电磁场控制连铸结晶器内流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结晶器是连铸机的心脏,结晶器内的冶金过程是改善连铸坯质量的关键环节。大量的研究表明:铸坯的质量与结晶器内钢液的流动密切相关。随着铸坯拉速的提高,水口出流的流量和流速增加,结晶器内的钢液流动加速,流动的稳定性变差;表面流速过大容易发生卷渣,引起液位波动加剧,使铸坯产生表面缺陷;钢液流速过大对初生坯壳的冲刷增强,坯壳厚度均匀性降低、表面振痕增加;钢液的冲击深度同时增加、夹杂物和气泡难以上浮,影响铸坯的内部质量。因此,研究和控制结晶器内钢液的流动具有重要的意义。为了解决高速连铸中出现的这些问题,电磁技术在连铸工艺中得到发展,例如电磁制动和电磁搅拌技术。本文对电磁场控制板坯、方坯和双辊薄带连铸结晶器内流动进行研究,并结合现场生产中出现的质量问题,分析了结晶器内流动对铸坯质量的影响。并根据三种不同连铸结晶器内钢液的流动特点,分别施加不同的电磁场,以改善结晶器内的钢液流动。研究的主要内容包括:
     在高速板坯连铸方面:采用水银为介质,结合目前钢铁企业普遍使用的全幅一段和FC-Mold两种电磁制动技术,模拟结晶器内钢液的流动,使用超声波多普勒测速仪测量结晶器内液体的流速和液面的波动,分析磁场对流体流动的影响,研究磁感应强度和磁铁的位置对结晶器内金属液流动的影响。结果表明:施加磁场抑制了浸入式水口射流的运动,改变了结晶器内动能和湍流度的分布,结晶器内金属液流动的稳定性增强。全幅一段电磁制动的研究发现:当Bmax大于0.29T时,液面波动减弱,液面水平流动稳定,改善弯月面处的流动条件;金属液向下的冲击强度减弱,冲击深度减小;对结晶器壁的冲刷减弱。模型中Bmax=0.29T对应原型Bp=0.16T,所以在实际生产中,磁感应强度大于0.16T时,更有利于优化和控制结晶器内的流动,提高铸坯质量。磁铁靠近浸入式水口,有利于改善上部环流区的流动、液面的波动和流动的稳定性;磁铁下移远离浸入式水口有利于减小流体的冲击强度和冲击深度,因此,实际生产中则应考虑连铸工艺、设备等因素确定磁场的位置。与全幅一段电磁制动相比,FC-Mold更能有效地改善上部环流区的流动,减小液面的波动和液面处水平流速,提高液面的流动的稳定性;但对向下运动流股的冲击强度和冲击深度控制方面,全幅一段电磁制动的效果更好。实验结果表明,磁场不仅具有制动钢液流的作用,还具有改变流动方向,分配钢液流量的作用。因此,通过优化磁场可实现结晶器内钢液流场的优化。
     在小方坯连铸方面:针对小方坯连铸的直通水口,开发了电磁旋流水口技术,并通过在浸入式水口内安装旋流转子模拟旋转电磁搅拌,运用水力学模拟结合数学模拟的方法,进行连铸结晶器内流动的研究。结果表明:旋流式水口有利于改善结晶器内的流动,加强了结晶器上部液体的流动,增大液流向弯月面区域的回流,使液面形成水平环流,进而提高液面的活跃度,并增强钢液表面熔渣效果;减弱了下部流动,有效降低冲击深度,使结晶器内横截面上的流动变得均匀;在旋流水口条件下,结晶器上部湍流度增大,下部湍流度减小,这样的流动有利于改善结晶器上部温度的分布,促进结晶器下部夹杂物和气泡的上浮;转子位置靠近水口出口,出流的冲击深度降低,液面流动增强,因此,理论上电磁搅拌器的位置越靠近水口出口其效果越好,而在实际生产中则应考虑连铸工艺、装备和操作性等因素确定搅拌器的位置。低熔点合金的试验表明:旋转磁场能够使浸入式水口的金属液产生旋转流动。对转子叶片角度的研究表明:当叶片的角度减小到某一值时,再减小其角度,水口出口的切向速度不再增大,旋转流动对浸入式水口内壁的冲刷增强;对无量纲旋度的研究表明:旋度大于0.5时,增大旋度,对冲击深度影响不大。在电磁搅拌条件下,电磁搅拌的强度决定水口出口的切向速度和旋度,可见,电磁搅拌的强度存在一个最佳值,因此,在实际生产中应该考虑拉速等连铸操作因素确定电磁搅拌的强度。
     在双辊薄带连铸方面:采用静磁场耦合直流电对双辊薄带浸入式水口(布流器)内金属液的流动进行控制,利用水银模拟钢液,分别研究磁铁位置和电流强度对熔池内弯月面处流动以及自由液面波动的影响。结果表明:水口电磁制动技术有利于改善熔池内液面的流动,减小自由液面的波动,从而改善初始凝固的条件,有利于提高铸坯的质量,同时也为其他技术的应用提供良好的工作条件;磁体安放在距水口出口较近的位置有利于减小自由液面的波动;采用直流电耦合静磁场较只使用静磁场更有助于改善熔池内的流动,减小液面附近的流动和自由液面的波动。
The mold is the key part of the continuous caster, in which the metallurgical processes are very critical to improvement of slab quality. A lot of researches showed that most of the defects affecting steel quality in the process were closely associated with fluid flow in the mold. With increase of casting speed, both of the flow rate and flux of the flow discharged in the submerged entry nozzle (SEN) increased and the flow of liquid steel was accelerated in the mold, Moreover, the flow stability of liquid steel was deteriorated. Excessive surface velocity could entrain mold flux and cause surface level variations and fluctuations that produced surface defects. Excessive velocity of liquid steel could strengthen scouring action to the initial solidification shell, degraded the uniformity of the shell, increased the depth of the mark and deep penetration of the jet entering the mold and hindered the inclusions and bubbles float upward that produce the inter defects. Accordingly it is extremely important to study and control the flow in the mold. To solve these problems, electromagnetic techniques have been developed and applied to the continuous casting process, such as electromagnetic brake and electromagnetic stirring. In the paper, the flows in mold of the continuous casting slab, billet and two- roll strip with electromagnetic fields have been studied, and the effects of the flows on the quality of steel have been analyzed combined with the questions in the industry. The different electromagnetic fields have been applied to improving the flows in three kinds of molds according to their flow characteristics. The main studies are given as follows.
     For the high slab continuous casting, mercury was used to simulate the flow liquid steel with electromagnetic brake ruler (EMBR) and Flow Control Mold (FC-Mold), which are widely used in the industry at present. The flow in the mold and fluctuation of meniscus were measured by the DOP2000 velocimeter. The effects of magnetic fields on the flow in the mold have been analyzed. In addition, the effects of magnetic flux density and location of the magnets on the flow in the mold have been studied as well. The results showed that the flow discharged from the SEN was suppressed, both of the distribution of the kinetic energy and the turbulence intensity were changed, and the flow stability of liquid metal in the mold was enhanced. In electromagnetic brake ruler when Bmax was more than 0.29T, the surface level fluctuations were weakened, the flow at the meniscus became stable and the flow at the meniscus were improved, and at the same time the impact action of liquid metal was weakened, and the penetration depth was reduced. The Bp=0.16T in the prototype is corresponding to Bmax=0.29T in the model. So in the industry when the Bmax is more than 0.16T, it is beneficial to optimize and control the flow in the mold and improve the quality of steel. It was beneficial to improve the flow in the upper eddy, fluctuation of meniscus and stability of the flow when the magnet was located near the SEN. However, it was good to reduce the impact action and penetration depth when the magnet was far from the SEN. Hence improvement of the flow relies on many factors, e.g., continuous casting process and equipments in the industry. Compared with EMBR, it was more effective to use FC-Mold for improving the flow in the upper eddy, fluctuation of meniscus and stability of the flow. Nevertheless, it was more effective to reducing the impact action and penetration depth in the lower mold using EMBR. The experiment results showed that a magnetic field could not only damp flow, but also change the flow direction and distribute the flux of liquid steel. Thus, the flow in the mold could be improved by optimizing the distribution of magnetic field.
     For billet continuous casting, the electromagnetic swirling nozzle has been exploited on the base of straight nozzle. The physical and numerical modeling has been carried out to study the flow patterns in continuous casting billet mold using swirling flow nozzle, and the effect of electromagnetic stirring in SEN was simulated by setting a swirl blade in SEN. The results indicated that the swirling flow nozzle technique is conducive to improve the flow field in the mold, enhance the flow in the upper mold, and increase the velocity on the free surface. The activity of liquid level and the effectiveness of molten slag increased. The flow was weakened in the lower mold and the penetration depth was effectively reduced. The flow in the horizontal section became uniform. The turbulent intensity in upper mold increased and reversely the turbulent intensity in the lower mold was reduced, so it was beneficial to improve the temperature distribution in the upper mold and promote the float of inclusions and bubbles in the lower mold. When the blade was near the outlet of nozzle, the penetration depth was reduced and the flow on the free surface was enhanced. Thus, the effect is more obvious when the electromagnetic stirrer is more closely near the outlet of the nozzle theoretically, but its location should be determined according to the continuous casting process, equipments and operation parameters in the industry. The experiment results of low melting point alloys showed that the swirling flow in the SEN could be generated by the electromagnetic stirrer. Investigation of the angle of the blade showed that the tangential velocity did not increase any more when the angle of the blade was less than a certain value; the scour action to the inner wall of the nozzle was enhanced by the swirling flow. The dimensionless swirling number showed that the effect of swirling number on penetration depth was not obvious by increasing swirling number when swirling number was more than 0.5. In the case of electromagnetic stirring, the intensity of electromagnetic stirring determined the tangential velocity and swirling number at the outlet of the nozzle, and there was the optimization intensity of electromagnetic stirring. Consequently, the intensity of electromagnetic stirring should be determined according to operation parameters in continuous casting, e.g., casting speed, in the industry.
     For two roll strip casting, the flow in twin roll pool was controlled by imposing static magnetic fields coupled with direct current in the nozzle. The effects of location of magnets and intensity of electric currents on surface fluctuation and flow behaviors near the meniscus have been investigated using mercury, respectively. The experimental results showed that it was beneficial for improvement of the flow at the meniscus and the free surface fluctuation to apply the nozzle electromagnetic brake technology, which would be good for improvement of the conditions of initial solidification and the quality of steel. Additionally, it could provide good conditions for other technologies. When the magnet was placed nearer the outlet of the nozzle, it is beneficial to reduce the free surface fluctuation. The magnetic field coupled with direct current is more effective for suppression of the flow near the meniscus and the free surface fluctuation in twin-roll strip casting caster compared with only imposing a magnetic field.
引文
[1]干勇,仇圣桃,萧泽强著.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社.2001.4
    [2]蔡开科,程士富主编.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.12
    [3]冯捷,史学红主编.连续铸钢原理与工艺[M].北京:冶金工业出版社,2005.3
    [4]陈雷主编.连续铸钢[M].北京:冶金工业出版社,1994.5
    [5]史宸兴主编.实用连铸冶金技术[M].北京:冶金工业出版社,1998.6
    [6]郭戈,乔俊飞著.连铸过程控制理论与技术[M].北京:冶金工业出版社,2003.9
    [7]王雅贞,张岩,刘树国编著.连续铸钢工艺及设备[M].北京:冶金工业出版社,1999.9
    [8]殷瑞钰.新世纪以来中国连铸的发展[C].第四节发展中国家连铸国际会议论文集.北京:2008.11,4-5
    [9]Zapuskalov N. Comparison of Continuous Strip Casting With Conventional Technology [J]. ISIJ Int.,2003, v43 (8):1115-1127
    [10]Alan W. New Steel Casting Processes for Thin Slabs and Strip a Historical perspective [J]. I & SM,1988, v15 (7):45-60
    [11]杨明波,潘复生.双辊薄带连铸技术的研究现状及进展[J].铸造技术,2001,(5):42-45
    [12]Cook R, Grocock P G., Thomas P M et al. Development of the Twin Roll Casting Process [J]. J. Mater. Process. Technol.,1995, (55):76-84
    [13]祝明妹.双辊薄带连铸熔池布流系统的数理模拟研究[D].重庆大学,2002:2-3
    [14]Smith T. Nippon Steel Direct Strip Casting for Austenitic Stainless Steel [C]. Forth European Continuous Casting Conferences, Steel Times Int.,2003, (12) 38
    [15]邸洪双,刘相华,王国栋.双辊铸轧薄带钢技术的新进展[J].东北大学学报,2001,21(3): 1-9
    [16]李祖齐,邢长虎,翟启杰.双辊薄带连铸技术的研究与发展[J].铸造,2001,v50(9):518-521
    [17]徐光,徐楚韶.带钢近终形生产技术的发展概况[J].武汉冶金科技大学学报(自然科学版.1999,v22(2):125-128
    [18]张孝福.双辊式不锈钢带钢连铸技术的最新进展[J].太钢技术,2001,(2):6-17
    [19]高少平,唐晓燕,杜锋.薄带钢连铸技术发展现状及展望[J].上海金属,1997,19(2): 9-14
    [20]李启胜.薄带双辊连铸水口电磁制动与复合式电磁侧封研究[D].硕士学位论文,上海大学,2006
    [21]王晓东.薄带双辊连铸电磁侧封物理模拟实验研究[D].硕士学位论文,上海大学,2004
    [22]Nagai J, Suzuki K I., Kojima S et al. Steel Flow Control in a High Speed Continuous Slab Caster Using an Electromagnetic Brake [J]. Iron and Steel Engineer,1984,61 (5): 41-47
    [23]汪洪峰,郭振和.结晶器电磁制动技术在高效连铸中的应用[J].钢铁研究,2003,31(6): 43-44
    [24]Lei H, Zhu M Y and He J C. Optimum Position of Electromagnetic Brake on Slab Caster [J].J. Iron & Steel Res. Int.,2003,10(2):21-26
    [25]Takeuchi E. Applying MHD Technology to the Continuous Casting of Steel Slab [J]. JOM,1995,47 (5):42-45
    [26]毛斌.连铸电磁冶金技术,第四讲:板坯连铸结晶器电磁制动技术[J].连铸,1999,12:37-42
    [27]Lehman A, Tallback G, Rullgard A. Electromagnetic Braking Improves Steel Quality in Continuous Casting [J]. Continuous Casting,1996,1:4-9
    [28]Yang H L, Zhang X Z, Qiu S T et al. Mathematical Study on EMBR in a Slab Continuous Casting Process [J]. Scand. J. Metall.,1998,27:196-197
    [29]Kollberg S G, Hackl H R, Hanley P J et al. Improving Quality of Flat Rolled Products Using Electromagnetic Brake (EMBR) in Continuous Casting [J]. Iron and Steel Engineer,1996, (6):24-28
    [30]Takatani K, Nakai K, Kasai N et al. Analysis of Heat Transfer and Fluid Flow in the Continuous Casting Mold with Electromagnetic Brake [J]. ISIJ Int.,1989,29 (12): 1063-1068
    [31]Kollb S ,杜锋(译).改进板坯质量的电磁制动[J].世界钢铁,1996,(3):21-24
    [32]Ishii T. et al. The electromagnetic brake technique with level DC magnetic field-1 (development of high quality stabilization technology of the continuous caster-8) [J]. CAMP-ISIJ,1996, (9):206
    [33]Ishii T. et al. The electromagnetic brake technique with level DC magnetic field-2 (development of high quality stabilization technology of the continuous caster-9) [J]. CAMP-ISIJ,1996,(9):207
    [34]Hanada H, Takeuchi E, Sese M et al. Effect of density difference of molten steels on the mixing in strand pool in the sequential casting of different steel grades with a level DC magnetic field [J]. CAMP-ISIJ,1999, (12):830
    [35]Yamamura H, Toh T, Harada H et al. Optimum Magnetic Flux Density in Quality Control of Casts with Level DC Magnetic Field in Continuous Casting Mold [J]. ISIJ Int.,2001,41 (10):1229-1235
    [36]李宝宽,赫冀成.电磁制动法缩短钢坯过渡段的数值模拟[J].东北大学学报(自然科学板),1997,18(5):541-545
    [37]Zeze M, Tanaka H, Takeuchi E et al. Continuous Casting of Clad Steel Slab with Level Magnetic Field Brake [C]. Seventy Ninth Conference of the Steelmaking Division of the Iron and Steel Society; Pittsburgh, Pennsylvania; USA; 24-27 Mar.1996:225-230
    [38]Lehman A F, Tallback G R and Rollberg S G. Fluid Flow Control in Continuous Casting Using Various Configuration of Static Magnetic Fields [C]. The 1st International Symposium on Electromagnetic Processing of Materials, Nagoya:ISIJ, 1994:372
    [39]Kariya K, Kitana Y, Kuga M et al. Development of Flow Control Mold for High Speed Casting Using Static Magnetic Fields [C].77th Steelmaking Conference Proceedings, Chicago:The Iron and Steel Society,1994:53
    [40]Kariya K, kitano Y, Kuga M et al. Development of Flow Control Mold for High Speed Using Static Magnetic Fields [C]. Steelmaking Conference. Vol.77; Chicago, IL; USA; 20-23 Mar.1994:53-58.
    [41]Molten Steel Flow Control System in Mold by Electromagnetic Force [J].JFE Technical Report No.3,2004:p.72-73
    [42]Pavlicevic M, Codutti A, Kapaj N et al. Experimental Verification of Liquid Metal Flow Redirection in Mould for Slab Continuous Casting Process by a New Innovative Concept of Electromagnetic Brake [C]. Proceedings of the Electromagnetic Processing of materials International Conference, Shanghai,China,2003
    [43]王军,王宏静,刘杰.连铸工艺中的电磁技术[J].宽厚板,2000.6(3):18-21
    [44]何达,毛斌,荣陞.板坯连铸结晶器全幅二段和全幅三段电磁制动钢水流动的数值模拟[J].钢铁,1999.10(34,增刊):598-600
    [45]张森林,陈伟庆,牛基仁等编著.连铸电磁搅拌600问[M].北京:中国科学技术出版社,2007
    [46]赵继宇,李已根,刘东夫等.武钢-炼钢厂方坯连铸二冷电磁搅拌工艺试验小结[C].第二届全国电磁搅拌技术研讨会论文集,中国金属学会连铸学会,庐山,1998:3
    [47]韩至成.电磁冶金学北京[M],冶金工业出版社:2001,99
    [48]熊毅刚.板坯连铸[M],北京:冶金工业出版社,1994,125
    [49]李爱武.舞钢板坯二冷区电磁搅拌器设计与制造[C].第二届全国电磁搅拌技术研讨会论文集,中国金属学会连铸学会,庐山,1998:11
    [50]毛斌,王世郁,王新国等.舞钢板坯二冷区电磁搅拌器的参数及其性能[C].第二届全国电磁搅拌技术研讨会论文集,中国金属学会连铸学会,庐山,1998:121
    [51]Kumstreich S, Nove M C.小方坯和大方坯电磁连铸(EMS)技术现状和指南[C].第二届全国连铸电磁搅拌技术研讨会论文集,九江:中国金属学会连铸分会,1998:46-69
    [52]Tani M, Toh T,Takeuchi E et al. Electromagnetic Shaping for the Control of Initial Solidification in Continuous Casting [C].The 2nd International Symposium on Electromagnetic Processing of Materials, Pairs,1997:52-55
    [53]Vives C. Electromagnetic refining of aluminum alloys by the CREM process:Part Ⅰ. Working principle and metallurgical results [J]. Metall. Trans. B,1989,20 (10): 623-629
    [54]Takeuchi E, Zeze M, Toh T et al. Applied MHD in the Process of Continuous Casting [C]. Magnetohydrodynamics in Process Metallurgy; San Diego, California; USA,1992: 189-202.
    [55]Morishita M, Nakata H, Ayata K et al. Meniscus Shape and Flow in an Electromagnetic Mould [C]. Magnetohydrodynamics in Process Metallurgy; San Diego, USA,1992: 267-272
    [56]Cho Y W, Oh Y J, Chung S H et al. Mechanism of Surface Quality Improvement in Continuous Cast Slab with Rectangular Cold Crucible Mold [J]. ISIJ Int.,1998,38 (7): 723-729
    [57]Yoshida N, Furuhashi S, Tanaka Y. Newly designed stiff EMC Mold with imposition of super-high frequency electromagnetic Field [C]. Proceeding of the 3rd International Symposium on EPM. Japan:Nagoya, ISIJ,2000:388-391
    [58]徐广隽,赫冀成.内置式软接触结晶器[P].中国专利:00110073.4,2000
    [59]任忠鸣,邓康,周月明,蒋国昌.软接触电磁连铸结晶器[P].中国专利:96222452.9,1996
    [60]Kim H Y, Park J P, Jeong H T et al. Continuous Casting of Billet with High Frequency Electromagnetic Field [J]. ISIJ Int.,2002,42 (2):171-177
    [61]Cha P R, Hwang Y S, Oh Y J et al. Numerical Analysis on Cold Crucile Using 3D H-φ Method and Finite Volume Method with Non-staggered BFC Grid System [J]. ISIJ Int.,1996,36 (6):1157-1165
    [62]Yoon J K, Cha P R, Hwang Y S et al.3D Numerical Analysis on Electromagnetic and Fluid Dynamic Phenomena in a Soft Contact Electromagnetic Slab Caster [C]. Proceeding of International Symposium on EPM, Paris,1997:533-537
    [63]邓康,,任忠鸣,蒋国昌.软接触电磁连铸的数值模拟和实验分析[J].金属学报,1999,35(10):1112-1116
    [64]邓康,周月明,任忠鸣等.水冷柑祸悬浮熔炼过程电磁场数值分析[J].中国有色金属学报,1997,7(S1):100-105
    [65]董杰,刘晓涛,赵志浩等.结晶器材料对低频电磁铸造超高强铝合金铸态组织的影响[J].金属学报,2004,40(2):215-219
    [66]Jia F, Jin J Z, Zhang X G et al. Effect of Middle Frequency Electromagnetic Field on Surface Quality of Continuous Casting Aluminum Alloy Ingot [J]. Journal of Dalian University of Technology,2003,43 (3):305-310
    [67]Park J P, Kim H Y, Jeong H T et al. Continuous Casting of Steel Billet with High Frequency Electromagnetic Field [J]. ISIJ Int.,2003,43 (6):813-819
    [68]Sumi I, Shimizu H, Nishioka S et al. Initial Solidification Control of Continuous Casting Using Electromagnetic Oscillation Method [J]. ISIJ Int.,2003,43 (6): 807-812
    [69]Kolesnichenko A F, Podoltsev A D and Kucheryavaya I N. Action of Pulse Magnetic Field on Molten Metal [J]. ISIJ Int.,1994,34 (9):715-721
    [70]Su Z J, Iwai K and Asai S. Characteristics of Liquid Metal Motion Driven by Quasi-sinusoidal Magnetic Fields [J]. ISIJ Int.,1999,39 (12):1224-1230
    [71]张志峰,李廷举,金俊泽.复合电磁场作用下连铸金属液弯月面运动规律的热模拟研究[J].金属学报,2001,37(9):975-979
    [72]钱忠东,李本文,李东辉等.电磁连铸复合式结晶器内钢液流场的数值模拟[J].金属学报,2001,37(11):1223-1227
    [73]雷作胜.连铸坯表面振痕形成机理及其电磁控制技术[D].上海大学,2004,7
    [74]Lei Z S, Ren Z M, Deng K et al. Amplitude-modulated Magnetic Field Coupled with Mold Oscillation in Electromagnetic Continuous Casting [J]. ISIJ Int.,2006,46 (5): 680-686
    [75]Hintikka S, Konttinen J, Leiviska K et al. Optimization of Molten Steel Flow in Continuous Casting Mold [C]. Steelmaking Conference Proceedings. Vol.75; Toronto, Ontario; Canada; 5-8 Apr.1992,887-891
    [76]Choudhary S K and Mazumdar D. Mathematical Modelling of Transport Phenomena in Continuous Casting of Steel [J]. ISIJ Int.,1994,34 (7):584-592
    [77]Szekely J and Yadoya R T. The physical and mathematical modeling of the flow field in the mold region in continuous casting systems:Part II. The mathematical representation of the turbulent flow field [J]. Metall. Trans.,1973,4 (5):1379-1388
    [78]Thomas B G, Yuan Q, Sivaramakrishnan S et al. Comparison of Four Methods to Evaluate Fluid Velocities in a Continuous Slab Casting Mold [J]. ISIJ Int.,1994,41 (10):1262-1271
    [79]Panaras G A, Theodorakakos A and Berggeles G. Numerical investigation of the free surface in a continuous steel casting mold model [J]. Metall. Trans. B,1998,29 (5): 1117-1126
    [80]Sivaramakrishnan S, Bai H, Thomas B G et al. Transient Flow Structures in Continuous Casting of Steel [C].83rd Steelmaking Conference Proceedings (Iron and Steel Society),2000.83:541-557
    [81]钱忠东,吴玉林.连铸结晶器内钢液涡流现象的大涡模拟及控制[J].金属学报,2004,40(1):88-93
    [82]张兆顺,崔桂香,许春晓编著.湍流理论与模拟[M].北京:清华大学出版社,2005,9
    [83]Launder B E, Spalding D B. Numerical Computation of Turbulent Flows [J]. Computer Methods in Applied Mechanics and Engineering B,1974,3 (2):269-289
    [84]Thomas B G, Mika L J and Najjar F M. Simulation of fluid flow inside a continuous slab-casting machine [J]. Metall. Trans. B,1990,21 (4):387-399
    [85]Choudhary SK, Mazumdar D and Ghosh A. Mathematical Modelling of Heat Transfer Phenomena in Continuous Casting of Steel [J]. ISIJ Int.,1994,33 (7):764-774
    [86]Anagnostopoulos J and Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model [J]. Metall. Trans. B,1999.30 (6): 1095-1105
    [87]Theodorakakos A and Bergeles G. Numerical investigation of the interface in a continuous steel casting mold water model [J]. Metall. Trans. B,1998.29 (6): 1321-1327
    [88]Grimm B, Andrzejewski P, Muller K. Inclusions in continuously cast steel slabs-numerical model and validation [J]. Steel research,1999.70(10):420-429
    [89]Lawson N J and Davidson M R. Crossflow Characteristics of an Oscillating Jet in a Thin Slab Casting Mould [J]. J. Fluids Eng.,1999,121 (3):588-595
    [90]Lawson N J and Davidson M R. Oscillatory Flow in a Physical Model of a Thin Slab Casting Mould with a Bifurcated Submerged Entry Nozzle [J]. J. Fluids Eng.,2002, 124 (2):535-563
    [91]Davidson M R and Lawson N J. Numerical Prediction of Submerged Oscillating Jet Flow [C]. Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia,1999,12:223-227
    [92]沈巧珍,严友梅.小方坯连铸结晶器内钢液三维流场的计算[J].钢铁,1990,25(9):22-25.
    [93]于会香,张炯明,王万军等.板坯连铸浸入式水口出口速度对结晶器流场影响的数值模拟[J].北京科技大学学报,2002,25(5):492-496
    [94]李宝宽,赫冀成,贾光霖等.薄板坯连铸结晶器内钢液流场电磁制动的模拟研究[J].金属学报,1997,33(11):1207-1214
    [95]李宝宽,霍慧芳,栾叶君.流动控制结晶器内磁场和吹氩对夹杂物粒子群运动的影响[J].金属学报,2003,39(9):932-937.
    [96]王东,胡坤太,仇圣桃等.方坯连铸结晶器电磁搅拌磁场的数值模拟[J].钢铁研究学报,2006,18(4):10-14.
    [97]雷霆,何俊范.不锈钢方坯连铸结晶器内夹杂物行为的研究[J].云南冶金,1989,6:30-37
    [98]李伟,贺友多.连铸结晶器内三维流场的研究[J].包头钢铁学院学报。1993。12(3):43-49
    [99]李伟贺友多.小方坯铸二冷区电磁搅拌处液相穴内的流场计算[J].炼钢。1993。9 (6):31-34.
    [100]张胤,贺友多,白学军等.水口插入深度对连铸机结晶器内钢液流动的影响[J].炼钢,2001,17(2):52-54
    [101]范洁川等.近代流动显示技术[M].北京:国防工业出版社,2002,1
    [102]Gupta D and Lahiri A K. Water-Modeling Study of the Surface Disturbances in Continuous Slab Caster [J]. Metall. Mater. Trans. B,1994,25 (2):227-233.
    [103]Gupta D and Lahiri A K. Cold model study of the surface profile in a continuous slab casting mold:Effect of second phase [J]. Metall. Mater. Trans. B,1996,27 (4): 695-697
    [104]Honeyands T and Herbertson J. Flow dynamics in thin slab caster moulds [J]. Steel Research,1995.66(7):p.287-293.
    [105]Odenthal H J, Pfeifer H, Lemanowicz I et al. Simulation of the submerged energy nozzle-mold water model system using laser-optical and computational fluid dynamics methods [J]. Metall. Mater. Trans. B,2002,33 (2):163-172
    [106]Lawson N J and Davidson M R. Self-Sustained Oscillation of a Submerged Jet in a Thin Rectangular Cavity [J]. Journal of Fluids and Structures,2001,15:59-81.
    [107]Sanchez-Perez R, Morales R D, Diaz-Cruz M et al. A Physical Model for the Two-phase Flow in a Continuous Casting Mold [J]. ISIJ Int.,43 (5):637-646
    [108]Sanchez-Perez R, Garcia-Demedices L, Ramos J P et al. Dynamics of coupled and uncoupled two-phase flows in a slab mold [J]. Metall. Mater. Trans. B,2004,35 (1): 85-99
    [109]Bai H and Thomas B G. Effects of clogging, argon injection, and continuous casting conditions on flow and air aspiration in submerged entry nozzles [J]. Metall. Mater. Trans. B,2001,32 (4):707-722
    [110]Bai H and Thomas B G. Bubble formation during horizontal gas injection into downward-flowing liquid [J]. Metall. Mater. Trans. B,2001,32 (6):1143-1159
    [111]Thomas B G and Zhang L F. Mathematical Modeling of Fluid Flow in Continuous Casting [J]. ISIJ Int.,2001,41 (10):1181-1193
    [112]Iguchi M, Tokunaga H and Tatemichi H. Bubble and liquid flow characteristics in a wood's metal bath stirred by bottom helium gas injection [J]. Metall. Mater. Trans. B, 1997,28 (6):1053-1061
    [113]Iguchi M, Demoto Y, Sugawara N et al. Bubble Behavior in Hg-Air Vertical Bubbling Jets in a Cylindrical Vessel [J]. ISIJ Int.,1992.32 (9):998-1005.
    [114]Iguchi M, Kawabata H, Nakajima K et al. Measurement of bubble characteristics in a molten iron bath at 1600 ℃ using an electroresistivity probe [J]. Metall. Mater. Trans. B,1995.26(1):67-74
    [115]岳峰,包燕平,刘国林等.板坯连铸机浸入式水口的结构优化[J].炼钢,2004,20(2):51-54
    [116]雷洪,许海虹,朱苗勇等.高速连铸结晶器内卷渣机理及其控制研究[J].钢铁,1999,34(8):20-23.
    [117]朱苗勇,王军,雷洪等.连铸结晶器内钢水卷渣的机理与控制[J].钢铁,1999,34(8):20-23
    [118]张胜军,朱苗勇,张永亮等.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J].金属学报,2006,42(10):1087-1090.
    [119]陈永范,陈德杰,李权.大板坯连铸结晶器内流场实验研究[J].炼钢,1998.14(2):25-28
    [120]Najjar F M, Thomas B G. and Hershey D E. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting [J]. Metall. Mater. Trans. B,1995,26 (4):749-765
    [121]Bai H and Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles:Part Ⅰ. model development and validation [J]. Metall. Mater. Trans. B, 2001,32 (2):253-267
    [122]Bai H and Thomas B G. Turbulent flow of liquid steel and argon bubbles in slide-gate tundish nozzles:Part Ⅱ. Effect of operation conditions and nozzle design [J]. Metall. Mater. Trans. B,2001,32 (2):269-284
    [123]Yokoya S, Asako Y, Hara S et al. Control of Immersion Nozzle Outlet Flow Pattern through the Use of Swirling Flow in Continuous Casting [J]. ISIJ Int.,1994.34(11): 883-888.
    [124]Yokoya S, Westoff R, Asako Y et al. Numerical Study of Immersion Nozzle Outlet Flow Pattern with Swirling Flow in Continuous Casting [J]. ISIJ Int.,1994.34(11): 889-895.
    [125]Yokoya S, Takagi S, Iguchi M et al. Swirling Effect in Immersion Nozzle on Flow and Heat Transport in Billet Continuous Casting Mold [J]. ISIJ Int.,1998,38(8):827-833
    [126]Yokoya S, Takagi S, Kaneko M et al. Swirling Flow Effect in Off-center Immersion Nozzle on Bulk Flow in Billet Continuous Casting Mold [J]. ISIJ Int.,2001. 41(10):1215-1220.
    [127]Kholmatov S, Takagi S, Jonsson L et al. Development of Flow Field and Temperature Distribution during Changing Divergent Angle of the Nozzle When Using Swirl Flow in a Square Continuous Casting Billet Mould [J]. ISIJ Int.,2007.47(1):80-87.
    [128]Tsukaguchi Y, Nakamura O, Yokoya S et al. Design of Swirling Flow Submerged Entry Nozzles for Optimal Head Consumption between Tundish and Mold [J]. ISIJ Int.,2007. 47(10):1436-1443.
    [129]Yokoya S, Takagi S, Iguchi M et al. Swirling Flow Effect in Immersion Nozzle on Flow in Slab Continuous Casting Mold [J]. ISIJ Int.,2000.40(6):578-583.
    [130]Yokoya S, Takagi S, Tada K et al. Swirling Flow Effect in Bottomless Immersion Nozzle on Bulk Flow in High Throughput Slab Continuous Casting Mold [J]. ISIJ Int., 2001.41(10):1201-1207.
    [131]Yokoya S, Takagi S, Ootani S et al. Swirling Flow Effect in Submerged Entry Nozzle on Bulk Flow in High Throughput Slab Continuous Casting Mold [J]. ISIJ Int.,2001. 41 (10):1208-1214
    [132]Yokoya S, Takagi S, Iguchi M et al. Swirling flow control in immersion nozzle for Continuous Casting process [J]. ISIJ Int.,2001.41:S47-S51
    [133]陈芝会,王恩刚,赫冀成.板坯连铸结晶器电磁制动技术及其应用[J].炼钢,2004,6(20),48-52
    [134]Moon K H, Shin H K, Kim B J et al. Flow Control of Molten Steel by Electromagnetic Brake in Continuous Casting Mold [J]. ISIJ Int.,1996,36 (Supplement):201
    [135]Zeze M, Harada H, Takeuchi E et al. Application of DC Magnetic Field for the Control of Flow in the Continuous Casting Strand [C].76th Steelmaking Conference Proceedings, Ed:Rote. T.A,Dallas, The Iron and Steel Society,1993:267
    [136]Hwang Y S, Cha P R, Nam H S et al. Numerical Analysis of the Influences of Operational Parameters on the Fluid Flow and Meniscus Shape in Slab Caster with EMBR [J]. ISIJ Int.,1997,36 (7):659-667
    [137]Morishita M, Miyake T, Tokunaga H et al. Electromagnetically Controlled Upward Pouring of the Continuous Casting Mold [C]. International Symposium on Electromagnetic Processing of Materials. Nagoya, ISIJ,1994:402-407.
    [138]Ha M Y, Lee H G and Seong S H. Numerical Simulation of Three-dimensional Flow, Heat Transfer, and Solidification of Steel in Continuous Casting Mold with Electromagnetic Brake [J]. Materials Processing Technology,2003,133:322-329
    [139]Takatani K. Effects of Electromagnetic Brake and Meniscus Electromagnetic Stirrer on Transient Molten Steel Flow at Meniscus in a Continuous Casting Mold [J]. ISIJ Int., 2003,43 (6):915-922.
    [140]Takatani K, Nakai K, Kasai N, T et al. Analysis of heat transfer and fluid flow in the continuous casting mold with electromagnetic brake [J]. ISIJ Int.,1989,29 (12): 1063-1068.
    [141]Kim D S, Kim W S and Cho K H. Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake [J]. ISIJ Int.,2000,40 (7):670-676
    [142]Cukierski K and Thomas B G.. Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs [J]. Metall. Mater. Trans. B,2008,39 (2):94-107
    [143]Harada H, Toh T, Ishii Tet al. Effect of Magnetic Field Conditions on the Electromagnetic Braking Efficiency [J]. ISIJ Int.,2001,41 (10):1236-1244
    [144]Li B K and Tsukihashi F. Effects of Electromagnetic Brake on Vortex Flows in Thin Slab Continuous Casting Mold [J]. ISIJ Int.,2006,46(12):1833-1838
    [145]Qian Z D, Wu Y L. Large Eddy Simulation of Turbulent Flow with the Effects of DC Magnetic Field and Vortex Brake Application in Continuous Casting [J]. ISIJ Int., 2004,44 (1):100-107
    [146]陈芝会,王恩刚,张兴武等.静磁场对吹氩结晶器内弯月面行为的影响.金属学报,2007,43(4),422-426
    [147]刘光穆.EMBr对CSP结晶器内冶金过程和铸坯质量的影响[D].博士学位论文,上海大学,2005
    [148]Idogawa A, Kitano Y and Tozawa H. Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Field Covering Whole Width [J]. Kawaki Steel Technocal Report,1996,10 (35):74-81
    [149]Li B K, Okane T and Umeda T. Modeling of molten metal flow in a continuous casting process considering the effects of argon gas injection and static magnetic-field application [J]. Metall. Mater. Trans. B,2000,31 (6):1491-1503
    [150]于海岐,朱苗勇.板坯结晶器电磁制动和吹氩过程的钢/渣界面行为[J].金属学报,2008,9(11):1141-1148
    [151]黄军涛,赫冀成.方坯结晶器电磁制动夹杂物运动轨迹的数值模拟[J].东北大学学报(自然科学版),2000,21(1)97-99
    [152]钱忠东.组合式电磁连铸结晶器内磁场、流场及异相迁移行为的数值模拟[D].博士学位论文,东北大学,2002
    [153]徐广隽.电磁连铸结晶器的磁场型式及其对钢液流动控制效果的研究[D].博士学位论文,东北大学,1999
    [154]Iguchi M, Takeuchi M, Kawabata H et al. Development of a Karman Vortex Probe for Measuring the Velocity of Molten Metal Flow [J]. Materials Transactions, JIM,1994, 35 (10):716-721
    [155]Iguchi M, Kawabata H et al. A New Probe for Casting Mold Directly Measuring Flow Velocity in a Continuous [J]. ISIJ Int.,1996,36 (S):190-193
    [156]贾光霖.液态金属运动二维测速装置[P].中国专利:91222597,1991-01-11
    [157]Lee H C, Evans J W and Vives C. Velocity Measurement in Wood's Metal Using an Incorporated Magnet Probe [J]. Metall. Mater. Trans. B,1984,15 (4):734-736
    [158]Vives C. and Ricou R. Fluid Flow Phenomena in a Single Phase Coreless Induction Furnace [J]. Metall. Mater. Trans. B,1985,16 (2):227-235
    [159]饭田孝道,格斯里编著,冼爱平,王连文译.液态金属的物理性能[M].北京:科学出版社,2006.1
    [160]蔡开科.浇注与凝固[M].北京:冶金工业出版社,1987
    [161]韩占忠,王敬,兰小平编.FLUENT-流体工程仿真实例与应用[M].北京:北京理工大学出版社,2004.6
    [162]董志勇编著.射流力学[M].北京:科学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700