镁合金板带铸轧凝固前沿控制及缺陷成形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双辊铸轧是一种将铸造与轧制两道工序合二为一、直接从液态金属制备板坯的近终形生产工艺。双辊铸轧技术应用于镁合金板带生产时,可大幅缩短工艺流程、提高成材率,并显著降低板材加工成本,在镁合金板带加工领域具有重要意义。镁合金板带铸轧过程中,铸轧区熔体凝固前沿的位置与形状对板坯的凝固、变形行为产生重要影响,并进一步影响板坯缺陷形成及表面质量。资料显示,目前镁合金铸轧过程中凝固、变形行为及缺陷成形机理等基础研究鲜有报道。本文根据镁合金铸轧技术研究现状,结合已有的研究基础,在镁合金板带铸轧凝固前沿控制、液流分配技术及缺陷成形机理三个方面开展了研究。
     本文第一部分采用工艺试验与数理计算相结合的方法,在忽略铸轧区熔体沿板宽方向上温度场分布差异的理想条件下,分析了镁合金铸轧工艺参数对铸轧区凝固前沿位置、板坯表面缺陷影响作用。研究结果表明,铸轧速度显著影响镁合金铸轧板坯凝固层焊合点位置,并进一步影响板坯表面质量。将铸轧速度控制在合理范围后,凝固层焊合点位置位于优化区域,可消除板坯表面缺陷,铸带表面质量良好。结合凝固层焊合点位置与铸轧主要工艺参数之间的关系,建立了凝固层焊合点位置控制模型。将控制模型应用于工艺试验时,可改善并消除镁合金铸轧板坯表面缺陷(冷凝、缩边、横向裂纹、孔洞、飞边及流淌等),提高镁合金铸轧板坯表面质量。
     本文第二部分研究了液流分配结构对铸轧区熔体温度场分布的影响规律,阐述了镁合金铸轧板坯热带缺陷的形成机制与控制措施。
     采用SOLA-VOF有限差分法,对普通液流分配结构下镁合金铸轧区熔体温度场分布规律进行仿真,分析液流分配结构对铸轧区熔体温度场分布影响规律。仿真结果表明,采用普通液流分配结构时,铸轧区镁合金熔体在板宽方向上区域温度分布极不均匀,温度差值达到15℃;针对模拟工况开展工艺试验时,制备铸轧板坯均出现不同程度的热带缺陷,而供液嘴内部镁合金熔体温度区域温度之间差值达到25℃。因此,普通液流分配结构不满足镁合金铸轧工艺要求。
     针对镁合金铸轧板坯热带缺陷特征、形成机理及控制措施进行研究。结果表明,铸轧过程中板坯局部温度在离开轧辊后仍高于合金非平衡凝固固相线温度时,将在铸带局部产生热带缺陷。忽略液流分配的影响时,铸轧区内全凝固点位置决定了全凝固基准线的位置;而液流分配直接影响铸轧过程中熔体温度分布均匀性,决定带坯在宽度方向上全凝固线位置与形状,最终决定镁合金铸轧板坯热带缺陷出现的几率与严重程度。采用优化液流分配技术,可大幅改善铸轧板坯熔体温度分布均匀性,从而有效控制热带缺陷。
     针对对普通液流分配结构分流效果,采用数值模拟方法进行结构优化,并开展工艺试验进行验证。结果表明:采用优化的分流结构开展镁合金铸轧工艺试验,板坯热带缺陷基本消除;实测供液嘴内部熔体温度结果表明,区域之间温度差值控制在10℃以内。优化分流结构大幅度改善铸轧区镁合金熔体温度均匀性,铸轧板坯热带缺陷得到有效控制。
     本文第三部分对镁合金铸轧板坯表面点状偏析、中心线偏析缺陷的特征及形成机制进行研究,提出了镁合金铸轧板坯偏析缺陷的控制措施。
     采用金相检测、扫描电镜等分析了镁合金铸轧板坯表面点状偏析、中心线偏析缺陷特征,结果表明:镁合金铸轧板坯表面点状偏析、中心线偏析由富含溶质Al、Zn元素的金属间化合物组成,偏析内由细小等轴晶组成,与基体组织特征差异明显,部分表面点状偏析缺陷与基体之间存在明显分界线。
     采用快速停机的方式,获得铸轧区急停试样,分析了点状偏析的形成过程。实际工艺中,可通过缩短结晶区长度、控制前箱液位高度以及将铸轧合金溶质控制在下限等措施改善镁合金铸轧板坯表面点状偏析缺陷。镁合金铸轧工艺中凝固与变形行为对中心线偏析缺陷产生重要影响。铸轧过程中带坯的轧制变形将挤压液穴中心区域富集溶质液态金属,使其朝铸轧反方向移动;供液嘴不断供给的过热金属液持续冲刷凝固前沿,导致凝固界面重熔并产生强迫对流,促进溶质扩散;合理控制凝固前沿位置,可通过上述两种作用达到抑制、消除中心线偏析缺陷目的。
Twin-roll casting (TRC) is a near-net-shape process which combines rapidsolidification with hot rolling by one-step method to produce thin strips directly frommolten metal. It is believed that strip casting-annealing is a promising route toproduce magnesium alloy strip with low cost and high productivity. Position andconfiguration of solidification front in set-back play an important role on thesolidification and deformation behaviors during twin-roll casting processing ofmagnesium alloys strip. Furthermore, this effects influence the defect-formation ofstrips. On the basis of brief review of the history and the evaluation of previousresearch works, the controlling of solidification front, melt distribution anddefect-formation mechanism of magnesium alloys strip processed by twin-rollcasting was investigated experimentally and theoretically.
     In the first part, the effect of parameters on the position of the solidificationfront and surface defects of strip was analyzed regardless of the difference of moltenmetal temperature distribution in set-back. Experimental results show the roll speedhas a prominent effect on the solidification front position and surface-defectsforming. Optimum zone of kiss-point of solidification layer was achieved from thetheoretically derivation and experimental results. A kiss-point model which considersthe strip thickness, set-back length and roll speed was established to optimizeprocess and enhance surface quality of magnesium alloys strip. Results showed thatthe model of kiss-point of solidification layer effectively optimized the twin-rollcasting processing and enhanced the surface quality of magnesium alloys strip.
     In the second part, the effect of configuration of feed tip nozzle on cavitytemperature field and location/shape of the solidification front was investigated by themethod which combined numerical simulation with experiments; furthermore, hot lineforming mechanism and correlated controlling methods was exploited.
     Temperature field in magnesium twin roll casting under regular configuration was simulated utilizing the SOLA-VOF finite difference method, simulation resultsshowed magnesium melts in the set-back presented extraordinary non-uniformtemperature distribution in the width direction. Experiments results indicated thatunder regular configuration, with temperature difference up to25℃,hot line defectsof various degree was observed on the strip. Therefore, the regular configuration offeed tip nozzle was unable to achieve the qualified strip.
     During twin-roll casting processing of magnesium alloys, if local temperatureswere higher than the non-equilibrium solidification solid line temperature after thedeparture of the strip from the rollers, and hot line defects were thus generated. Meltdistribution had a prominent influence on the temperature distribution uniformity, thusdetermined the location/shape of the fully solidified line, which resulted in the oddsand severance degree of hot line defects in twin-roll casting process of magnesiumalloy.
     The optimized configuration of feed tip nozzle was achieved by numericalsimulation which was validated by the experiments. Experimental results indicatedthat under the optimized configuration, the melts temperature difference in the tipfront zones can be decreased to less than10℃. The simulation results were validatedwith experimental results, and the hotline-free magnesium strips have achieved bytwin-roll casting though the optimized configuration of feed tip nozzle.
     The third part of this thesis was focused on the forming mechanism of surfacebleeds and centerline segregations were studied.
     Results showed that surface bleeds were compromised by solute richintermetalics. The experimental investigations were mainly conducted on so-calledstop-samples, which are produced by abruptly interrupting casting. By analyzing theheat, mass and momentum transfer and the deformation characters in the set-back ofmagnesium alloys strips, the character, forming mechanism and measurement ofsurface bleeds were discussed. In practical processing, surface segregation can bealleviated by shortening the length of solidification zone, controlling the melts height and lower the solute percentage to the lower limits.
     Centerline segregation of magnesium alloys strip was compromised by soluterich intermetalics. Solidification and deformation behavior of the twin-roll castinghave a major influence over the centerline segregation. Deformation in the twin-rollcasting squeezed the solute rich melts in the central of strips, and melts moved againstthe roll direction, which changes the shape of the solidification interface. Bycontrolling the solidification front in a proper location, the overheated melts suppliedby feed tip could washouts the solidification front, which can cause the re-melt of thesolidification front and the forced convection. It was beneficial to the solute diffusion,and the center line segregation could be decreased or eliminated. When otherconditions determined, by controlling the cast velocity according to the modelsinduction, the solidification front could be controlled to the proper domain, andcenterline segregation could be decreased or eliminated.
     Through the guidance of the research results, twin roll casting of magnesiumalloys could be stabilized and optimized, and the defects-free magnesium alloys stripshad been achieved by twin-roll casting.
引文
[1]师昌绪.中国材料科学与技术现状与发展[J].中国材料进展,2009,28(1):1-2.
    [2] Robert E. Magnesium alloys and their applications [J]. Light Metal Age,2001,(6):54-56.
    [3] Mordike.B.L, Ebert.T. Magnesium: properties-applications-potential [J].MaterialScience and Engneering A,2001,302:37-45.
    [4]左铁镛等。我国富有资源镁及镁合金发展战略研究报告书[C].北京:中国工程院,2005.
    [5]师昌绪,李恒德,王淀佐.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):5-6.
    [6]孟树昆.2006年镁工业发展报告[C].北京:中国有色金属学会镁业分会,2006.
    [7] Schumann S, Friedrich H. Current and future use of magnesium in theautomobile industry [J]. Materials Science Forum,2003,52:419-422.
    [8] Bronfin B. Development of new magnesium alloys for advanced applications[C].Magnesium and Their Applications. Proceedings of the6thinternational conference,edited by Kainer, K U.2004,12-17.
    [9]王祝堂.镁板材轧制工艺及性能[J].有色金属加工,2004,33(3):8-10
    [10]张青来,卢晨,朱燕平等.轧制方式对AZ31镁合金薄板组织和性能的影响[J].中国有色金属学报,2004,14(3):391-394.
    [11] Liang D, Cowley C B. The twin-roll strip casting of magnesium [J]. JOM,2004,56(5):117-119.
    [12]李铮,赵凯,邸洪双等.双辊铸轧法生产变形镁合金薄带新工艺的研究[J].轻金属,2003,12:35-38.
    [13]王广山,邸洪双,黄锋.立式双辊铸轧AZ31镁合金薄带试验研究[J].铸造,2009,58(4):322-325.
    [14]娄花芬,汪明朴,唐宁等.AZ31B镁合金的铸轧组织及其相关变形机制[J].中国有色金属学报,2008,18(9):1584-1589.
    [15]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,2002.
    [16]丁文江,曾小勤.中国Mg材料研发与应用[J].金属学报,2010,46(11):1450-1457.
    [17]陈振华著.变形镁合金[M].北京:化学工业出版社,2005.
    [18] Cahn R W著.非铁合金的结构与性能,第八卷[M].丁道云等译.北京:科学出版社,1999.
    [19] Ando S, Tanaka M, Tonda H. Pyramidal slip in magnesium alloy single crystals[J]. Materials Science Forum,2003,87:419-422.
    [20] Yoo M H, Agnew S R, Morris J R, Ho K M. Non-basal slip systems in hcpmetals and alloys: source mechanisms [J]. Materials Science and Engineering A,2001,87:319-321.
    [21] Kim Su-Hyeon, You Bong-Sun, Yim Chang-Dong, Seo Young-Myoung. Textureand microstructure changes in asymmetrically hot rolled AZ31magnesium alloysheets[J]. Materials Letters,2005,9:3876-3880.
    [22] Yang Xu-yue, Ji Ze-sheng, Miura.H, SakaiI. T. Dynamic recrystallization andtexture development during hot deformation of magnesium alloy AZ31[J].Trans.Nonferrous Met. Soc. China,2009,19:55-60.
    [23] Walde.T, Riedel.H. Modeling texture evolution during hot rolling of magnesiumalloy AZ31[J]. Materials Science and Engineering A,2007,443:277-284.
    [24] Perez-Prado M T, del Valle J A, et al. Microstructural evolution during largestrain hot rolling of an AM60Mg alloy[J]. Scripta Materialia,2004,51(5):661-664.
    [25] Perez-Prado M T, del Valle J A, Ruano O A. Effect of sheet thickness on themicrostructural evolution of an AZ61Mg alloy during large strain hot rolling[J].Scripta Materialia,2004,51(5):667-671.
    [26] Myshlyaev.M.M, McQueen.H.J, Mwembela.A, et al. Twinning, dynamicrecovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Scienceand Engineering A,2002,337:121-133.
    [27] Tan.J.C, Tan.M.J. Dynamic continuous recrystallization characteristics in twostage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and EngineeringA,2003,339:124-132.
    [28]刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010,46(11):1458-1472.
    [29]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,6:39-41.
    [30]王荣,范立坤,张平,丁文江.镁合金板料制备技术的研究进展[J].材料导报,2008,22(3):94-98.
    [31]卢志文,汪凌云等.变形镁合金及其成形工艺[J].材料导报,2004,18(9):39-42.
    [32] Eddahbi M, Del-Valle.J.A, Perez-prado.M.T, et.al. Comparison of themicrostructure and thermal stability of an AZ31alloy processed by ECAP and largestrain hot rolling [J]. Materials Science and Engineering: A,2005,410:308-311.
    [33]詹美燕,李元元,陈宛德,陈维平.大应变轧制技术制备细晶AZ31镁合金板材[J].华南理工大学学报(自然科学版),2007,35(8):16-22.
    [34] Yang Ping, Mao Wei-min, Ren Xue-ping, Tang Quan-bo. Shear bands inmagnesium alloy AZ31[J]. Trans. Nonferrous Met. Soc. China,2004,14(5):851-857.
    [35] Le Qi-chi, Zhang Zhi-qiang, Cui Jian-zhong. Effect of rolling process onmicrostructures and mechanical properties of AZ31B alloy sheets[J]. Trans.Nonferrous Met. Soc. China,2006, s1779-1783.
    [36]清水健一,河部望,岸本明.住友电工钢铁电缆株式会社.镁合金板及其制造方法[P].国际申请PCT/JP2003/0070512003.06.03.国际公布WO2003/1038682003.12.18,中国,CN1596159A,2005.03.16.
    [37]曲家惠,张正贵,王福,左良. AZ31镁合金室温异步轧制的织构演变[J].材料研究学报,2007,21(4):354-358.
    [38]张文玉,刘先兰,陈振华.异步轧制AZ31镁合金板材室温冲压性能研究[J].塑性工程学报,2007,14(4):6-9.
    [39]王国军.变形镁合金挤压材生产技术及其产品标准[M].冶金标准化与质量,2002,40(6):50.
    [40] Murai T, Matsuoka S, Miyamoto S, et al. Effect of extursion conditions onmicrostructure and mechanical properties of AZ31B magnesium alloy extrusions[J].Journal of Materials Processing Technology,2003,141(2):207-211.
    [41] Lapovok R Y, Barnett M R, Davies C H J. Construction of extrusion limitdiagram for AZ31magnesium alloy by FEM simulation[J]. Journal of MaterialsProcessing Technology,2004,146(3):408-412.
    [42]翟秋亚,王智民,袁森等.挤压变形对AZ31镁合金组织和性能的影响[J].西安理工大学学报,2002,(3):254-256.
    [43] Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6%Al-1%Znalloy[J]. Materials Science and Engineering A,2004,379:258-262.
    [44]王祝堂.镁及镁合金型材的挤压[J].有色金属加工,2004,33(1):31-32.
    [45]孙斌煜.双辊式铝板铸轧技术的发展现状及趋势[J].太原机械学院学报,1991,(4):9-10.
    [46]马锡良.铝带坯连续铸轧生产[M].长沙:中南工业大学出版社,1992.
    [47]李正邦.钢铁冶金前沿技术[M].北京:冶金工业出版社,1997.
    [48] Lauener W F. Continuous casting-and rolling mill technology [J]. Light MetalAge,1987,(6):321-325.
    [49]倪思康.双辊薄带连铸工艺研究[J].上海金属,1994,16(2):13-19.
    [50]钱玉鳞.影响双辊连铸薄带质量的因素[J].上海钢研,1998,(1):40-49.
    [51]田乃媛.薄板坯连铸连轧[M].北京:冶金工业出版社,1998.
    [52] Cramb A W. New steel casting processes for thin slabs and strip a historicalperspective[J]. Iron and steel Making,1998,(6):45-69.
    [53] Kim Wan-Soo, Kang Taewook, Pack Ki-Nam. Development of strip castingtechnology at POSCO/RIST [C]. SSP, Korea,2001:1-12.
    [54]方园,崔键,于艳等.宝钢薄带连铸技术发展回顾与展望[J].宝钢技术,2009年增刊:83-85.
    [55]王国栋,刘相华等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [56]李国义,杨文恭,李铁柱.双辊式连铸机的发展[J].重型机械,1992,(4):27-29.
    [57]张小平,梁爱生.近终形连铸技术[M].北京:冶金工业出版社,2001.
    [58] Huang Min-hui, Li Xiao-qian, Mao Da-heng, Deng Hui-lin, Hu Shi-cheng, LiXin-he, Zhan Li-hua. Research and development of transnormal twin-roll castingtechnology[J]. Trans. Nonferrous Met.Soc China.2003,13(7):532-540.
    [59]Haga.T, Suzuki.S. High-speed roll caster for strip casting of aluminium alloy[J].Materials Science Forum.2000, s331-337:185-190.
    [60] Haga.T, Nishiyama.T, Suzuki.S. Strip casting of A5182alloy using melt dragtwin roll caster[J]. Journal of Materials Processing Technology,2003,137:103-107.
    [61] Haga.T, Tkahashi.K, Ikawaand.M, Watari.H. Twin roll casting of aluminumalloy strips[J]. Journal of Materials Processing Technology2004,153-154:42-47.
    [62]钟掘.超常物理场下材料制备机械的基础研究[J].中国机械工程,2000,11(1-2):55-58.
    [63]联邦科学和工业研究组织.镁及镁合金的双辊铸造[P].国际申请PCT/AU2003;001097,CN1684784A,2005.10.19.
    [64]中铝洛阳铜业有限公司.一种利用带式法进行连续铸轧生产变形镁合金带卷的方法[P].中国,CN101108393A,2008.01.23.
    [65]李华伦,黄育宏.镁、铝合金板带材连续铸轧热温连轧技术[P].中国,CN1939610A,2007.04.04.
    [66]娄花芬,汪明朴,唐宁,李周,郭明星,雷前.AZ31B镁合金的铸轧组织及其相关变形机制[J].中国有色金属学报,2008,18(9):1584-1589.
    [67]唐宁,汪明朴,娄花芬,李周,郭明星,雷前.双辊铸轧AZ31镁合金板坯的物相分析[J].中国有色金属学报,2009,19(3):433-438.
    [68]王广山,邸洪双,黄锋.立式双辊铸轧AZ31镁合金薄带试验研究[J].铸造,2009,58(4):322-325.
    [69]王广山,邸洪双,黄峰.立式双辊铸轧镁合金薄带微观组织分析[J].特种铸造及有色合金,2009,29(9):792-794.
    [70]程尚栩,杨湘杰,郭洪民,谢水生.流变铸轧AZ91D镁合金半固态组织演变特点[J].特种铸造及有色合金,2009,29(11):1016-1018.
    [71]张莹,赵海波,谢水生,耿茂鹏,郭洪民,徐金华. AZ91D镁合金流变铸轧板材微观组织分析[J].兵器材料科学与工程,2009,32(4):12-15.
    [72] Liu Zhi-min, Xing Shu-ming, Bao Pei-wei, Li Nan, Yao Shu-qing, Zhang Mi-lan.Characteristics of hot tensile deformation and microstructure evolution of twin-rollcast AZ31B magnesium alloys[J]. Transactions of Nonferrous Metals Society ofChina,2010,20:776-782.
    [73]孙斌煜.板带铸轧理论与技术[M].北京:冶金工业出版社,2002.
    [74] Yun.M, Hunt.J.D, Edmonds.D.V. Heat line formation during roll-casting ofaluminium alloys at thin gauges[J]. Journal De Physique III,1993,3:227-230.
    [75] Bagshaw.J, Hunt.J.D, Jordan.R.M. A steady state model for roll casting[J]. CastMetals1988,1:16-19.
    [76] Lockyer.S.A, Yun.M, Hunt.J.D, Edmonds.D.V. Micro-and marcrodefects in thinsheet twin-roll cast aluminum alloys [J]. Materials characterization,1996,37:301-310.
    [77] Gras.Ch, Meredith.M, Hunt.J.D. Microdefects formation during the twin-rollcasting of Al-Mg-Mn aluminium alloys [J]. Journal of Materials ProcessingTechnology,2005,167:62-72.
    [78] Naiyu Sun, Burton R. Patterson, Jaakko P. Suni, Eider A. Simielli, HassoWeiland, Lawrence F. Allard. Microstructural evolution in twin roll cast AA3105during homogenization[J]. Materials Science and Engineering A,2006,416:232-239.
    [79] Gras.C, Meredith.M, Gatenby.K, Hunt.J.D. Defect formation in twin roll-castAA3xxx and5xxx series aluminium alloys [J]. Materials Science Forum,2002,396-402:89-94.
    [80] Fordord.B, Andersson.B, Ingvaldsen.F, Austevik.O, Horst.J.A, Skauvik.I. Theformation of surface segregates during twin roll casting of aluminium alloys [J].Materials Science and Engineering A,2006,415:12-20.
    [81] Sanjeev Das, Lim.N.S, Kim.H.W, Park. C.G. Effects of heat treatment onmicrostructure and mechanical properties of twin roll casted Al-5.5Mg-0.02Tialloy[J]. Materials and Design,2010,31:3111-3115.
    [82] Monaghan.D.J, Henderson.M.B, Hunt.J.D, Edmonds.D.V. Microstucturaldefects in high productivity twin-roll casting of aluminium [J]. Materials Science andEngineering: A,1993,173:251-254.
    [83] Gras.Ch, Meredith.M, Hunt.J.D. Microstructure and texture evolution after twinroll casting and subsequent cold rolling of Al-Mg-Mn aluminium alloys [J]. Journalof Materials Processing Technology,2005,169:156-163.
    [84] Yun.M, Lockyer.S, Hunt.J.D. Twin roll casting of aluminium alloys [J].Materials Science and Engineering: A,2000,280:116-123.
    [85] Yucel Birol. Analysis of macro segregation in twin-roll cast aluminium stripsvia solidification curves[J]. Journal of Alloys and Compounds,2009,486:168-172.
    [86] Jin.I, Morris.L.R, Hunt.J.D. Centerline segregation in twin-roll-cast aluminumalloy slab[J]. Journal of Metals,1982,6:70-75.
    [87] D.罗伯编著;项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002.
    [88] S.V.帕坦卡著.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [89]陈立亮.低压铸造连续生产过程数字模拟及其质量控制[D].武汉:华中理工大学,1997.
    [90]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002.
    [91] Hwang.S.M, Kang.Y.H. Analysis of flow and heat transfer in twin-roll stripcasting by finite element method [J]. Journal of Engineering for Industry,1995,117:304-315.
    [92] Bradbury.P.J. A mathematical for the twin roll casting process [D]. OxfordUniversity. Oxford,1995.
    [93]梁涛.双辊铸轧辊套传热规律及热辊型的数值模拟研究[D].长沙:中南大学机电工程学院,2002.
    [94]祝明妹.双辊薄带连铸熔池布流系统的数值模拟研究[D].重庆大学,2002.
    [95] Wang Bo, Zhang Jie-yu, Zhang Yin, et al. Numerical and physical simulation ofa twin-roll strip caster[J]. Journal of Science and Technology Beijing,2006,13(5):393-400.
    [96]唐俊龙.铝合金铸轧铸咀中高温熔体三维流场与温度场的数值模拟仿真研究[D].长沙:中南大学机电工程学院,2004.
    [97]刘晓波.约束型快速流变系统薄层熔体流场与温度场研究[D].长沙:中南大学机电学院,2001.
    [98]Sun Bin-yu, Zhang Hong. Momental method during casting rolling peocess [J].Trans. Nonferrous Met. Soc. China,2002,5(12):101-104.
    [99] Hu Xiao-dong, Ju Dong-ying. Application of Anand’s constitutive model ontwin roll casting process of AZ31magnesium alloy [J]. Trans. Nonferrous Met. Soc.China,2006,16: s586-590.
    [100]苗雨川,邸洪双,张晓明,鲍培玮,王国栋,刘相华.双辊薄带钢铸轧过程的流场温度场耦合数值模拟[J].钢铁研究,2000,(2):32-35.
    [101] Miao Yu-chuan, Zhang Xiao-ming, Di Hong-shuang, et al. Numericalsimulation of the fluid flow, heat transfer, and solidification of twin-roll strip casting[J]. Journal of Materials Processing Technology,2006,174:7-13.
    [102]孙斌煜,张洪,孙航临.流函数法在铸轧成型理论分析中的应用[J].中国有色金属学报,1999,9(1):115-117.
    [103]崔小朝,王宥宏,刘才等.拟流函数法分析铝板铸轧过程的流动状态[J].中国有色金属学报,2001,11(2):10-14.
    [104]金珠梅,郝冀成,徐广儒.双辊连续铸轧工艺中流场、温度场和热应力场的数值计算[J].金属学报,2000,36(4):46-52.
    [105]朱志华,肖文锋.超薄快速铸轧过程轧制压力分布的数学模型与实验研究(I)-铸造区轧制压力分布的数学模型[J].上海有色金属,2001,22(3):18-22.
    [106]朱志华,肖文锋.超薄快速铸轧过程轧制压力分布的数学模型与实验研究(II)-轧制区轧制压力分布德解析计算模型[J].上海有色金属,2001,22(4):71-73.
    [107]朱志华,肖文锋.超薄快速铸轧过程轧制压力分布的数学模型与实验研究(III)-铸造区与轧制区轧制压力仿真研究[J].上海有色金属,2001,23(10):37-39.
    [108]杜艳平,杨建伟,梁爱生,孙斌煜.铸轧熔池内三维流场与温度场耦合数值模拟[J].特种铸造及有色合金,2004,(1):41-43.
    [109]杜万明.铸轧铝板带铸轧区内液穴深度变化规律的探讨[J].轻合金加工技术,1997,27(10):11-14.
    [110]湛利华,钟掘,李晓谦等.连续铸轧流变行为的物理模拟及其应力-应变关系的演变[J].中国有色金属学报,2004,14(12):1995-2002.
    [111]李晓谦,湛利华.连续铸轧塑变与温变强耦合接触压力计算模型[J].矿业工程,2000,20(2):48-51.
    [112]崔小朝,史荣,曾建潮.变形体凝固传热焓式有限元数学模拟与过程仿真[J].系统仿真学报,1997,12(4):29-30.
    [113]莫亚武.连续铸轧过程中铝的凝固过程数值模拟[D].武汉:武汉大学,2004.
    [114]张璋.超薄快速铸轧的凝固前沿计算及应用研究[D].中南大学,2004.
    [115]邱以清,刘振宇,刘相华,王国栋.双辊铸轧凝固层焊合点位置判别式的研究[J].东北大学学报(自然科学版),2007,28(1):60-62.
    [116]彭成章,宋昕,王文明,胡忠举,黄明辉.铸轧速度对液态金属凝固行为的影响[J].湘潭矿业学院学报,2003,18(4):35-37.
    [117]陈平昌,朱六妹,李赞.材料成形原理[M].北京:机械工业出版社,2001.
    [118]曹鸿德.塑性变形力学基础与轧制原理[M].北京:机械工业出版社,1981.
    [119]李向宇.铝铸轧机常用铸嘴结构和材质[J].轻合金加工技术,1998,26(10):17-20.
    [120]彭成章,胡忠举,黄明辉.铝熔体在铸嘴型腔中的传热及凝固现象分析[J].中南工业大学学报(自然科学版),2003,34(1):70-73.
    [121]周英,黄明辉,钟掘.铝铸轧流场有限元模拟计算方案合理性的探讨[J].中国有色金属学报,2005,15(7):1100-1106.
    [122] Sun Bin-yu, Zhang Hong. Momental model during casting rolling process[J].Transactions of Nonferrous Metals Society of China,2002,12(5):22-24.
    [123]Sarioglu k, Yildizbayrak G, Dundar M. Computer simulation of metal feedingused in twin roll casting [C]. Light Metals2000[C]. Warren Dale: TMS,2000:663-666.
    [124]邓圭玲,段吉安,钟掘.双辊铸轧铸嘴内部铝液流动的三维数值仿真[J].中南大学学报(自然科学版),2005,36(4):615-620.
    [125]吴树森主编.材料加工冶金传输原理[M].北京:机械工业出版社,2001.
    [126]陈维平,詹美燕,陈宛德等.变形镁合金的塑性加工技术研究及展望[J].特种铸造及有色合金,2007,27(1):40-43.
    [127] Allen.R.V, East.D.R, Johnson.T.J, et al. Magnesium alloy sheet produced bytwin roll casting[C].2001TMS Annual Meeting, New Orleans, Louisiana, USA,2001,2:11-15.
    [128]翁文凭,闫蕴琪,陈琦等.双辊铸轧镁合金板坯微观组织特征[J].特种铸造及有色合金,2007,27(11):827-828.
    [129]张颂阳,耿茂鹏,谢水生等.铸轧半固态镁合金组织特征[J].特种铸造及有色合金,2006,26(7):430-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700