光诱导光子晶格中涡旋光传播特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡旋光是具有螺旋型等相位面和轨道角动量的特殊光场。它在科学界已经被广泛的研究,目前已经发展成为现代光学中一个新的研究领域,在光学微操纵,原子光学,生物学,光学信息传输等领域得到了广泛的应用。在非线性光学领域,光涡旋只能以暗孤子的形式存在于自散焦非线性介质中;在自聚焦非线性下由于其角向调制不稳定性,会劈裂成基本孤子态,从而限制了涡旋光在非线性介质中的应用。最近,人们发现即使是在自聚焦非线性下,光涡旋在光诱导光子晶格中也能够以亮孤子形式稳定传播,这为涡旋光的研究开辟了新的方向。
     另外一方面,光子晶格作为一种折射率呈周期变化的光学微结构,具有空间带隙结构,在禁带中的模式是禁止传播的。从而使得光波在其中的线性和非线性传播行为与在连续介质中不同。其独特的传播特性使得光子品格在全光信号处理,光通讯系统,光交换网络等方面存在相当大的应用价值。
     涡旋光在光子晶格中的传播行为是离散效应、非线性效应和涡旋光角动量共同作用的结果,必然会产生很多不同于在连续介质中的新的物理现象。本论文的主要工作就是系统研究涡旋光在二维光诱导光子晶格内部以及光子晶格表面的传播特性,我们的结果可以为其它非线性周期系统中的涡旋现象研究提供有益的借鉴和参考。主要内容及取得的结果如下:
     首先,研究了涡旋光在自聚焦非线性光子晶格中的传播行为。实验和理论上实现了一阶涡旋带隙孤子,该带隙孤子来自第二布洛赫带;首次在理论上预言了高阶涡旋带隙孤子的存在,该带隙孤子的相位是二阶涡旋;实验上实现了二维多带矢量孤子,与连续介质中矢量孤子不同,组成多带矢量孤子的两个模式分别来自不同的布洛赫带。通过理论研究涡旋光在缺陷光子晶格中的传播,提出了一种有效激发高阶缺陷模式的方法。
     其次,从实验和理论两方面研究了一阶和二阶涡旋光在自散焦非线性光子晶格中的传播行为。实验上实现了一阶涡旋带隙孤子,与以往研究的所有带隙孤子都不同,其空间频谱不在布里渊区的高对称点上,我们从理论上给出了解释。理论预言和实验实现了四极带隙孤子和二阶涡旋带隙孤子,我们的结果表明只需要通过改变二阶涡旋光的入射条件就可以实现这两种不同的孤子态。
     最后,研究了涡旋光在光诱导光子晶格表面的传播特性。理论发现并实验观察到了一种存在于光子晶格与连续介质分界面上具有角动量的非线性表面波
Optical vortices are intriguing special optical structures with helical wave fronts, which attract much attention for their well-defined orbital angular momentum properties. This kind of special optical field has been applied in many fields that include optical micromanipulation, atomic optics, biology, and quantum information processing. In nonlinear optics, optical vortex is stable and can self-trap into a dark vortex soliton in self-defocusing nonlinear materials. However, It will break up into fundamental solitons in self-focusing nonlinearity due to the azimuthally modulation instability. Until recently, people find that optical vortex can keep its helical phase structure in optically induced photonic lattices even in self-focusing nonlinearity, which opens a new area for studying the properties of vortices.
     On the other hand, photonic lattice is a kind of periodic refractive index micro-structure. It has band gap structure, where in the gap the propagation mode is forbidden. Optical waves propagation in linear and nonlinear periodic photonic structures exhibit behavior characteristic of that encountered in discrete systems, which in many cases has no counterparts in homogeneous systems. These distinct features of discreteness can be exploited for potentially important application in all-optical signal and data processing, optical communication systems and switching networks.
     Optical vortex propagation in photonic lattice is dominated by discrete effect, nonlinearity and its angular momentum. Many new phenomena and effects are expected. Our results may prove to be relevant to studies of similar vortex phenomena in other periodic systems beyond optics. In this dissertation, we studied the properties of vortex beam propagation both inside and at the surface of 2D optically induced photonic lattices. The contents of this dissertation are outlined as follows:
     Firstly, we investigate optical vortices propagation in 2D optically induced photonic lattice with self-focusing nonlinearity. We predict and experimentally observe single-charged gap vortex solitons which bifurcating from the top of the second band. Double-charged gap vortex soliton are also predicted. Two dimensional multiband vector solitons are experimentally demonstrated. Different from their counterpart in homogenous medium, these kind of solitons consist of two optical fields arising from different bands of the transmission spectrum. Optical vortex beam propagation in photonic lattice with a negative defect is also numerically investigated. Our results may pave a way for experimental observation of such high order defect mode.
     Secondly, we experimentally and theoretically study both single-charged and double-charged optical vortices propagation in 2D optically induced photonic lattice with self-defocusing nonlinearity. We experimentally observe single-charged gap vortex solitons . Spectrum measurement and numerical analysis suggest that the gap vortex soliton does not bifurcate from the edge of the Bloch band, quite different from previously observed gap spatial solitons. Both quadruple gap solitons and Double-charged gap vortex solitons are also demonstrated. They both can be realized by a donut-shaped double-charged vortex under different excitation.
     Lastly, we experimentally and numerically study vortex beam propagation at the interface between optically induced photonic lattice and homogenous medium. We find a new kind of nonlinear discrete surface wave which carries angular momentum can exist at the boundary of the optically induced waveguide arrays.
引文
[1] Ginzburg V L and Pitaevskii L P, On the theory of Superfluidity. Sov. Phys. JETP,1958,7:858-862
    [2] Green S, Fluid Vortices. Fluid Mechanics and Its Applications, ed. S. Green. 1995,Dordrecht: Kluwer Academic Publishers
    
    [3] Lugt H J, Vortex Flow in Nature and Technology. 1983, New York: Wiley & Sons.
    [4] Desyatnikov A S, Kivshar Y S, and Torner L, Optical vortices and vortex solitons, Progress in Optics, 2005,47:291-391.
    
    [5] Soskin M, Vasnetsov M, Singular optics. Progress in Optics, 2001,42: 219-276.
    [6] Allen L, and Padgett M J, Optical tweezers and optical spanners with Laguerre-Gaussian modes. Journal of Modern Optics, 1996,43:2485-2491
    [7] GahaganK T, Swartzlander G A, Optical vortex trapping of particles. Opt.Lett.,1996, 21:827-829.
    [8] Ashkin A, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 1992, 61 : 569-582
    [9] Mair A, Vaziri A, Weihs G, et al., Entanglement of the orbital angular momentum states of photons. Nature, 2001,412: 313-316.
    [10] Law C, Optical vortex solitons observed in Kerr nonlinear media. Phys.Rev.Lett.,1992, 69:2503-2506.
    [11] Tikhonenko V, Christou J, Luther-Daves B, Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium. Journal of the Optical Society of America B ,1995, 12:2046-2052.
    [12] Fleischer J W, Bartal G, Cohen O, et al. Observation of vortex-ring discrete solitons in 2D photonic lattices. Phys. Rev. Lett, 2004, 92: 123904-123907
    [13] Neshev D N, Alexander T J, Ostrovskaya E A, et al. Observation of discrete vortex solitons in optically-induced photonic lattices, Phys. Rev. Lett., 2004, 92: 123903-123906
    [14] Joannopoulos J, Johnson S,Winn J, Photonic crystals: molding the flow of light. 2ed.;Princeton university press: 2008.
    [15] Eisenberg H, Silberberg Y, Morandotti R, et al., Diffraction management. Phys.Rev.Lett.,2000,85: 1863-1866.
    [16] Pertsch T, Zentgraf T, Peschel U, et al., Anomalous refraction and diffraction in discreteoptical systems. Phys.Rev.Lett., 2002, 88: 93901-93901.
    [17] Ablowitz M, Musslimani Z, Discrete diffraction managed spatial solitons. Phys.Rev.Lett.,2001, 87: 254102-254102.
    [18] Su W P, Schrieffer J R, Heeger A J, Solitons in Polyacetylene. Phys.Rev.Lett., 1979, 42:1698-1701.
    [19]S.Davydov,Biology and Quantum Mechanics,Pergamon:Oxford,1982.
    [20]Eiermann B,Anker T,Albiez M,et al.,Bright Bose-Einstein Gap Solitons of Atoms with Repulsive Interaction.Phys.Rev.Lett.,2004,92:230401-230404.
    [21]Bezryadina A,Eugenieva E,Chen Z,Self-trapping and flipping of double-charged vortices in optically induced photonic lattices.Opt.Lett.,2006,31:2456-2458.
    [22]Alexander T J,Sukhorukov A A,Kivshar Y S,Asymmetric Vortex Solitons in Nonlinear Periodic Lattices.Phys.Rev.Lett.,2004,93:063901-063904.
    [23]Ferrando A,Zacares M,Garcia-March M,et al.,Vortex Transmutation.Phys.Rev.Lett.,2005,95:123901-123904.
    [24]Berry M,Making waves in physics.Nature,2000,403:21-21.
    [25]Nye JF and Berry M,Dislocations in wave trains.Proc.R.Soc.London Sect.A,1974,336:165-190
    [26]Scheuer J and Orenstein M,Optical vortices crystals:Spontaneous generation in nonlinear semiconductor microcavities.Science,1999,285:230-233
    [27]Gahagan K T and Swartzlander G A,Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap.J.Opt.Soc.Am.B,1999,16:533-537
    [28]Law C T,Zhang X,and Swartzlander G A,Waveguiding properties of optical vortex solitons.Opt.Lett.,2000,25:55-57
    [29]Padgett M,Arlt J,Simpson N,et al.,An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes.American Journal of Physics,1996,64:77-82.
    [30]Beijersberger M,Coerwinkel R,Kristensen M,et al.,Helical-wavefront laser beams produced with a spiral phaseplate.Optics Communications,1994,112:321-327.
    [31]Heckenberg N R,et al.,Generation of optical phase singularities by computer-generated holograms.Opt.Lett.,1992,17:221-223.
    [32]Jeng C C,Shih M F,Motzek K,et al.,Partially incoherent optical vortices in self-focusing nonlinear media.Phys.Rev.Lett.,2004,92:043904-043907.
    [33]Soskin M S,Polyanskii P V,Arkhelyuk O O,Computer-synthesized hologram-based rainbow optical vortices.New Journal of Physics,2004,6:196-203.
    [34]Bezuhanov K,Dreischuh A,Paulus G G,et al.,Vortices in femtosecond laser fields.Opt.Lett.,2004,29:1942-1944.
    [35]Duree G,Morin M,Salamo G,et al.,Dark photorefractive spatial solitons and photorefractive vortex solitons.Phys.Rev.Lett.,1995,74:1978-1981.
    [36]Chen Z,Segev M,Wilson D W,et al.Self-trapping of an optical vortex by use of the bulk photovoltaic effect.Phys.Rev.Lett.1997,78:2948-2951
    [37]Chen Z,Shih M,Segev M,et al.,Steady-state vortex-screening solitons formed in biased photorefractive media.Opt.Lett.,1997,22:1751-1753.
    [38]Neshev D N,Dreischuh A,Shvedov V,et al.,Observation of polychromatic vortex solitons.Opt.Lett.,2008,33:1851-1853.
    [39] Di Trapani P, Chinaglia W, Minardi S, et al., Observation of Quadratic Optical Vortex Solitons. Phys.Rev.Lett., 2000, 84: 3843-3846.
    [40] Firth W, Skryabin D, Optical solitons carrying orbital angular momentum.Phys.Rev.Lett. ,1997, 79:2450-2453.
    [41] Rotschild C, Segev M, Xu Z, et al., Two-dimensional multipole solitons in nonlocal nonlinear media. Opt.Lett., 2006, 31:3312-3314.
    [42] Rotschild C, Cohen O, Manela O, et al., Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons.Phys.Rev.Lett., 2005, 95, 213904-213907.
    [43] Mamaev A, Saffman M, Zozulya A, Decay of High Order Optical Vortices in Anisotropic Nonlinear Optical Media. Phys.Rev.Lett., 1997, 78:2108-2111.
    [44] Dreischuh A, Paulus G G, Zacher F, et al., Modulational instability of multiple-charged optical vortex solitons under saturation of the nonlinearity. Physical Review E, 1999,60:7518-7524.
    [45] Dreischuh A, Paulus G G, Zacher F, et al., Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium. Physical Review E, 1999, 60:6111-6117.
    [46] D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons. Phys. Rev. Lett.,2003, 90: 053902.
    [47] Bartal G,Cohen O, Buljan H, et al., Brillouin zone spectroscopy of nonlinear photonic lattices. Phys.Rev.Lett., 2005, 94, 163902-163905
    [48] Eisenberg H S, Silberberg Y, Morandotti R, et al., Discrete spatial optical solitons in waveguide arrays. Phys.Rev.Lett., 1998, 81: 3383-3386.
    [49] J. W. Fleischer, T. Carmon, M. Segev, et al. Observation of discrete solitons in Optically induced real time waveguide arrays. Phys. Rev. Lett., 2003, 90: 023902
    [50] Iwanow R, Schiek R, Stegeman G, et al., Observation of discrete quadratic solitons.Phys.Rev.Lett. ,2004, 93:113902-114100.
    [51] Fratalocchi A, Assanto G, Brzdakiewicz K, et al., Discrete propagation and spatial solitons in nematic liquid crystals. Opt.Lett., 2004, 29: 1530-1532.
    [52] Szameit A, Burghoff J, Pertsch T, et al., Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Optics Express, 2006, 14:6055-6062.
    [53] Efremidis N, Sears S, Christodoulides D, et al., Discrete solitons in photorefractive optically induced photonic lattices. Phys Rev E, 2002, 66:046602(1)-046602(5).
    [54] J. W. Fleischer, M. Segev, N. K. Efremidis, et al. Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices. Nature, 2003,422: 147-150
    [55] Chen Z, McCarthy K, Spatial soliton pixels from partially incoherent light. Opt.Lett., 2002,27:2019-2021.
    [56] Makasyuk I, Chen Z G, Yang J K, Band-gap guidance in optically induced photonic lattices with a negative defect. Phys.Rev.Lett., 2006, 96: 223903-223906.
    [57] Wang X, Bezryadina A, Chen Z, et al., Observation of two-dimensional surface solitons.Phys.Rev.Lett., 2007, 98: 123903-123906.
    [58] Wang X, Chen Z, Kevrekidis P, Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys.Rev.Lett., 2006, 96: 83904-83907.
    [59] Fleischer J, Segev M, Efremidis N, et al., Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 2003, 422: 147-150.
    [60] B. Freedman, G Bartal, M. Segev R. Lifshitz, D. N. Christodoulides, J. W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature, 2006,440: 1166-1169
    [61] Schwartz T, Bartal G, Fishman S, et al., Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature, 2007, 446: 52-55.
    [62] D. N. Christodoulides and R. I. Joseph. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett, 1988, 13: 794-796
    [63] P. Yeh, A. Yariv, and C. S. Hong. Electromagnetic propagation in periodic stratified media. I. General theory J. Opt. Soc. Am., 1977, 67: 423 -438
    [64] Martin H, Eugenieva E, Chen Z, et al., Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices. Phys.Rev.Lett, 2004, 92:12-15. 31:2338-2340.
    [65] Lou C, Wang X, Xu J, et al., Nonlinear Spectrum Reshaping and Gap-Soliton-Train Trapping in Optically Induced Photonic Structures. Phys.Rev.Lett., 2007,98:213903-213906.
    [66] Wang X, Chen Z, Wang J, et al., Observation of In-Band Lattice Solitons. Phys.Rev.Lett.,2007, 99:243901-243904.
    [67] Trompeter H, Krolikowski W, Neshev D, et al., Bloch oscillations and Zener tunneling in two-dimensional photonic lattices. Phys.Rev.Lett., 2006, 96:53903-53906.
    [68] Rosberg C R, Neshev D N, Krolikowski W, et al., Observation of surface gap solitons in semi-infinite waveguide arrays. Phys.Rev.Lett., 2006, 97: 083901-083904.
    [69] Smirnov E, Stepic M, Ruter C E, et al., Observation of staggered surface solitary waves in one-dimensional waveguide arrays. Opt.Lett., 2006,
    [70] Makris K, Christodoulides D, Peleg O, et al., Optical transitions and Rabi oscillations in waveguide arrays. Optics Express, 2008, 16, 10309-10314.
    [71] Perets H, Lahini Y, Pozzi F, et al., Realization of quantum walks with negligible decoherence in waveguide lattices. Phys.Rev.Lett., 2008, 100:170506-171100.
    [72] Firth W, Skryabin D, Optical solitons carrying orbital angular momentum. Phys.Rev.Lett. ,1997, 79:2450-2453.
    [73] Efremidis N, Hudock J, Christodoulides D, et al., Two-dimensional optical lattice solitons.Phys.Rev.Lett., 2003, 91:213906-213906.
    [74] Trager D, Fischer R, Neshev, D, et al., Nonlinear Bloch modes in two-dimensional photonic lattices. Optics Express, 2006, 14 : 1913-1923.
    [75] Malomed B A and Kevrekidis P G, Discrete vortex solitons, Phys. Rev. E, 2001,64:026601-026606
    [76] Yang J and Musslimani Z H, Fundamental and vortex solitons in a two-dimensional optical lattice. Opt. Lett., 2003, 28: 2094-2096
    [77] Yang J, Stability of vortex solitons in a photorefractive optical lattice. New Journal of Physics, 2004, 6:47(1)-47(12).
    [78] Manela O, Cohen O, Bartal G, et al., Two-dimensional higher-band vortex lattice solitons.Opt.Lett., 2004, 29:2049-2051.
    
    [79] Agrawal G , Nonlinear Fiber Optics, Third Edition, California, AcademicPress, 2001
    [80] Stegeman G I, Segev M, Optical spatial solitons and their interactions: Universality and diversity. Science, 1999, 286: 1518-1523.
    [81] Manakov S V, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 1974, 38:248-253
    [82] Kang J U, Stegeman G I, Aitchison J S, et al., Observation of Manakov Spatial Solitons in AlGaAs Planar Waveguides. Phys.Rev.Lett., 1996, 76:3699-3702.
    [83] Trillo S,Wabnitz S, Wright E, et al., Soliton switching in fiber nonlinear directional couplers. Opt.Lett., 1988, 13:672-674.
    [84] Chen Z, Segev M, Coskun T, et al., Observation of incoherently coupled photorefractive spatial soliton pairs. Opt.Lett., 1996,21: 1436-1438.
    [85] Snyder A W, Hewlett S. J., Mitchell D. J., Dynamic spatial solitons. Phys.Rev.Lett., 1994,72:1012-1015.
    [86] Mitchell M, Segev M, Christodoulides D N, Observation of Multihump Multimode Solitons. Phys.Rev.Lett., 1998, 80: 4657-4660.
    [87] Chen Z, Segev M, Coskun T H, et al., Incoherently coupled dark-bright photorefractive solitons. Opt. Lett. ,1996, 21:1821-1823.
    [88] Krolikowski W, Ostrovskaya E A,Weilnau C, et al., Observation of Dipole-Mode Vector Solitons. Phys.Rev.Lett., 2000, 85: 1424-1427.
    [89] Christodoulides D, Lederer F, Silberberg Y, Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003,424: 817-823.
    [90] Meier J, Hudock J, Christodoulides D, et al., Discrete Vector Solitons in Kerr Nonlinear Waveguide Arrays. Phys.Rev.Lett., 2003, 91: 14-17.
    [91] Z. Chen, I. Makasyuk, A. Bezryadina, et al. Observation of two-dimensional lattice vector solitons. Opt. Lett., 2004, 29: 1656 -1658
    [92] Cohen O, Schwartz T, Fleischer J, et al., Multiband vector lattice solitons. Phys.Rev.Lett.2003,91:113901-113904.
    [93] Mandelik D, Eisenberg H S, Silberberg Y, et al., Observation of mutually trapped multiband optical breathers in waveguide arrays. Phys.Rev.Lett., 2003,90:253902-253905.
    [94] Cohen O,Bartal G, Buljan H, et al., Observation of random-phase lattice solitons. Nature,2005, 433: 500-503.
    [95] Morandotti R, Eisenberg H S,Mandelik D, et al., Interactions of discrete solitons with structural defects. Opt.Lett., 2003, 28: 834-836.
    [96] Wang X, Young J, Chen Z, et al., Observation of lower to higher bandgap transition of one-dimensional defect modes. Optics Express, 2006,14: 7362-7367.
    [97] Wang J, Yang J, Two-dimensional defect modes in optically induced photonic lattices.Physical Review A, 2007, 76:013828.
    [98] G Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, Observation of Second band vortex solitons in 2d photonic lattices, Phys. Rev. Lett., 2005, 95: 053904-053907
    [99] Chen, W, Mills, D L, Gap solitons and the nonlinear optical response of superlattices.Phys.Rev.Lett., 1987,58: 160-163.
    [100] Christodoulides D N, Joseph R I, Slow Bragg solitons in nonlinear periodic structures.Phys.Rev.Lett., 1989, 62: 1746-1749.
    [101] Tang L Q, Lou C B, Wang X S, et al., Observation of dipole-like gap solitons in self-defocusing waveguide lattices. Opt.Lett, 2007, 32: 3011-3013.
    [102] Wang J D, Yang J K, Families of vortex solitons in periodic media. Physical Review A ,2008, 77: 033834(1)- 033834(8).
    [103] Kartashov Y V, Ferrando A, Egorov A A, et al., Soliton topology versus discrete symmetry in optical lattices. Phys.Rev.Lett., 2005, 95:123902-123905.
    [104] Yang J,Makasyuk I, Kevrekidis P, et al., Necklace-like solitons in optically induced photonic lattices. Phys. Rev. Lett ,2005, 94: 902-905.
    [105] Barnes W, Dereux A, Ebbesen T, Surface plasmon subwavelength optics. Nature, 2003,424 :824-830.
    [106] Yeh P, Yariv A,Cho A, Optical surface waves in periodic layered media. Applied Physics Letters ,1978,32:104-105.
    [107] A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, in Nonlinear Surface Electromagnetic Phenomena, H.E.Ponath and GLStegeman, eds. (North-Holland, 1991), p.73.
    [108] Artigas D, Torner L, Dyakonov Surface Waves in Photonic Metamaterials.Phys.Rev.Lett.,2005, 94:013901-013904.
    [109] Vach H, Seaton C, Stegeman G et al., Observation of intensity-dependent guided waves.Opt.Lett., 1984, 9:238-240.
    
    [110] Cronin-Golomb M, Photorefractive surface waves. Opt.Lett., 1995, 20:2075-2077.
    [111] Makris KG Suntsov S, Christodoulides D N, et al., Discrete surface solitons. Opt.Lett.,2005,30:2466-2468.
    [112] Suntsov S, Makris K G, Christodoulides D N, et al., Observation of discrete surface solitons.Phys.Rev.Lett., 2006, 96 : 063901-063904.
    [113] Kartashov Y, Vysloukh V, Torner L, Surface gap solitons. Phys.Rev.Lett., 2006, 96 :73901-73904.
    
    [114] Siviloglou G A, Makris K G, Iwanow R, et al., Observation of discrete quadratic surface solitons. Optics Express, 2006, 14:5508-5516.
    [115] Garanovich I L,Sukhorukov A A, Kivshar Y S, et al., Surface multi-gap vector solitons.Optics Express, 2006, 14: 4780-4785.
    [116] Kartashov Y V, Vysloukh V A, Tomer L, Surface lattice kink solitons. Optics Express, 2006,14:12365-12372.
    [117] Motzek K, A A Sukhorukov, et al. Self-trapping of polychromatic light in nonlinear periodic photonic structures. Optics Express, 2006,14: 9873-9878.
    [118] Sukhorukov A A, Neshev D N, et al. Polychromatic nonlinear surface modes generated by supercontinuum light. Optics Express, 2006, 14: 11265-11270.
    [119] Molina M I, Kartashov Y V, Torner L, et al., Surface solitons in chirped photonic lattices.Opt.Lett., 2007, 32: 2668-2670.
    [120] Szameit A, Kartashov Y V, Dreisow F, et al., Observation of surface solitons in chirped waveguide arrays. Opt.Lett., 2008, 33:1132-1134.
    [121] Chen W H, He Y J, Wang H Z, Surface defect gap solitons. Optics Express, 2006, 14:11271-11276.
    [122] Garanovich I, Sukhorukov A, Kivshar Y, Defect-Free Surface States in Modulated Photonic Lattices. Phys.Rev.Lett., 2008, 100: 203904-203906.
    [123] Szameit A, Garanovich I L, Heinrich M, et al Observation of Defect-Free Surface Modes in Optical Waveguide Arrays Phys.Rev.Lett., 101:203902~203905
    [124] Makris K G Hudock J, Christodoulides D N, et al., Surface lattice solitons. Opt.Lett., 2006,31 :2774-2776.
    [125] Wang X S, Bezryadina A, Chen Z G, et al., Observation of two-dimensional surface solitons.Phys.Rev.Lett., 2007, 98: 123903-123906.
    [126] Szameit A, Kartashov Y V, Dreisow F, et al., Observation of two-dimensional surface solitons in asymmetric waveguide arrays. Phys.Rev.Lett., 2007, 98: 173903-173906.
    [127] Kartashov Y V, Egorov A A, Vysloukh V A, et al., Surface vortex solitons. Optics Express,2006, 14 :4049-4057.
    
    [128] Kartashov Y V, Torner L, Multipole-mode surface solitons. Opt.Lett., 2006, 31 :2172-2174.
    [129] Szameit A, Kartashov Y V, Dreisow F, et al., Observation of two-dimensional lattice interface solitons. Opt.Lett., 2008, 33 :663-665.
    [130] Szameit A, Kartashov Y, Vysloukh V, et al., Angular surface solitons in sectorial hexagonal arrays. Opt.Lett., 2008, 33:1542-1544.
    [131] Dong L W, Surface solitons supported by Bessel optical potential. Optics Express, 2007,15:1706-1711.
    [132] Kip D, Soljacic M, Segev M, et al., Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams. Science, 2000, 290:495-498

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700