper (II)[J]. Chem. Eng. J.,2011,166(3):970-977.
    [151] Yan H., Dai J., Yang Z., et al. Enhanced and selective adsorption of copper(II) ions onsurface carboxymethylated chitosan hydrogel beads[J]. Chem. Eng. J.,2011,174(2-3):586-594.
    [152] Beamson G. Conformation and orientation effects in the X-ray photoelectron spectra oforganic polymers[J]. J. Electron. Spectrosc. Relat. Phenom.,2001,121(1):163-181.
    [153] Brodie B.C. On the atomic weight of graphite[J]. Philos. Trans. R. Soc. London,1859,249-259.
    [154] Hummers Jr W.S., Offeman R.E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [155] Ding Y., Jiang Y., Xu F., et al. Preparation of nano-structured LiFePO4/graphenecomposites by co-precipitation method[J]. Electrochem. Commun.,2010,12(1):10-13.
    [156] Zhang L., Wang Z.P., Xu C., et al. High strength graphene oxide/polyvinyl alcoholcomposite hydrogels[J]. J. Mater. Chem.,2011,21(28):10399.
    [157] Yoon S., In I. Role of poly (N-vinyl-2-pyrrolidone) as stabilizer for dispersion ofgraphene via hydrophobic interaction[J]. J. Mater. Sci.,2011,46(5):1316-1321.
    [158] He H., Klinowski J., Forster M., et al. A new structural model for graphite oxide[J].Chem. Phys. Lett.,1998,287(1):53-56.
    [159] Kovtyukhova N.I., Ollivier P.J., Martin B.R., et al. Layer-by-layer assembly of ultrathincomposite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater.,1999,11(3):771-778.
    [160] Lerf A., He H., Forster M., et al. Structure of graphite oxide revisited[J]. J. Phys. Chem.B,1998,102(23):4477-4482.
    [161] He H.Y., Klinowski J., Forster M., et al. A new structural model for graphite oxide[J].Chem. Phys. Lett.,1998,287(1):53-56.
    [162] Niyogi S., Bekyarova E., Itkis M.E., et al. Solution properties of graphite andgraphene[J]. J. Am. Chem. Soc.,2006,128(24):7720-7721.
    [163] Stankovich S., Piner R.D., Nguyen S.T., et al. Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347.
    [164] Tang Z.H., Kang H.L., Shen Z.L., et al. Grafting of polyester onto graphene forelectrically and thermally conductive composites[J]. Macromolecules,2012,45(8):3444-3451.
    [165] Yang H.F., Shan C.S., Li F.H., et al. Covalent functionalization of polydispersechemically-converted graphene sheets with amine-terminated ionic liquid[J]. Chem.Commun.,2009,26):3880-3882.
    [166] Kim F., Cote L.J., Huang J. Graphene Oxide: Surface Activity and Two-DimensionalAssembly[J]. Adv. Mater.,2010,22(17):1954-1958.
    [167] Kim J., Cote L.J., Kim F., et al. Graphene oxide sheets at interfaces[J]. J. Am. Chem.Soc.,2010,132(23):8180-8186.
    [168] Song X.H., Yang Y.F., Liu J.C., et al. PS Colloidal Particles Stabilized by GrapheneOxide[J]. Langmuir,2011,27(3):1186-1191.
    [169] Sun J., Bi H. Pickering emulsion fabrication and enhanced supercapacity of grapheneoxide-covered polyaniline nanoparticles[J]. Mater. Lett.,2012,81(0):48-51.
    [170] Gudarzi M.M., Sharif F. Self assembly of graphene oxide at the liquid–liquid interface:A new route to the fabrication of graphene based composites[J]. Soft Matter,2011,7(7):3432.
    [171] SzabóT., Berkesi O., ForgóP., et al. Evolution of surface functional groups in a seriesof progressively oxidized graphite oxides[J]. Chem. Mater.,2006,18(11):2740-2749.
    [172] Ferrari A., Robertson J. Interpretation of Raman spectra of disordered and amorphouscarbon[J]. Phys. Rev. B,2000,61(20):14095.
    [173] Tuinstra F., Koenig J.L. Raman spectrum of graphite[J]. J. Chem. Phys.,2003,53(3):1126-1130.
    [174] Hao R., Qian W., Zhang L.H., et al. Aqueous dispersions of TCNQ-anion-stabilizedgraphene sheets[J]. Chem. Commun.,2008,6576-6578.
    [175] Tang Z.H., Lei Y.D., Guo B.C., et al. The use of rhodamine B-decorated graphene as areinforcement in polyvinyl alcohol composites[J]. Polymer,2012,53(2):673-680.
    [176] Tang Z.H., Zeng C.F., Lei Y.D., et al. Fluorescent whitening agent stabilized grapheneand its composites with chitosan[J]. J. Mater. Chem.,2011,21(43):17111-17118.
    [177] Williams M., Armes S.P., York D.W. Clay-based colloidosomes[J]. Langmuir,2012,28(2):1142-1148.
    [178] Yin G.N., Zheng Z., Wang H.T., et al. Preparation of graphene oxide coated polystyrenemicrospheres by Pickering emulsion polymerization[J]. J. Colloid Interface Sci.,2013,394(0):192-198.
    [179] Zheng Z., Zheng X.H., Wang H.T., et al. Macroporous Graphene Oxide–PolymerComposite Prepared through Pickering High Internal Phase Emulsions[J]. Acs Appl. Mater.Inter.,2013,5(16):7974-7982.
    [180] Decher G., Hong J., Schmitt J. Buildup of ultrathin multilayer films by a self-assemblyprocess: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes oncharged surfaces[J]. Thin Solid Films,1992,210(0):831-835.
    [181] Decher G., Hong J.D. Buildup of ultrathin multilayer films by a self‐assembly process,1consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces;proceedings of the Makromolekulare Chemie. Macromolecular Symposia, F,1991[C]. WileyOnline Library.
    [182] Stroeve P., Vasquez V., Coelho M.A.N., et al. Gas transfer in supported films made bymolecular self-assembly of ionic polymers[J]. Thin Solid Films,1996,284(0):708-712.
    [183] Klitzing R.V., M hwald H. Transport through ultrathin polyelectrolyte films[J]. ThinSolid Films,1996,284(0):352-356.
    [184] Decher G., Lehr B., Lowack K., et al. New nanocomposite films for biosensors:layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA[J]. Biosens. Bioelectron.,1994,9(9):677-684.
    [185] Skirtach A.G., Yashchenok A.M., M hwald H. Encapsulation, release and applicationsof LbL polyelectrolyte multilayer capsules[J]. Chem. Commun.,2011,47(48):12736-12746.
    [186] Cuomo F., Lopez F., Ceglie A., et al. pH-responsive liposome-templated polyelectrolytenanocapsules[J]. Soft Matter,2012,8(16):4415-4420.
    [187] Donath E., Sukhorukov G.B., Caruso F., et al. Novel hollow polymer shells bycolloid‐templated assembly of polyelectrolytes[J]. Angew. Chem. Int. Ed.,1998,37(16):2201-2205.
    [188] Sukhorukov G.B., Donath E., Davis S., et al. Stepwise polyelectrolyte assembly onparticle surfaces: a novel approach to colloid design[J]. Polym. Adv. Technol.,1998,9(10‐11):759-767.
    [189] Sukhorukov G.B., Donath E., Lichtenfeld H., et al. Layer-by-layer self assembly ofpolyelectrolytes on colloidal particles[J]. Colloids Surf., A,1998,137(1):253-266.
    [190] Guzey D., McClements D.J. Formation, stability and properties of multilayer emulsionsfor application in the food industry[J]. Adv. Colloid Interface Sci.,2006,128(0):227-248.
    [191] Grigoriev D.O., Bukreeva T., M hwald H., et al. New method for fabrication of loadedmicro-and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layerdeposition on the liquid core[J]. Langmuir,2008,24(3):999-1004.
    [192] Katsuda M.S., McClements D.J., Miglioranza L.H., et al. Physical and oxidativestability of fish oil-in-water emulsions stabilized with β-lactoglobulin and pectin[J]. J. Agric.Food. Chem.,2008,56(14):5926-5931.
    [193] Han Y., Radziuk D., Shchukin D., et al. Sonochemical synthesis of magnetic proteincontainer for targeted delivery[J]. Macromol. Rapid Commun.,2008,29(14):1203-1207.
    [194] Cuomo F., Lopez F., Miguel M.G., et al. Vesicle-templated layer-by-layer assembly forthe production of nanocapsules[J]. Langmuir,2010,26(13):10555-10560.
    [195] Balnois E., Durand-Vidal S., Levitz P. Probing the morphology of laponite clay colloidsby atomic force microscopy[J]. Langmuir,2003,19(17):6633-6637.
    [196] Xiong L.J., Hu X.B., Liu X.X., et al. Polymer-laponite nanocomposite hydrogels withsuper-elongation[J]. Prog. Chem.,2008,20(4):464-468.
    [197] Bourgeat-Lami E., Guimar es T.R., Pereira A.M.C., et al. High Solids Content,Soap-Free, Film-Forming Latexes Stabilized by Laponite Clay Platelets[J]. Macromol. RapidCommun.,2010,31(21):1874-1880.
    [198] Ding P.X., Liu W.X., Zhao Z.H. Roles of short amine in preparation and sizingperformance of partly hydrolyzed ASA emulsion stabilized by Laponite particles[J]. ColloidsSurf., A,2011,384(1-3):150-156.
    [199] Faucheu J., Gauthier C., Chazeau L., et al. Properties of polymer/clay interphase innanoparticles synthesized through in-situ polymerization processes[J]. Polymer,2010,51(20):4462-4471.
    [200] Whitby C.P., Fornasiero D., Ralston J. Effect of oil soluble surfactant in emulsionsstabilised by clay particles[J]. J. Colloid Interface Sci.,2008,323(2):410-419.
    [201] Liu H., Wang C.Y., Zou S.W., et al. Simple, reversible emulsion system switched by pHon the basis of chitosan without any hydrophobic modification[J]. Langmuir,2012,28(30):11017-11024.
    [202] Wang C.Y., Ye S.Q., Dai L., et al. Enhanced resistance of polyelectrolyte multilayermicrocapsules to pepsin erosion and release properties of encapsulated indomethacin[J].Biomacromolecules,2007,8(5):1739-1744.
    [203] Ye S.Q., Wang C.Y., Liu X.X., et al. Deposition temperature effect on release rate ofindomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan andalginate multilayer films[J]. J. Control. Release,2005,106(3):319-328.
    [204] Ye S.Q., Wang C.Y., Liu X.X., et al. Multilayer nanocapsules of polysaccharide chitosanand alginate through layer-by-layer assembly directly on PS nanoparticles for release[J]. J.Biomater. Sci. Polym. Ed.,2005,16(7):909-923.
    [205] Ye S.Q., Wang C.Y., Liu X.X., et al. New loading process and release properties ofinsulin from polysaccharide microcapsules fabricated through layer-by-layer assembly[J]. J.Control. Release,2006,112(1):79-87.
    [206] Morishima Y. Photophysics in amphiphilic polyelectrolyte systems[J]. Prog. Polym. Sci.,1990,15(6):949-997.
    [207] Liu G.M., Hou Y., Xiao X., et al. Specific anion effects on the growth of apolyelectrolyte multilayer in single and mixed electrolyte solutions investigated with quartzcrystal microbalance[J]. J. Phys. Chem. B,2010,114(31):9987-9993.
    [208] Feiler A.A., Sahlholm A., Sandberg T., et al. Adsorption and viscoelastic properties offractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystalmicrobalance (QCM-D)[J]. J. Colloid Interface Sci.,2007,315(2):475-481.
    [209] Saarinen T., sterberg M., Laine J. Adsorption of polyelectrolyte multilayers andcomplexes on silica and cellulose surfaces studied by QCM-D[J]. Colloids Surf., A,2008,330(2-3):134-142.
    [210] Gou Y., Slavin S., Geng J., et al. Controlled Alternate Layer-by-Layer Assembly ofLectins and Glycopolymers Using QCM-D[J]. Acs Macro Lett.,2012,1(1):180-183.
    [211] Martins G.V., Merino E.G., Mano J.F., et al. Crosslink effect and albumin adsorptiononto chitosan/alginate multilayered systems: an in situ QCM-D study[J]. Macromol. Biosci.,2010,10(12):1444-1455.
    [212] Lubarsky G.V., Davidson M.R., Bradley R.H. Hydration-dehydration of adsorbedprotein films studied by AFM and QCM-D[J]. Biosens. Bioelectron.,2007,22(7):1275-1281.
    [213] Zhang G.Z. Study on conformation change of thermally sensitive linear grafted poly(N-isopropylacrylamide) chains by quartz crystal microbalance[J]. Macromolecules,2004,37(17):6553-6557.
    [214] Liu G.M., Hou Y., Xiao X., et al. Specific anion effects on the growth of apolyelectrolyte multilayer in single and mixed electrolyte solutions investigated with quartzcrystal microbalance[J]. J. Phys. Chem. B,2010,114(31):9987-9993.
    [215] Voinova M.V., Rodahl M., Jonson M., et al. Viscoelastic acoustic response of layeredpolymer films at fluid-solid interfaces: continuum mechanics approach[J]. Phys. Scr.,1999,59(5):391.
    [216] Ogawa S., Decker E.A., McClements D.J. Influence of environmental conditions on thestability of oil in water emulsions containing droplets stabilized by lecithin-chitosanmembranes[J]. J. Agric. Food. Chem.,2003,51(18):5522-5527.
    [217] Caruso F., Lichtenfeld H., Donath E., et al. Investigation of electrostatic interactions inpolyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembledonto colloids[J]. Macromolecules,1999,32(7):2317-2328.
    [218] Rogach A., Susha A., Caruso F., et al. Nano-and microengineering: three-dimensionalcolloidal photonic crystals prepared from submicrometer-sized polystyrene latex spherespre-coated with luminescent polyelectrolyte/nanocrystal shells[J]. Adv. Mater.,2000,12(5):333-333.
    [219] Kozlovskaya V., Kharlampieva E., Drachuk I., et al. Responsive microcapsule reactorsbased on hydrogen-bonded tannic acid layer-by-layer assemblies[J]. Soft Matter,2010,6(15):3596-3608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700