2205双相不锈钢连铸凝固组织热模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1991年典型牌号2205(Fe-22.5Cr-5Ni-3Mo-0.17N)问世以来,双相不锈钢已广泛用于对耐蚀性要求较高的石油天然气管道、化工、造纸、建筑、海洋平台、能源热交换器、淡水处理等工业领域。但由于不锈钢导热性能差、钢水粘度大、凝固形态比较复杂和含多种合金元素,使得其在连铸生产中极易出现组织粗大、裂纹、堵塞水口等问题,浇铸过程中易形成夹杂物等生产缺陷,降低了其生产效益。
     针对双相不锈钢新材料的特点以及连铸坯生产中遇到的问题,本文分别采用传统定向凝固、连铸坯热模拟装置以及异质核心技术,研究了2205双相不锈钢的凝固特性、连铸工艺参数对凝固组织的影响以及异质核心对凝固组织细化的作用。
     根据相选择理论分析和定向凝固实验结果显示,2205双相不锈钢凝固模式为F型,先形成相为铁素体,奥氏体在铁素体基底上由固态相变析出,相变过程为:L→L+δ→δ→δ+γ。根据界面响应函数计算和定向凝固实验结果,得到2205双相不锈钢平-胞转换临界速率为V_(cs)=2μm/s,胞-枝转变速率为V_(cd)=5μm/s。生长速率为10~100μm/s时,固/液界面形貌为树枝状。当生长速率为500~1000μm/s时,界面形貌为细树枝状。
     固/液界面处主要溶质元素Cr、Ni、Mo、Mn和Si的波普分析(WDS)表明,元素Cr为k>1的元素,其它元素Ni、Mo、Mn和Si则均为k<1。并且随着固/液界面推进速率的增加,奥氏体析出温度升高。在2205双相不锈钢中,奥氏体析出温度从2μm/s的1096℃增加至100μm/s的1275℃。
     对比分析表明,连铸坯枝晶生长热模拟试样的宏观组织及微观组织与实际连铸坯相似,但模拟试样等轴晶区的晶粒比连铸坯大很多。模拟实验研究发现,调整过热度与冷却强度对2205双相不锈钢的柱状晶向等轴晶转变(CET)的影响较小。对不同实验参数下动态温度梯度的分析发现,由于双相不锈钢导热能力较差,实验参数调节对样品距水冷底面60mm以内的温度场影响较大;而样品60mm以上的温度场几乎没有影响,致使工艺参数的调节对CET的影响减弱。
     热模拟实验中施加机械搅拌可有效提高双相不锈钢的等轴晶率、细化凝固组织。随着搅拌速率的增加,柱状晶区域长度从8.2cm降到了4.6cm,等轴晶区域的平均晶粒尺寸从9.5mm降到了1.2mm;同时搅拌速率增加,双相不锈钢晶粒内部的第二相也明显细化,奥氏体形貌由粗大的针状和魏氏组织转变为细碎的颗粒和岛状形貌。
     通过对两相间元素分布分析,发现晶界上两相间的元素分配差别大于晶粒内部,但柱状晶区和等轴晶区内元素分布特性差别不大。
     理论计算表明,凝固过程中由于偏析均能导致Ti、N、O产生过饱和,而且Ti_2O_3的过饱和度显著大于TiN的过饱和度,这有利于Ti_2O_3优先于TiN析出,而形成Ti_2O_3+TiN异质核心,使得形核核心大幅提高,从而使得等轴晶率显著提高。
     利用添加适量的钛粉的模拟实验证实,利用Ti_2O_3/TiN异质核心作为异质形核核心是一种细化双相不锈钢凝固组织的有效手段,可明显提高铸坯的等轴晶率、细化凝固组织和第二相组织,并且在复合核心的基础上,较低的Ti含量就可获得较高的等轴晶组织,可有效避免含钛钢连铸过程中水口结瘤和表面夹杂等问题。
Since the typical Grade2205(Fe-22.5Cr-5Ni-3Mo-0.17N) was confirmed in1991, duplex stainless steel has been widely used for nearly20years, which is broadapplied in various industry fields requiring high corrosion resistance, such as oil andgas pipeline, chemical engineering, paper manufacturing, architecture,ocean platform,energy and heat exchanger,fresh water treatment and so on. However,due to the poorthermal conductivity,high liquid viscosity,complicated solidification microstructureand containing many alloy elements for stainless steel,several problems such ascoarse microstructure, crack and nozzle clogging easily tend to exist in continuouscasting process, resulting in the manufacturing defects, such as the formation ofinclusions, which reduces the production effectiveness.
     According to the analysis on the characteristics of the DSS and the problemsexist in the production of the continuous casting slab, traditional directionalsolidification, the simulation equipment for continuous casting slab andheterogeneous nucleation technology are adopted in this article, studying thesolidification characteristic of2205DSS, the influence of the parameters of thecontinuous casting processing on solidification microstructure and the solidificationmicrostructure refinement of heterogeneous nucleation technology.
     According to the formula of phase selection and the results of directionalsolidification experiment, we can conclude that the solidification mode of2205DSSis F type, prior forming phase is ferrite, on the basement of which forming theaustenite, and the phase transformation process is as follow: L→L+δ→δ→δ+γ.According to the LKT model and the results of the directional solidificationexperiment, the critic velocity for planar-cell transition of2205DSS is Vcs=2μm/s, thecritic velocity for cell-dendrite transition is Vcd=5μm/s. When the growth velocity is10~100μm/s, the interface morphology is typical dendrite; while the growth velocityis500~1000μm/s, the interface morphology is fine dendrite.
     The WDS analysis on the main solutes such as Cr, Ni, Mo and Si on the S/Linterface shows that Cr is an element of K>1,while the K value of other elementssuch as Ni,Mo,Mn and Si is below1. The growth temperature of austenite gradually increases with the increasing growth velocity. For2205DSS,increasing the growthvelocity from2μm/s to100μm/s,the growth temperature of austenite increases from1096℃to1270℃respectively.
     Compared the simulated samples to the continuous casting slab, theirmacrostructure and microstructure can be demonstrated to be very similar,howeverthe grain size of simulated samples in equiaxed grain zone is much coarser than thatof continuous casting slab. Adjusting the superheat and cooling strength have littleinfluence on the CET transition. According to the analysis on the dynamictemperature gradient of the samples under different experiment parameters,we canfind that within the60mm distance from water-cooled side upward of the sample, thetemperature gradient changes a lot in response to the adjustment of the experimentparameters, while beyond that zone, the temperature gradient almost doesn’t change.This is due to the poor heat conductivity of DSS, the heat resistance of the unmeltedpart of the sample is much larger than that of heat-transfer of cooling-waterconvection, and the heat conductivity of the sample becomes the main heat resistance,thus alleviating the influence the adjusting of processing parameters bring to CETtransition.
     Mechanical stirring can effectively increase the ratio of equiaxed grain in DSSand refine the solidification microstructure. Increasing the stirring rate,the length ofcolumn zone reduces from8.2cm to4.6cm and the mean grain size of equiaxed grainreduces from9.5mm to1.2mm. Meanwhile,with the refinement of the grains,themicrostructure of second phase in the DSS are also obviously refined. With therotation rate increasing, the morphology of austenite changes from coarse acicular andwidmanstatten structure to refined particles and islands structure. According to theanalysis on the distribution of the elements between the two phases, it is obvious thatthe distribution difference of the elements between the two phases on the grainboundary is larger than that in the grain, but the distribution state of the elements onthe grain boundary or in the grain of the column grain zone is similar to that ofequiaxed grain zone. In addition, stirring has no significant effects on the distributioncoefficient of the elements between the two phases.
     The theoretical calculation shows that the Ti, N and O all form the segregation, resulting in the formation of the supersaturation degree during the solidificationprocess, and the supersaturation degree of Ti_2O_3is significantly larger than that of TiN,which helps that the precipitation of Ti_2O_3has priority to that of TiN; Due to the highmatching ability, high-bond supersaturation between the composite nuclei basementand TiN,it can give rise to the nucleation rate; High amount of nuclei can obviouslyincrease the critical temperature gradient G, leading to the tendency to attain highequiaxed crystal ratio.
     According to the analysis on the observation of the precipitation in the simulatedsamples, it shows that the acting of Ti_2O_3-TiN composite nuclei as nuclei ofheterogeneous nucleation plays a very important role in the solidification structurerefinement of the DSS, which can be realized by the addition of proper amount of Tipowders, thus increasing the equiaxed crystal ratio of the casting slab, refining thesolidification and second phase structure. Moreover, on the basis of the compositenuclei, this technology adopts low Ti content to attain high equiaxed crystal ratio,which can effectively avoid the problems, like nozzle clogging and surface inclusions,existing in the continuous casting process of the steels containing Ti.
引文
[1] J rg K. Deformation and Annealing Behavior of Nitrogen Alloyed DuplexStainless Steels Part I: Rolling[J]. ISIJ International A,2003,11(43):1781-1787.
    [2]高娃,罗建民,杨建君.双相不锈钢的研究进展及其应用[J].兵器科学与工程,2005,3(28):61-64.
    [3] Simmons J W, Romu J. Effects of processing and manufacturing of highnitrogen-containing stainless steels on their mechanical, corrosion and wearproperties[J]. Journal of Materials Processing Technology,1996,2(207):159-169.
    [4] Ridolfi M R, Tassa O. Formation of nitrogen bubbles during the solidification of16-18%Cr high nitrogen austenitic stainless steels[J]. Intermetallics,2003,12(11):1335-1338.
    [5] Simmons J W. high-nitrogen alloying of stainless steels[J]. Materials Scienceand Engineering A,1996,2(207):159-169.
    [6]美国宾州匹兹堡TMR不锈钢撰写.双相不锈钢制造加工指南[M].英国伦敦:国际钼协会(IMOA),2009.
    [7]孙文山.双相不锈钢的进展及其在工业中的应用[J].兵器材料科学与工程,2001,4(24):49-53.
    [8] Alvarez-Armas I. Duplex Stainless Steels: Brief History and Some RecentAlloys[J]. Recent Patents on Mechanical Engineering,2008,1:51-57.
    [9] Iza-Mendia A. Microstructural and mechanical behavior of a duplex stainlesssteel under hot working conditions[J]. Metallurgical and Materials TransactionsA,1998,12(29):2975-2986.
    [10] Brooks J A, Thompson A W. Microstructural development and solidificationcracking susceptibility of austenitic stainless steel welds[J]. Int. Mater. Rev,1991,1(36):16-44.
    [11] Elmer J W, Allen S M, Eagar T W. Microstructural development duringsolidification of stainless steel alloys. Metallurgical Transactions A[J].1989,10(20):2117-2131.
    [12] Hunter A, Ferry M. Phase formation during solidification of AISI304austeniticstainless steel[J]. Scripta Mater,2002,4(46):253-258.
    [13] Liang J P, Gao Y L. Phase evolution of AISI321stainless steel duringdirectional solidification[J]. Ironmaking&Steelmaking,2009,8(36):603-609.
    [14] Di Schino A, Mecozzi M G, Barteri M, et al. Solidification mode and residualferrite in low-Ni austenitic stainless steels[J]. Journal of Materials Science,2000,2(35):375-380.
    [15] W. F J, Yang Y S. Formation of a two-phase microstructure in Fe-Cr-Ni alloyduring directional solidification[J]. Journal of Crystal Growth,2008,1(311):132-136.
    [16] Rajasekhar K, Harendranath C S. Microstructural evolution during solidificationof austenitic stainless steel weld metals: A color metallographic and electronmicroprobe analysis study. Materials Characterization[J]. MaterialsCharacterization,1997,2(38):53-65.
    [17] Lin X, Yue T M. Phase formation and microstructure evolution in laser rapidforming of graded SS316L/Rene88DT alloy[J]. Materials Science andEngineering: A,2005,1-2(402):294-306.
    [18] Okane T, Umeda T. Eutectic growth of unidirectionally solidified Fe-Cr-Nialloys[J]. ISIJ International,1998,5(38):454-460.
    [19] Fukumoto S, Kurz W. Prediction of the δ to γ transition in austeniticstainless steels during laser treatment[J]. ISIJ International,1998,1(38):71-77.
    [20] Fukumoto S, Kurz W. Solidification phase and microstructure selection mapsfor Fe-Cr-Ni alloys[J]. ISIJ International,1999,12(39):1270-1279.
    [21] Fukumoto S, Kurz W. The δ to γ transition in Fe-Cr-Ni alloys during lasertreatment[J]. ISIJ International,1997,7(37):677-684.
    [22] Hunziker O, Vandyoussefi M, Kurz W. Phase and microstructure selection inperitectic alloys close to the limit of constitutional undercooling[J].1998,18(46):6325-6336.
    [23] Umeda T, Okane T. Solidification microstructures selection of Fe-Cr-Ni andFe-Ni alloys[J]. Science and Technology of Advanced Materials,2001,1(2):231-241.
    [24] Suutala N, Takalo T. Single-phase ferritic solidification mode inaustenitic-ferritic stainless steel welds[J]. Metallurgical and MaterialsTransactions A,1979,8(10):1183-1190.
    [25] J. C. Past, present and future of the Duplex Stainless Steels: Proc.7th Duplex2007Int, Conf&Expo, Grado, Italy,2007[C].
    [26] Ramirez A, Lippold J. The relationship between chromium nitride andsecondary austenite precipitation in duplex stainless steels[J]. Metallurgical andMaterials Transactions A,2003,8(34):1575-1597.
    [27]周磊磊,林大为,周灿栋.不同冷却速度下双相不锈钢δ-γ相变过程的原位观察[J].上海金属,2007,3(29):19-23.
    [28] Ure a A, Otero E. Weldability of a2205duplex stainless steel using plasma arcwelding[J]. Journal of Materials Processing Technology,2007,1-3(182):624-631.
    [29] Hsieh R, Liou H. Effects of cooling time and alloying elements on themicrostructure of the gleeble-simulated heat-affected zone of22%Cr duplexstainless steels[J]. Journal of Materials Engineering and Performance,2001,5(10):526-536.
    [30] Ribeiro Miranda M A. The use of X-ray diffraction, microscopy, and magneticmeasurements for analysing microstructural features of a duplex stainlesssteel[J]. Materials Characterization,2005,4-5(54):387-393.
    [31] Hertzman S., Brolund B. An experimental and theoretical study of heat-affectedzone austenite reformation in three duplex stainless steels[J]. Metallurgical andMaterials Transactions A,1997,2(28):277-285.
    [32]张少棠.不锈钢/钢铁材料手册[G].北京:中国标准出版社,2001.
    [33]周书才,曹鹏军,任正德.电磁搅拌对水平连铸奥氏体不锈钢组织的影响[J].784-786,2006,12(26):784-786.
    [34] Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric currentpulse on the solidification structure of pure aluminum[J]. Acta Materialia,2007(55):3103-3109.
    [35] Stefaneseu D M. Numerical modeling of solidification morphologies andsegregation pattems in cast dendritic alloys[J]. Acta Materialia,1999,17(47):4253-4262.
    [36] DMat M, Ileghusi J. Application of a hybrid model of mushy zone tomacrosegregation in alloy solidification[J]. International Joumal of Heat MassTransfer,2002(45):279-289.
    [37]大中逸雄.计算机传热凝固解析入门一铸造过程中的应用[M].机械工业出版社,1988.
    [38] Huang X, Thomas B G, Najjar F M. Modeling superheat removal duringcontinuous casting of steel slabs[J]. Metallurgieal and Materials Transaction B,1992,4(23B):339-356.
    [39] Aboutalebi M R, Guthrie R I L. Coupled turbulent flow,heat and solutetransport in continuous casting process[J]. Metallurgieal and MaterialsTransaction B,1995,4(26B):731-744.
    [40]蔡开科.连铸二冷区凝固传热及冷却控制[J].河南冶金,2003,4(1):1-8.
    [41] Kumar S, Meech J A, Samarasekera I V, et al. Development of intelligentmould for online detection of defects in steel billets[J]. Ironmaking andSteelmaking,1999,26(Compendex):269-284.
    [42] Wang B, Walker B N, Samarasekera I V. Shell growth, surface quality andmould taper design for high-speed casting of stainless steel billets[J]. CanadianMetallurgical Quarterly,2000,39(Compendex):441-454.
    [43] Chow C, Samarasekera I V, Walker B N, et al. High speed continuous casting ofsteel billets part2: Mould heat transfer and mould design[J]. Ironmaking andSteelmaking,2002,29(Compendex):61-69.
    [44] Zhang L, Thomas B G. Numerical simulation on inclusion transport incontinuous casting mold[J]. Journal of University of Science and TechnologyBeijing, Mineral, Metallurgy, Material,2006,13(4):293-300.
    [45] Cao N, Zhu M Y. Numerical simulation for the interfacial behavior of steel andslag in a slab continuous casting mold with high casting speed[J]. ActaMetallurgica Sinica,2007,43(8):834-838.
    [46] Jin B G, Wang Q, Gao A, et al. Electromagnetic Field Distribution inTwo-section Slitless Mold for Soft-contact Electromagnetic ContinuousCasting[J]. Isij International,2009,49(1):44-50.
    [47] Li W, Wang F, Qi F, et al. Mathematical model on steel strip-feeding of mold incontinuous casting process[J]. Acta Metallurgica Sinica,2007,43(11):1191-1194.
    [48] Wu D F, Cheng S S, Cheng Z J. Characteristics of shell thickness in a slabcontinuous casting mold[J]. International Journal of Minerals Metallurgy andMaterials,2009,16(1):25-31.
    [49] Yuan F M, Wang X H, Zhang J M, et al. Numerical simulation of Al2O3deposition at a nozzle during continuous casting[J]. Journal of University ofScience and Technology Beijing,2008,15(3):227-235.
    [50]樊俊飞,沈建国,张捷宇.板坯连铸过程中钢液流动与凝固现象的数值模拟[J].内蒙古科技大学学报,2008(01):62-66.
    [51]郭俊玉,王波.板坯连铸结晶器内钢液流场的数值模拟[J].连铸,2007(02):13-15.
    [52]李建超,崔建忠,王宝峰,等.大方坯连铸跨结晶器电磁搅拌的数值模拟[J].东北大学学报,2006(05):497-500.
    [53] Jin X, Chen D F, Zhao Y, et al. Numerical Simulation of Temperature FieldDuring Secondary Cooling of Thin Slab Continuous Casting[J]. Journal of Ironand Steel Research International,2009,16:316-321.
    [54] Wang H D, Zhu M Y, Yu H Q. Numerical Analysis of Electromagnetic Fieldand Flow Field in High Casting Speed Slab Continuous Casting Mold WithTraveling Magnetic Field[J]. Journal of Iron and Steel Research International,2010,17(9):25-30.
    [55] Chen Y, Luo X, Shen H F. Finite Element Numerical Simulation onThermo-Mechanical Couple in Bloom Mold[J]. Journal of Iron and SteelResearch International,2008,15:302-306.
    [56] Liu X, Zhang H X, Xu R J, et al. Modelling of level fluctuation in continuouscasting[J]. Journal of Materials Science&Technology,2003,19:158-160.
    [57] Na X Z, Xue M, Zhang X Z. Numerical simulation of heat transfer anddeformation of initial shell in soft contact continuous casting mold under highfrequency electromagnetic field[J]. Journal of Iron and Steel ResearchInternational,2007,6(14):14-21.
    [58] Wang T M, Cai S W, Li J, et al. Mould taper optimization for continuouscasting steels by numerical simulation[J]. China Foundry,2010,7(1):61-67.
    [59] Yin H B, Yao M. Inverse algorithm of heat transfer in round billet continuouscasting mould[J]. Acta Metallurgica Sinica,2005,41(6):638-644.
    [60] Zang X Y, Wang X D, Yao M. Development of Detection Method for MouldTransient Heat Transfer in Continuous Casting[J]. Journal of Iron and SteelResearch International,2008,15:605-614.
    [61] Deng K, Ren Z M, Jiang G C. Theoretical and experimental analysis ofcontinuous casting with soft-contacted mould[J]. Transactions of NonferrousMetals Society of China,2000,10(3):314-319.
    [62] Li Y M, Xing S M, Zhai Q J. Numerical simulation of semisolid continuouscasting process[J]. Transactions of Nonferrous Metals Society of China,2001,11(3):378-381.
    [63] Yang J W, Du Y P, Cui X C, et al.3-D coupled numerical simulation forflowing distribution and temperature distribution in beam blank continuouscasting process[J]. Acta Metallurgica Sinica,2001,37(7):767-771.
    [64] Yuan F M, Wang X H, Zhang J M, et al. Numerical simulation of tundishnozzle clogging during continuous casting[J]. Acta Metallurgica Sinica,2006,42(10):1109-1114.
    [65] Yu H Q, Zhu M Y.3D numerical simulation of flow field and temperature fieldin a round billet continuous casting mold with electromagnetic stirring[J]. ActaMetallurgica Sinica,2008,44(12):1465-1473.
    [66] Li B K, Tsukihashi F. Effects of electromagnetic brake on vortex flows in thinslab continuous casting mold[J]. Isij International,2006,46(12):1833-1838.
    [67]赫冀成.电磁场对改善钢材质量的作用[J].钢铁,2005,40(001):24-30.
    [68] Zang X Y, Wang X D, Yao M. Development of Detection Method for MouldTransient Heat Transfer in Continuous Casting[J]. Journal of Iron and SteelResearch International,2008(15):605-614.
    [69]阎小林.连铸过程原理及数值模拟[M].石家庄:河北科技出版社,2001.
    [70]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001.
    [71] Zhao Y, Chen D F, Jin X, et al. The Development and Investigation ofNumerical Simulation Software for Secondary Cooling Zone in Thin SlabContinuous Casting[J]. Journal of Iron and Steel Research International,2009,16:246-253.
    [72]任三兵,杜锋,樊俊飞,等.薄带连铸布流器数学物理模拟研究[J].宝钢技术,2009,4:19-22.
    [73]张立,刘中兴,王波,等.不同双辊薄带连铸布流系统的数值模拟对比研究[J].过程工程学报,2010(S1):226-230.
    [74] Rerko RS, Groh HC, Beckermann C. Effect of melt convection and solidtransport on macrosegregation and grain structure in equiaxed Al-Cu alloys[J].Materials Science and Engineering A,2003,347(1):186-197.
    [75] Beckermann C, Wang CY. Equiaxed dendritic solidification with convectionComparisons with NH4Cl-H2O experiments[J]. Metallurgical and MaterialsTransactions A,1996,9(27):2784-2795.
    [76]沈厚发.糊状区变形及浓度再分布的模拟实验[J].金属学报,2002,4(38):352-358.
    [77] Wilber, GA, Batra, R, Savage, WF, et al. The effects of thermal history andcomposition on the hot ductility of low carbon steels[J]. Metallurgical andMaterials Transactions A,1975,9(6):1727-1735.
    [78] Batra R, Wilber GA, Breit HF, et al. Programmed in situ melting, freezing, andtensile testing for laboratory study of high temperature properties of as-castmetals[J]. Journal of Testing and Evaluation,1975(3):56-72.
    [79] Won YM, Kim KH, Yeo TJ. Effect of cooling rate on ZST, LIT and ZDT ofcarbon steels near melting poin[J]. ISIJ International,1998(38):1093-1098.
    [80] Seol DJ, Won YM, Yeo TJ. High temperature deformation behavior of carbonsteel in the austenite and δ-ferrite regions[J]. ISIJ International,1999,1(39):91-98.
    [81] Seol DJ, Won YM, Oh KH. Mechanical behavior of carbon steels in thetemperature range of mushy zone[J]. ISIJ International,2000,4(40).
    [82] Guo B, Wu X, Ma R H. Physical simulation and property prediction in heatforming process of1Cr18Ni9Ti[J]. ACTA Metallurgica Sinica,2000(13):486-494.
    [83] Song SH, Guo AM, Shen DD, et al. Effect of boron on the hot ductility of2.25Cr1Mo steel[J]. Materials Science&Engineering A,(360):96-104.
    [84] Spinelli JE, Ferreira IL, Garcia A. Influence of melt convection on the columnarto equiaxed transition and microstructure of downward unsteady-statedirecionally solidified Sn-Pb alloys[J]. Journal of Alloys and Compounds,2004(384):217-224.
    [85] Peres M D, Siqueira C A, Garcia A. Macrostructural and microstructuraldevelopment in Al-Si alloys directionally solidified under unsteady-stateconditions[J]. Journal of Alloys and Compounds,2004(381):168-181.
    [86] CA S, N C, A G. Solidification thermal parameters affecting thecolumnar-to-equiaxed transition[J]. Metallurgical and Materials Transactions A,2002(33):217-222.
    [87] Gandin C A. From constrained to unconstrained growth during directionalsolidification[J]. Acta Materialia,2000,10(48):2483-2501.
    [88] Gandin C A. Experimental Study of the Transition from Constrained toUnconstrained Growth during Directional Solidification [J]. ISIJ International,2000,10(40):971-979.
    [89] Gandin C A. Columnar-to-Equiaxed Transition in SOLidification Processing(CETSOL): A project of the European Space Agency (ESA)-MicrogravityApplications Promotion (MAP) programme:4th International Conference onSolidification and Gravity, Miskolc-Lillafuered, Hungary[C]. Trans TechPublications Ltd.
    [90] Ares A E, Caram R, Schvezov C E. Directional solidification of commercialbrass: Minerals, Metals and Materials Society, Charlotte, NC, United States,2004[C].
    [91] Ares A E, Caram R, Schvezov C E. Columnar to equiaxed transition analysisduring directional solidification of different alloy systems: Minerals, Metals andMaterials Society, Charlotte, NC, United States,2004[C].
    [92] Ares A E, Caram R, Schvezov C E. Columnar-to-equiaxed transition studies inAl-2wt%Cu, Al-4wt%Cu, Al-10wt%Cu, Al-20wt%Cu and Al-33.2wt%Cualloys: Minerals, Metals and Materials Society, Charlotte, NC., United State,2004[C].
    [93] Ares A E. Correlation between thermal parameters, structures, dendritic spacingand corrosion behavior of Zn-Al alloys with columnar to equiaxed transition[J].Journal of Crystal Growth,2008,1(310):1355-1361.
    [94] Ares A E, Schvezov C E. Solidification parameters during the columnar-to-equiaxed transition in lead-tin alloys[J]. Metallurgical and MaterialsTransactions A,2000(31):1611-1625.
    [95] Ares A E, Schvezov C E. Influence of solidification thermal parameters on thecolumnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys[J].Metallurgical and Materials Transactions A,2007,7(38):1485-1499.
    [96] Cole G S, F. G. Influence of solidification thermal parameters on the columnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys[J].Metallurgical and Materials Transactions A,2007,38(7):1485-1499.
    [97] Hunt J D. Steady state columnar and equiaxed growth of dendrites andeutectic[J]. Materials Science and Engineering,1984,1(65):75-83.
    [98] Fredriksson H, Olsson A. Mechanism of transition from columnar to equiaxedzone in ingots[J]. Materials Science and Technology,1986(2):508-516.
    [99] G umann M, Trivedi R, Kurz W. Theory of microstructural development duringrapid solidification[J]. Acta Metallurgica,1986,34(5):823-830.
    [100] Wang C, Beckermann C. Theory of microstructural development during rapidsolidification[J]. Acta Metallurgica,1986,5(34):823-830.
    [1] Umeda T, OkaneT T. Solidification microstructures selection of Fe-Cr-Ni andFe-Ni alloys[J]. Science and Technology of Advanced Materials,2001,1(2):231-240.
    [2] Liang J P, Gao Y L. Phase evolution of AISI321stainless steel duringdirectional solidification[J]. Ironmaking&Steelmaking,2009,8(36):603-609.
    [3] Kurz W. Solidification Microstructure-Processing Maps: Theory andApplication [J]. Advanced Engineering Materials,2001,7(3):443-452.
    [4] Trivedi R, Kurz W. Dendritic Growth[J]. International Materials Reviews,1994,2(39):49-74.
    [5]傅恒志,郭景杰,刘林.先进材料定向凝固[M].科学出版社,2008.
    [6] L ser W, Herlach D. Theoretical treatment of the solidification of undercooledFe-Cr-Ni melts[J]. Metallurgical and Materials Transactions A,1992,5(23):1585-1591.
    [7] Burden M H, Hunt J D. Cellular and dendritic growth. I[J]. Journal of CrystalGrowth,1974,2(22):99-108.
    [8] Burden M H, Hunt J D. Cellular and dendritic growth. II[J]. Journal of CrystalGrowth,1974,2(22):109-116.
    [9]闵志先,沈军,熊义龙.高温度梯度定向凝固镍基高温合金DZ125的组织演化[J].金属学报,2011,2(47):397-402.
    [10] Guo X, Fu H, Sun J, et al. Deformed microstructure of the single-crystalsuperalloy NASAIR100at1050oC[J]. Metallurgical and MaterialsTransactions A,1999,11(30):2843-2852.
    [11]蔡开科,程士富.连铸原理与工艺[M].冶金工业出版社,1999.
    [12]胡汉起.金属凝固原理[M].机械工业出版社,2007.
    [13] A. K, P. D, M. R. Thermal and Grain-Structure Simulation in a Land-BasedTurbine Blade Directionally Solidified with the Liquid Metal CoolingProcess[J]. Metall. Mater. Trans. B,2000(31):1283-1293.
    [14] Kurz W, Fisher D J. Fundamental of solidification[M]. Switzerland: Trans TechPublications Ltd,1998.
    [15] Sellamuthu R, A F G. Measurement of segregation and distribution coefficientsin MAR-M200and hafnium-modified MAR-M200superalloys[J]. Metallurgicaland Materials Transactions A,1986(17):418-428.
    [16] Seo S M, Lee J H, Yoo Y S, et al. Superalloys2008: TMS, Warrendale,U.S.A,2008[C].
    [17] Sung P K, Poirier D R. Liquid-solid partition ratios in nickel-base alloys[J]. Metallurgical and Materials Transactions A,1990,8(30):2173.
    [18] Jeckson K A, Hunt. J D. Lamellar and Rod Eutectic Growth[J]. Trans.MSA,1966(236):1129-1137.
    [19]傅恒志,郭景杰,刘林,等.先进材料定向凝固[M].北京:科学出版社,2008.
    [20] Flemings M. C..凝固过程[M].关于龙,屠宝洪,许诚信,译.冶金工业出版社,1981.
    [21] Trivedi R, Minyahara H, Mazumder P, et al. Directional solidificationmicrostructures in diffusive and convective regimes[J]. Journal of CrystalGrowth,2001,1(222):365-379.
    [22] Burton J A, Prim R C, Sliehter W P. Journal of Chemical Physics,1953(21):1045-1051.
    [23] H nninen H, Romu J. Effects of processing and manufacturing of highnitrogen-containing stainless steels on their mechanical, corrosion and wearproperties[J]. Journal of Materials Processing Technology,2001,3(117):424-430.
    [1] DubéC A, Aaronson H I. Rev. Metall,1958,3(55):201-210.
    [2] Aaronson H I. The Decomposition of Austenite by Diffusional Processes[M].New York: Interscience,1962.
    [3] DubéC A. Pittsburgh: Carnegie-Mellon University,1948.
    [4] Fargas G, Anglada M. Effect of the Annealing Temperature on theMechanical Properties, Formability and Corrosion resistance of HotRolled Duplex Stainless Steel [J]. Journal of Materials ProcessingTechnology,2009(4):1770.
    [5] Liou H Y, Pan Y T. Effects of Alloying Elements on the Mechanical Propertiesand Corrosion Behaviors of2205Duplex Stainless Steels[J]. Journalof Materials Engineering and Performance,2001,2(10):231.
    [6]王晓峰,陈伟庆,毕洪运,等.影响双相不锈钢热塑性的诸因素讨论[J].上海金属,2007,7(9).
    [7] Folkhard Erich.不锈钢焊接冶金[M].栗阜新,朱学军,译.化学工业出版社,2004.
    [8] Monlevade E F, Falleiros I G S. Orientation relationships associated withaustenite formation from ferrite in a coarse-grained duplex stainless steel [J].Metallurgical and Materials Transactions A,2006(37):939-949.
    [9]杨世铭,陶文铨.传热学[M].高等教育出版社,2006.
    [10] Hunt J D. Steady state columnar and equiaxed growth of dendrites andeutectic[J]. Materials Science and Engineering,1984,65(1):75-83.
    [11] Ares A E, Gassa L M, Gueijman S F, et al. Correlation between thermalparameters, structures, dendritic spacing and corrosion behavior of Zn-Al alloyswith columnar to equiaxed transition[J]. Journal of Crystal Growth,2008,310(7-9):1355-1361.
    [12] Ares A E, Gueijman S F, Caram R, et al. Analysis of solidification parametersduring solidification of lead and aluminum base alloys[J]. Journal of CrystalGrowth,2005,275(1-2):e319-e327.
    [13] Ares A E, Schvezov C E. Influence of solidification thermal parameters on thecolumnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys[J].Metallurgical and Materials Transactions A: Physical Metallurgy and MaterialsScience,2007,38A(7):1485-1499.
    [14] Spittle J A. Columnar to equiaxed grain transition in as solidified alloys[J].International Materials Reviews,2006,4(51):247-269.
    [15]胡汉起.金属凝固原理[M].机械工业出版社,2007.
    [16]吴玖.双相不锈钢[M].北京:冶金工业出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700