THz波段微结构金属光栅传输特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着THz产生和探测技术的发展,设计和制作THz波段的传输和控制器件变得越来越迫切。本文提出了THz波段的很有潜力的候选传输器件——THz波段微结构金属光栅,并对其性质进行了创新性的理论和实验研究。
     本文先从基本电磁理论出发,应用弗洛奎—布洛赫定理和表面波阻抗匹配边界条件,在电磁波以p偏振态入射的情况下,将麦克斯韦方程用于求解微结构金属光栅各个空间场分布的解析表达式。进一步将微结构金属光栅等效成F-P标准具,并求出了光栅上下表面的透射和反射系数。在近周期波段(入射波长与光栅周期相近)和长波段(入射波长远大于光栅周期)分别分析了金属光栅的性质。在近周期波段,光栅表现出著名的Wood反常现象。在长波段,从理论上论证了亚波长金属光栅可以等效为具有均匀等效折射率的奇异介质(Metamaterials)平板,并且在其表面支持类表面等离激元极化波(SPPs),这种被束缚的表面波使得亚波长光栅表现出了增强的透射效应。另外,本文还首次从理论上论证了周期不变、缝宽啁啾变化的亚波长微结构金属光栅具有自聚焦效应。
     实验上,我们利用基于ZnTe的THz时域光谱系统考察了自己制作的微结构金属光栅在p偏振THz波垂直入射时的一次非共振透射特性。测得的透射曲线与理论上按照正态分布的非均匀光栅周期所对应的透过率相符。同时,我们还测量了当光栅样品绕THz波入射方向旋转时的透射率,理论上从电场矢量投影关系结合晶体的偏振相关探测特性成功解释了所得到的透射现象。
With the development of generation and detection of Terahertz radiation, the design and fabrication of the controlling device in THz frequency region become more and more imperative. In the thesis, a candidate device for controlling THz radiation is proposed, which is microstructured metallic grating in THz frequency region. A theoretical and experimental study on the proposed metallic grating is detailed.
     Based on the fundamental electromagnetic theory, we obtain the field distribution in whole space by applying Floquet-Bloch Theorem and surface impedance boundary condition to the metallic grating exposed to p-polarized electromagnetic wave. Furthermore, we treat the microstructured grating as effective F-P interferometer, then extract the scattering coefficients of both the front and bottom surface of the grating. When the incident wavelength is close to the grating period, the grating exhibits famous Wood anomalies. When the incident wavelength is larger than the grating period, it is demonstrated theoretically that the grating can be considered as a kind of metamaterials with homogenous refractive index equal to the ratio of grating period to the slit width. The surface of such a microstructured grating can support the bond surface mode similar to the Surface Plasmon Polaritons(SPPs). It is shown that the grating exhibits enhanced transmission due to the surface mode. In addition, we have proposed theoretically in the long wavelength region that the microstructured metallic grating with constant period but chirped slit width behaves self-focusing effect.
     We have used ZnTe-based THz time domain spectroscopy(THz-TDS) to experimentally investigate the nonresonant transmission of the microstructured metallic grating perpendicularly impinged by p-polarized THz radiation pulse. The experimental results agree with the theoretical calculation under the assumption that the nonuniform period of the grating satisfying normal distribution. Meanwhile, the transmission is also measured when the grating is rotated around the axis perpendicular to the grating surface. We have successfully explained the transmission theoretically by employing electric field vector projection and polarization-dependant detection of the ZnTe crystal.
引文
[1] M.van Exter, Ch.Fattinger, D.Grischkowsky, Terahertz Time Domain Spectroscopy of Water Vapor, Optics Letters, 1989, 14: 1128-1130
    [2] R. A. Cheville, D. Grischkowsky, Far-infrared terahertz time-domain spectroscopy of flames, Optics Letters, 1995, 20(15):1646-1648
    [3] R.H.M.Groeneveld, D, Grischkowsky, Picosecond Time-resolved Far-Infrared Experiments on Carriers and Excitons in GaAs/AlGaAs Multiple Quantum Wells, J.Opt.Soc.Am.B,1994,11: 2502-2507
    [4] G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts and A. F. G. van derMeer, Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses, Phys. Rev. Lett. 1999, 83: 1578-1581
    [5] Mark Sherwin, Applied physics: Terahertz power, Nature, 2002, 42(6912): 131-132
    [6] Sushil Kumar, Benjamin S. Williams, Stephen Kohen, Qing Hu, and John L. Reno, "Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 2004,84: 2494
    [7] K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, Difference frequency terahertz wave generation from DAST by using an electronically tuned Ti: sapphire laser, Opt. Lett.1999, 24(15): 1065-1067
    [8] W. Shi, Y. J. Ding et al, Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal, Opt. Lett. 2002,27: 1454-1456
    [9] D, H, Auston, K, P, Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 1984, 45: 284–289
    [10] Masahiko Tani, Michael Herrmann, and Kiyomi Sakai, Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging, Meas. Sci. Technol. 2002, 13:1739-1745
    [11]R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, Spectral Characterization of Broadband THz Antennas by PhotoconductiveMixing: Toward Optimal Antenna Design, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4:85-88
    [12] Jacob B. Khurgin, Optical rectification and terahertz emission in semiconductors excited above the band gap, JOSA B, 1994, 11(12): 2492
    [13] Ajay Nahata, Tony F. Heinz, Generation of subpicosecondelectrical pulses by optical rectification, Optics Letters, 1998, 23(11): 867-869
    [14]A. Di Falco, C. Conti, G. Assanto, Terahertz pulse generation via optical rectification in photonic crystal microcavities, Optics Letters, 2005,30(10): 1174-1176
    [15]David Citrin, Quasi-half-cycle terahertz pulse generation via optical rectification in quantum wells using shaped optical pulses, Optics Express, 1997, 1(12): 376-384
    [16]X.-C. Zhang, Y. Jin, and X. F. Ma, Coherent measurement of THz optical rectification from electro-optic crystals, Appl. Phys. Lett. 1992, 61:2764-2766
    [17]Ajay Nahata, Aniruddha S. Weling, and Tony F. Heinz, A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling, Appl. Phys. Lett. 1996, 69: 2321-2323
    [18]M. Reid and R. Fedosejevs, Terahertz emission from surface optical rectification in n-InAs Proc. SPIE Int. Soc. Opt. Eng. 2004, 5577: 659
    [19] Y.Cai, I.Brener, J.lopata et al, Coherent terahertz radiation detection :Direct comparison between free-space electro-optic sampling and antenna detection, 1998, 73(4): 444
    [20] B. L. Yu, F. Zang, Q. Xing, R. R. Alfano, Probing dielectric relaxation propertie of liquid CS2 with terahertz time-domain spectroscopy, Appl. Phys. Lett., 2003, 82: 4633
    [21] Liying Lang, Qirong Xing, Shuxin Li, et al, Experimental study on terahertz radiation, Chin. Opt. Lett. 2004, 2: 667
    [22] http://www.rpi.edu/~zhangxc
    [23] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P.A. Wolf, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, 1998, 391: 667
    [24] W.L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424: 824
    [25] Qirong Xing, Shuxin Li, Zhen Tian, Dong Liang et al, Enhanced Zero– OrderTransmission of THz Radiation Pulses through Very Deep Metallic Gratings with Subwavelength Slits , Appl.Phy.Lett, 89: 041107
    [26]J. D. Joannopoulos, R. D. Meade, J. N. Winn, Scaling Properties of the Maxwell Equations in Photonic Crystals , Princeton University Press, 1995
    [27]D. Dragoman, M. Dragoman, Terahertz fields and applications, IEEE, Progress in Quantum Electronics, 2004, 28: 1-66
    [28]A.G. Davies, E.H. Linfield and M. B. Johnston, The development of terahertz sources and their applications, Phys. Med. Biol. 2002, 47:3679-3689
    [29]B. B. Hu, and M. C. Nuss, Imaging with terahertz waves, Optics Letters, 1995, 20(16):1716-1718
    [30]D. M. Mittleman, Rune H. Jacobsen, and Martin C. Nuss, T-ray imaging, IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2: 679-692
    [31]Torsten ffler, T. Bauer, Karsten Siebert, Hartmut Roskos, Terahertz dark-field imaging of biomedical tissue, Optics Express, 2001, 9(12): 616-621
    [32]P. Y. Han, G. C.Cho, X. C. Zhang, Time-domain transillumination of biological tissues with terahertz pulse, Opt. Lett., 2000, 25(4): 242-244
    [33]M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, Integrated THz technology for label-free genetic diagnostics, Appl. Phys. Lett., 2002, 80: 154-156
    [34]A. G. Markelz, A. Roitberg, E. J. Heilweil, Pulsed terahertz spectroscopy of DNA ,bovine serum albumin and collagen between 0.1 and 2.0 THz, Chem. Phys Lett. 2000, 320: 42-48
    [35] R.Huber, C.Kubler, S.Tubel, A.Leitenstorfer etal, Femtosecond Formation of Coupled Phonon-Plasmon Modes in InP: Ultrabroadband THz Experiment and Quantum Kinetic Theory, Phys.Rev.Lett., 2005, 94: 027401
    [36]A.Hirata, T.Kosugui, N.Meisl, T. Shibata etal, High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, IEEE Trans. on Microwave Theory and Tech, 2004, 52: 1843
    [37]G. Ramian, J. Kaminski and S. J. Allen, First lasing of the UCSB 30μm free-electron laser, Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors & Associated Equipment, 1997, 393: 220-223
    [38]S. J. Allen, K. Craig, C. L. Felix, P. Guimaraes, J. N. Heyman, J. P. Kaminski, B. J. Keay, A. G. Markelz, Probing tetrahertz dynamics in semiconductor nanostructures with the UCSB free-electron lasers, Journal of Luminescence, 1994, 60(61): 250-254
    [39]S. J. Allen, K. Craig, B. Galdrikian, J. N. Heyman, J. P. Kaminski, J. S. Scott, M. S. Sherwin, Materials science in the far-IR with electrostatic based FELs, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors & Associated, 1995, 358: 536-544
    [40] B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. Uhd Jepsen, Chemical recognition in terahertz time-domain spectroscopy and imaging, Semicond. Sci. Technol. 2005, 20(7): 246-253
    [41] A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith and J. M. Chamberlain, An introduction to medical imaging with coherent terahertz frequency radiation, Phys. Med. Biol. 2002, 47: R67–R84
    [42]D. H. Auston, K. P. Cheung, J. A. Valdmanis, Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media, Phys. Rev. Lett. 1984, 53: 1555
    [43]Ch.Fattinger,D.Grischkowsky, Point source terahertz optics, Appl.Phys.Lett,1988, 53: l480
    [44] B.B. Hu, X.-C. Zhang, D.H. Auston and P.R. Smith, "Free Space Radiation from Electro-Optic Crystal,”Appl. Phys. Lett. 1990, 56: 506 -508
    [46] D.H. Auston and X.-C. Zhang, "Large Aperture Photoconducting Antennas" Picosecond Electronics and Optoelectronics VI, Springer Series in Electronics and Photonics, 1991, 1
    [47]X. F. Ma and X.-C. Zhang , Determination of Ratios Between Nonlinear Optical Coefficients by Using Subpicosecond Optical Rectification, J. Opt. Soc. Am. B, 1993,10: 1175
    [48]Q. Wu and X.-C. Zhang , Electro-Optic Sampling of Freely Propagating THz Fields, Optics & Quantum Electronics, 1996, 28: 945
    [49]Z.G. Lu, P. Campbell, and X.-C. Zhang , Free-Space Electro-Optic Sampling with a High-Repetition-Rate Regenerative Amplified Laser, Appl. Phys. Lett., 1997, 71: 593-595
    [50]Zhiping Jiang and X.-C. Zhang, Electro-optic Measurement of THz Pulses with a Chirped Optical Beam, Appl. Phys. Lett., 1998, 72: 1945-1947
    [51]Zhiping Jiang and X.-C.Zhang, Chirped Pulse Measurement Techniques of THz Spatio-Temporal Distribution, IEEE J. of Quantum Electronics, 2000, 36:1214
    [52]Zhiping Jiang and X.-C. Zhang, Single-Shot Spatial-Temporal THz Field Imaging, Optic Letters, 1998, 23: 1114-1116
    [53]Z.G. Lu and X.-C. Zhang, Real time THz Imaging System Based on Electro-Optic Crystals, SPIE-Applications of Photonic technology III, 1998, 3491: 334
    [54]Q. Chen, Zhiping Jiang, G.X. Xu, and X.-C. Zhang, Near Field THz Imaging with Dynamic Aperture, Optics Letters, 2000, 15: 1122-1124
    [55]Bradley Ferguson, Shaohong Wang , Doug Gray, Derek Abbott and X.-C. Zhang, T-ray computed tomography, Optics Letters, 2002, 27: 1312-1314
    [56]S.H. Wang and X.-C. Zhang,“Tomographic imaging with a terahertz binary lens,”Appl. Phys. Lett., 2003, 82: 1821-1823
    [57]X.-C. Zhang, Three-dimensional terahertz wave imaging, Phil. Trans. R. Soc. Lond. A 2004, 362: 283-299
    [58]A. A. Ignatov, E. Schomburg, J. Grenzer, S, Winnerl, K. F. Renk, E. P Dodin, Theory of electron transport in a THz-field irradiated semiconductor superlattice: occurrence of quantized DC voltages and current responsivity, Superlattices and Microstructures, 1997, 22: 15-18
    [59]R. B. Vrijen, G. M. Lankhuijzen, L. D. Noordam, Delayed Electron Emission in the Ionization of Rydberg Atoms with Half-Cycle THz Pulses, Phys. Rev. Lett. 1997, 79: 617
    [60]A.W. Kleinsasser, J. B. Banner, M. J. Bums, B. S. Karasik, W R. McGrath, Fabrication of Terahertz YBaCuO hot-electron bolometer mixers, IEEE Trans.Appl. Superconduct, 1999, 9: 4197-4220
    [61]S. J. Kim, T. Yamashita, Focused Electron Beam Damaged YBCO Josephson Junctions for THz Device, Applications IEEE Trans. Appl. Superconduct., 1999, 9: 4221-4224
    [62]S. P. Feo6lov, A. A. Kaplyanskii, A. B. Kulinkin, R. 1. Zakharchenya, Optical studies of terahertz phonons dynamics in small-grain polycrystalline corundum, Physica B, 1999, 263: 695-697
    [63] J. Schubert, A. Semenov, G. Goltsman, H. W Hubers, G. Schwaab, B. Voronov, E. Gershenzon, Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz, Supercond, Sci. Technol, 1999, 12: 748
    [64]T. M. Klapwijk, P, Dieleman, M. W. M. DeGraauw, Pushing the operating range of SIS mixers into the THz regime, Supercond. Sci. Technol., 1997, 10: 876
    [65]C. J. B. Riviere, R, Baribault, D. Gay, N, McCarthy,M Piche, Stabilization of terahertz beats from a pair of picosecond dye lasers by coherent photon seeding, Opt. Common., 1999, 161: 31-36
    [66]C. J, Jin, B. Y. Cheng, Z, L. Li, D. Z. Zhang, L. M. Li, Z. Q. Zhang, Two dimensional metallic photonic crystal in the THz range Opt. Comm., 1999, 166: 9-13
    [67]Zheng-Ming Sheng, Hui-Chun Wu, Kun Li, and Jie Zhang, Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses Physical Review E, 2004, 69: 025401
    [68]Liu H.C., Wachter M., Ban D., Wasilewski Z.R., Buchanan M., Aers G.C., Cao J.C., Feng S.L., Williams B.S., Hu Q., Effect of doping concentration on the performance of terahertz quantum-cascade lasers, Appl. Phys. Lett. 2005, 87(14):1102-1104
    [69]孙金海,沈京玲,李宁,逯美红,贾燕等,用太赫兹时域光谱技术对玉米种子的实验研究,第十一届全国光电技术与系统学术会议,电子工业出版社,904-908
    [70]沙琳,赵国忠,耿玉珍,李福利,太赫兹辐射在中草药鉴别中的应用研究,第十一届全国光电技术与系统学术会议,电子工业出版社,900-903
    [71]胡颖王晓红郭澜涛张存林刘海波张希成,植物油和动物脂肪在THz波段的吸收和色散,物理学报, 2005,5 4(9): 4124-4128
    [72]王清月,邢岐荣,向望华,龚正烈,章若冰,张忱,脉冲碰撞锁模环形染料激光器的研究,光学学报, 1986, 6(4): 320-325
    [73]柴路,王清月,张伟力,邢岐荣,利用腔内可控自相位调制效应压缩飞秒光脉冲,中国激光, 2000, 20(5):407-410
    [74]王清月,张伟力,黄锦圣等,输出13.5fs激光脉冲的非共线式光参量放大器,物理学报, 2002, 51(10): 2281-2285
    [75]M. Bass, P. A. Franken, J. F. Ward, et al, Optical rectification, Phys. Rev. Lett. 1962, 9: 446-448
    [76] Q.Chen, M.Tani, Zhiping Jiang, X.-C.Zhang, Electro-optic transceivers for terahertz wave applications, 2001, J. Opt. Soc. Am. B, 18(6): 823
    [77] Paul C.M.Planken, et al, Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe, 2001, J. Opt. Soc. Am. B, 18(3):313
    [78] Lord Rayleigh, On the dynamical theory of gratings, Proc. Roy. Soc. 1907, A79: 399-416
    [79] P. Sheng, R.S. Stepleman, and P.N. Sanda, Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations, Phys. Rev. B, 1982,26: 2907-2916
    [80] A. Barbara, P. Quémerais, E. Bustarret, T. Lopez-Rios, and T. Fournier, Electromagnetic resonances of sub-wavelength rectangular metallic gratingEur. Phys. J. D 2003, 23: 143-154
    [81] F.J.García-Vidal, L.Martín-Moreno, Transmission and focusing of light in one-dimensional periodically nanostructured metals,Phys.Rev.B,2002,66:155412
    [82]J.D. Jackson, Classical Electrodynamics, 3rd edn, J. Wiley and Son Inc, 1998.
    [83]张克潜,李德杰,微波与光电子学中的电磁理论(第二版),电子工业出版社, 2002: 53-102
    [84] R. W. Wood , On a remarkable case of uneven distribution of light in a diffraction grating spectrum , Philos. Mag.1902, 4 : 396-400
    [85] J. T. Shen, P. B. Catrysse, and S. Fan,“Mechanism for designing metallic metamaterials with a high index of refraction,”Phys. Rev. Lett. 2005, 94: 197401
    [86]V.G.Veselago, The Electrodynamics of substance with simultaneously negative values ofεandμ", Sov. Phys Usp, 1968, 10 (4): 509-514.
    [87] J.B.Pendry, A. J.Holden and W.J.Stewart, I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures, 1996, 76(25): 4773-4776
    [88] J.B.Pendry, A.J.Holden and W.J.Stewart, Magnetism from Conductors and Enhanced Nonlinear Phenomena, IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084
    [89]D.R.Smith , Willie J.Padilla, et al, Composite Medium with SimultaneouslyNegative Permeability and Permittivity, Phys. Rev. Lett. 2000, 84: 4184– 4187
    [90]H.Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988
    [91]邢岐荣,郎利影,毛方林等,THz辐射的实验研究,中国激光,2004, 31:640
    [92] M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, Stationary Surface Plasmons on a Zero-Order Metal Grating, Phys. Rev. Lett. 1998, 80: 5667–5670.
    [93] H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence , A. P. Crick, Selective transmission through very deep zero-order metallic gratings at microwave frequencies, Appl. Phys. Lett.2000, 77(18): 2789-2791
    [94] Y. Takakura, Optical Resonance in a Narrow Slit in a Thick Metallic Screen, Phys. Rev. Lett. 2001, 86: 5601-5603
    [95]T. López-Ríos, D. Mendoza, F.J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, Surface Shape Resonances in Lamellar Metallic Gratings, Phys. Rev. Lett. ,1998, 81: 665-668.
    [96]F.J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, Th. Fournier, and B.Pannetier, Localized surface plasmons in lamellar metallic gratings ,J. Lightwave Technol. 1999,17: 2191-2195 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700