薄带连铸侧封材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双辊薄带连铸工艺以其低能耗、短流程、高速度、低成本的特点顺应了当今钢铁行业发展的趋势,受到世界钢铁企业的广泛关注。钢铁界的专家一致认为双辊薄带连铸技术的工业化应用将会给钢铁生产带来革命性的变革,对钢铁材料生产具有划时代意义。目前,该技术的开发过程中出现产品质量差和工艺不稳定现象,这极大地制约了该技术的产业化。侧封材料就是导致这种现象出现的影响因素之一。为此,本文在宝钢研究院和上海交大材料学院支持下针对新型侧封材料的成分和制备工艺进行了实验研究和理论研究。
     本文使用2031.3000.010压力测试系统和FV-700型维氏硬度计对材料进行了力学性能测试;使用LFA427激光导热仪、在STA449C/6/GJupiter热分析仪和Dil402e/7/FSO热膨胀测定仪测定了材料的热学性能;在箱式电阻炉和热震炉中测试材料的热稳定性和抗氧化性;用SEM,XRD等手段得到材料物相成分和微观结构。通过对试验结果分析得到以下结论:
     ZBS系列材料中,BN的含量增加时材料的致密度降低,力学性能变差而热稳定性提高。在BN含量为40%时材料的综合性能达到最佳。
     ZBS系列材料的力学性能,抗氧化性均随着原料中Si的加入量呈先升高后后降低的趋势。在材料原料中的Si含量为3wt%时材料的总体性能最好。分析认为这是由于加入适量的Si反应后得到SiC对材料起增强作用还可以在材料氧化过程中在材料表面形成氧化膜有效的减缓了材料的氧化。同时Si的加入使得材料的致密度下降,显气孔率升高,使其力学性能和抗氧化性均变差。在Si含量在7wt%到11wt%时这种负作用最明显。
     ZBT系列材料在烧结过程中有Ti(C、N)生成。材料的微观组织呈疏松的花样叠片状。材料原料中Ti含量增加后材料的致密度降低而力学性能变差。ZBT材料的抗氧化性差在15000C氧化一小时即完全变形。
     相对于ZBT,ZBC系列材料ZBS系列材料的综合性能最好。ZBS系列材料中ZBS3的热膨胀系数和导热系数可以分别达到3.7×10-60C-1和5.3W/(m*K),两项指标均优于国外热压烧结工艺制备的侧封材料。
Twin-roll continuous strip casting process has received many attentions from the steel producers all of the world for its low energy consumption、short procedure、high speed and low production cost which conformed to the developing trend.
     The experts of steel industry have all recognized that the commercial application of the twin-roll continuous strip casting process will lead to a revolution to steelmaking and become a landmark event for this field. However, the poor quality of casting strip and process stability happened in the research hindered its industrial application. The side dam materials become one of the main defect. Accordingly, this paper dealed with the experimental and theoretical investigations on composition design and production process of new side dam materials with the support of SJTU and BAOSTEEL.
     The mechanical properties of the side dam material is tested by 2031.3000.010 stress test system and FV-700Vicker's hardness tester;the thermal properties are tested by LFA427 Laser conductometer、STA449C/6/GJupiter thermal analyzer and Dil402e/7/FSO RPY;The thermal stability and inoxidizability are tested in chamber electric oven and thermal shock oven.; the phases and microstructures are tested by XRD and SEM.
     In ZBS materials , increasing the content of BN will decrease the density ,worsen the mechanical properties and improve the thermal stability that the optimum combination properties are abtained when the BN content is 40% .
     The ZBS Materials exhibit a trend that with the increase of BNwt% ,the mechanical property and inoxidizability increase first then decrease ,which showing the best combination property on the point of 3wt%BN. The analyses indicate that adding a proper amount of Si to the raw materials can get SiC in sintering process, which can strengthen the matrix and form compact oxide film on the surface after oxidation reaction. The film hinders the oxidation of the ZBS material effectively. However, the Si will decease the density of ZBS and increase the apparent porosity,which result a poor mechanical property and inoxidizability. The Ill effects are most significant when the Siwt% is between 7% and 11%.
     T(iC、N)is attained in sintering process of ZBT. The microstructure displays a shape of porous petals. With the increasing of Ti in raw material,the density and mechanical property decrease sharply. The inoxidizability of ZBT is so poor that the material lose its shape after oxidation for 1h at 15000C.
     Compared with ZBC and ZBT ,the ZBS materials have the best combination properties.The thermal expansion coefficient and thermal conductivity of ZBS3 reach 3.7×10-6 0C-1and 5.3W/(m*K)respectively which is superior to those of other side dam materials produced by hot press process in other countries.
引文
[1]高少平,唐晓燕,杜锋,薄带连铸技术发展的现状及展望,上海金属,1997,19, 9-13
    [2]闫欣,王贺利,雷作胜,等,双辊薄带连铸技术发展,山西冶金,2006,3,3-5
    [3]孟繁德,施红家,带钢近终形连铸的开发和应用,上海钢研,1999,6,41-48
    [4]甘芳菲,薄带连铸用侧封材料的发展,世界钢铁,2006,6,1-4
    [5]干勇,仇圣桃,萧泽强,连续铸钢过程数学物理模拟,北京,人民交通出版社,2001,53-54
    [6] Zapuskalov,Nikolai,Comparison of Continuous Strip Casting With Con ventional Technology,ISIJ International,2003,43,1115-1127
    [7]易于,硅钢双辊薄带连铸工艺及组织研究[学位论文],重庆,重庆大学,2006
    [8]祝明妹,双辊薄带连铸熔池布流系统的数理模拟研究[学位论文],重庆,重庆大学,2002
    [9] Chris R.Killmore,Andrew Philips,Harold Kaul,Development of Ultrathin Cast Strip Products by the CASTRIP Process,Iron & Steel Technology ,2007,10,90-105
    [10]鲍培玮,双辊铸轧薄带钢侧封技术研究,[学位论文],沈阳,东北大学,2003
    [11]陈圣波,气体约束液态金属成形的试验研究[学位论文],上海,上海大学,2004
    [12]温宏权,张永杰,鲍培玮,等,双辊薄带钢铸轧熔池电磁侧封模拟试验.铸造技术,2003,24,234-235
    [13] Kawachi,Asai.Confinement of Molten Puddle in a T win Roll Caster by Use of an Electomagnetic Dam Combining a Solid Dam .ISIJ International,1992,10,27-33
    [14] Kawachi,Masayuki,Asai. Shape Control of Molten Metal Puddle by Directly Imposi ng Electric Field between Roll and Magnetic Field in the Casting Direction in T win Roll Pr ocess.ISIJ International,1992,77(9 ),1434-1440
    [15] JIYOOJI CHIYUA,Side dam plate for strip casting,Japanese,Invention Patent ,08164452A,1996-04-09
    [16] Nose,Tetsuro,Takeuchi,Ceramic plates for side dams of twin-drum continuous strip casters,US,Invention Patent ,7208433,2007-4-24
    [17] Sindlhauser,Peter,Klaus, etc, Pressure-sintered polycpystalline mixed materialswith a base of hexagonal boron nitride,oxides and carbides,US,Invention Patent, 4885264,1989-12-05
    [18] Cuillo,Philippe,Hoggard,etc,Composite materia,US,Invention Patent,6667263,2003-12-23
    [19] Krolikowski,Cathryn R,Articles for casting applications comprising ceramic composite and methods for making articles thereof , US , Invention Patent ,7098159.2006-8-29
    [20] Takeuchi,Tomohide,Kono,etc,Ceramic plate for side weir of twin-drum type continuous casting apparatus, US,Invention Patent,6843304,2005-1-18
    [21] Y .K. Shin,T .Kang,T .Reynolds, etc,Development of twin roll strip caster for sheet steel,Iron making and Steelmaking,1995, 22 (1),3 5-44
    [22]徐金璋,国外双辊薄带连铸工艺研究近况,上海钢研,1996, 2,49-56
    [23]何俊范,钢铁材料的近终形连铸连轧技术新进展,四川冶金,1995,3,37-40
    [24] P .Foumier, F .Platen,Wear of refractory ceramics against nickel, Wear,2000 ,244(2),180-125
    [25]吴卫平,双辊薄带连铸设备的侧封技术研究,上海钢研,1996,6,36-40
    [26]李永全,方圆,施红家,等,熔融石英质侧封板的研制和使用,耐火材料,2005,39(3),229-230
    [27]吕光荣,薄带连铸几项关键技术及解决方案,上海宝钢工程技术设计,2002,3,54-63
    [28]李朝锋,邸洪双,刘相华,等,双辊铸轧薄带钢侧封板磨损机理及热应力分析,东北大学学报,2002,23(7),674-678
    [29]陶连印,郑学家,硼化合物的生产与应用,成都,成都科技大学出版社, 1992,113-115
    [30] K.M.Taylor,Hot Pressed Boron Nitride, Industrial and Engineering Chemistry,1955 , 47(12),2506-2509
    [31]李洪波,h-BN基陶瓷燃烧合成研究[学位论文],哈尔滨,哈尔滨理工大学,2004
    [32] Jin.xuejun,Martensitic transformation in zirconia containing ceramics and its applications,Current Opinion in Solid and Materials Science,2005,9,313-318
    [33]钦征骑,钱杏南,贺盘发,新型陶瓷材料手册,江苏,江苏科技出版社,1995,1-5
    [34] M.V.斯温,材料科学技术丛书(第11卷)-陶瓷的结构与性能,北京,科学出版社,1998,92-102
    [35] R.C.Garvie,R.H.J.Hannink,R.T.Pasoe,Ceramic steel,Nature,1975,258,703-704
    [36] E.Tani,Revised phase diagram of the system CeO2-ZrO2 Below 1400℃,J.Am.Ceram.Soc,1983,66(7),506-510
    [37] M.Nauer,Low-temperature sinter forging of nanostructure Y-TZP and Y-Ce-TZP,J.Am.Ceram.Soc,1995,78,121-126
    [38]周玉,雷廷权,陶瓷材料学,哈尔滨,哈尔滨工业出版社,1995,163-166
    [39]金志浩,高积强,乔冠军,工程陶瓷材料,西安,西安交通大学出版社,2000,218-221
    [40] A.G.Evans , R.M.Canon , Toughening of Brittle Solids by Martensitic Transformations,Acta Metallurgica,1986,34(5),761-800
    [41]邓建新,李兆前,艾兴,晶须增韧陶瓷基复合材料的进展,材料导报,1994,5,72-75
    [42]张国军,金宗哲,颗粒增韧陶瓷的增韧机理,硅酸盐学报,1994,22(3),259-269
    [43]赵宏,金宗哲,颗粒增强复合陶瓷残余应力和增韧机制分析,硅酸盐学报,1996,24(5),491-497
    [44]陈德勇,黎俊初,闵嗣林,等,ZrO2-Al2O3两相陶瓷复合材料力学性能与增韧机制分析
    [45] Zhang.Xinghong,Zhang.Rubing,Chen.guiqing,etc,Microstucture、mechanical properties and thermal shock resistance of hot-pressed ZrO2(3Y)-BN composites,Materials Science and Engineer A,2008,1,1-5
    [46]李文超,文洪杰,杜雪岩,新型耐火材料理论基础-近代陶瓷复合材料的物理化学设计,北京,地质出版社,2001,247-248
    [47]李永全,方圆,氮化硼氧化锆复合材料的热压烧结,上海金属,2005,27(3),6-8
    [48] Li.Yongli,Zhang.Jiuxing,Qiao.Guanjun,etc,Fabrication and properties of machinable 3Y–ZrO2/BN nanocomposites,Materials Science and Engineering A ,2005,397,35-40
    [49] Jin.Haiyun,Xu.Hui,Qiao.Guanjun,etc,Study of machinable silicon carbide-boron nitride ceramic composites,Materials Science and Engineering A,2008,483,214-217
    [50] ZANGVIL AVIGDOR,RUH ROBERT,Solid Solutions and Composites in the SiC-AlN and SiC-BN System,Materials Science and Engineering,1985,71,159-164
    [51] Li.Dongyun,Qiao.Guanjun,Jin.Zhihao,R-curve behavior of laminated SiC/BN ceramics,Ceramics International ,2004,30,213-217
    [52] G.J.Zhang,J.F.Yang,T.Ohji,In situ Si3N4-SiC-BN composites:preparation,microstructures and properties,Materials Science and Engineering A,2002,328,201-205
    [53] Yang Zhihua,Jia Dechang,Zhou Yu,Oxidation resistance of hot-pressed SiC-BN composites,Ceramics International,2002,34,317-321
    [54] G.J.zhang,Y.Beppu,T.Ohji,etc,Reaction mechanism and microstructure development of strain tolerant in situ SiC-BN composites,Acta mater,2001,49,77-82
    [55] Zh.Ding,R.Oberacker,H.Frei,etc,Consolidation of Y-TZP/SiC Particulate Composites by Sintering and Containerless Post-HIPing,Journal of the European Ceramic Society,1992,10,255-261
    [56] Zh.Ding,R.Oberacker,F.Thummler,Microstructure and Mechanical Properties of Yttria-Atabilised Tetragonal Zirconia Polycrystals(Y-TZP)Containing Dispersed Silicon Carbide Particles,Journal of the European Ceramic Society,1993,12,377-383
    [57] Zhou Yu,Zhu Weizhong,Lei Tingchuan,Mechanical Properties and Toughening Mechanisms of SiCw/ZrO2(6%molY2O3) Ceramic Composites,Ceramics International,1992,18,141-145
    [58] K.Haberko,W.Pyda,Z.Pedzich,etc,A TZP matrix composites with in situ grown TiC inclusions,Journal of European Ceramic Society,2000,20,2649-2654
    [59] Zbigniew Pedzich,Krzysztof Haberko,Jan Piekarczyk,etc,Zirconia matrix-tungsten carbide particulate composites manufactured by hot-pressing technique,Materials Letters,1998,36,70-75
    [60] Zbigniew Pedzich,Krzysztof Haberko,Joanna Babiaz,etc,The TZP-Chromium Oxide and Chromium Carbide Composites,Journal of European Ceramic Society ,1998,5,1939-1943
    [61]陈肇友,化学热力学与耐火材料,北京,冶金工业出版社,2005,483-484
    [62] Zhang .W.N,Wang .H.Y,Wang .P.J,Effect of content on the SHS reaction of Cr-Ti-C system,Journal of Alloys and Compounds,2008,465,127-131
    [63] H.E. Kim, A.J. Moorhead, Effects of active oxidation on the flexuralstrength of a-silicon carbide,J. Am. Ceram. Soc,1990 ,73 (7) ,1868–1872
    [64]蒋海云,王继刚,吴申庆,酚醛树脂的高温裂解色谱分析,动能材料,2008,39(6),1204-1206
    [65]李喜坤,修稚萌,孙旭东,等,碳热还原法制备Ti(C,N)粉末,粉末冶金工业,2004,14(1),18-22
    [66]王辉平,周书助,TiO2在N2气氛中碳热还原直接合成TiCN固溶体的研究,稀有金属与硬质合金,1996,127,25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700