飞机姿态测量装置的光学系统设计及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新型号飞机试飞实验中,姿态参数测量是十分关键的。这些参量不仅反映飞机的飞行状态,而且对分析飞机的气动参量、试验鉴定以及排除故障隐患等具有实用价值和现实意义。光电测量技术具有非接触、简单方便、精度高等优点,在航空、航天领域中都具有着重要的应用,如无人机自主着舰光电引导系统、舰载直升机助降光电引导系统及航天器空间交会对接过程中的光电导航系统等。但这些系统的测量精度及实时性都有着较高的要求,有时甚至十分苛刻。因此,利用光电测量技术实现飞机三维姿态测量具有重要研究意义。
     本文利用合作目标的单站姿态测量原理,结合实际大气湍流条件下激光光束的漂移及扩展效应,提出利用补偿和定位后的激光光斑质心确定飞机外部姿态的方法。通过计算单帧激光光斑中心,提取单位时间内激光光斑质心组成的外围轮廓特征点,并将其构成多边形;以多边形图像质心作为参照,建立姿态测量自适应补偿模型。利用得到的自适应补偿模型求解飞机三维姿态信息。
     论文随后设计了飞机姿态测量装置中的光学系统,根据R-C光学系统,基于三级像差理论,设计了主次镜的基本结构,利用反射系统消除球差及彗差,完成折反系统的设计全视场弥散斑分布均匀。场曲小于0.05mm,全视场畸变小于0.1%。MTF在1161p/mm时接近衍射极限。
     为了满足实时性的要求,基于透视投影原理,推导求解目标三维姿态的最优化函数。通过统计大量光斑图像实验数据,将大气湍流的影响考虑在目标姿态测量误差中,提高了激光光斑中心的提取精度。采用多边形质心方法计算激光光斑中心,消除某一时刻由外界环境造成的偶然事件,提高了测量过程中每个环节的准确性。计算结果表明,当目标距离为3km时,采用模拟退火算法迭代解算并对结果进行自适应补偿,得到的姿态角误差最大值为0.221°,说明采用自适应补偿技术的姿态测量算法具有较高的姿态测量精度和收敛性。
In the new airplane flight test experiments, the measurement of attitude parameters is the key. It is of great practical value and significance in practical applications such as aircraft design, test identification and failure analysis and so on. Electro-optical measurement technology has the advantage of non-contact, simple and high accuracy. It is importantly used in aviation and space field, such as UAV autonomous landing, the landing guidance system for a ship-borne helicopter, and the optical guidance system in the spacecraft rendezvous and docking. But these systems have a high requisition on measurement accuracy and real-time, sometimes even very harsh. Therefore, using of electric-optical measuring technology to achieve the plane 3D attitude measuring has important research significance.
     A new method of ascertaining plane outside attitude by compensation and positioning of the laser spot center was proposed, using cooperative target attitude measurement principle combined with the wander and spreading effects of the laser beam under actual atmospheric turbulence. A polygon can be formed through calculating the centroid of the single frame laser spot and extracting feature point of outline constituted by centroid of the laser spot within unit interval, the gravity center of which was taken as reference, and then adaptive attitude measurement compensation model can be established.3D pose information of the plane can be calculated by using the adaptive compensation model.
     The optical system of aircraft attitude measuring device was designed. According to the R-C system and the theory of Third-order aberration, the basic structure of the primary baffle and secondary baffle was designed. The R-C system was designed by using the reflex system to eliminate the Spherical aberration and Coma. The dispersion spot of full view was uniform distributed. Field curvature was less than 0.05 mm, and the Full field distortion was less than 0.1%. The MTF closed to the diffraction limit at 1161p/mm.
     In order to satisfy the requirement of real-time, the optimization function of target 3D attitude was solved based on the perspective projection principle. Through the statistics of the experimental data of spot image, the influence of atmospheric turbulence was considered into target attitude measuring error, which can improve the precision of the laser spot center extraction. Laser flare center was calculated by the method of polygon centroid, which eliminated accident caused by outside environment and improved the accuracy of each link in the measuring process. Numerical results show that the maximum of adaptive error compensation of the attitude angle is 0.221°by using simulated annealing algorithm to iterative solver and adaptive compensation when the target distance is 3km, which indicated that attitude measurement algorithm by using adaptive compensation technology has high accuracy and convergence.
引文
[1]杨铁军.GPS单基线实时姿态测量系统分析与实现[J].全球定位系统,2006,(3):4-7.
    [2]韦庆洲,罗兆文,朱昱.基于GPS的飞机姿态实时测量实现及误差分析[J].测绘科学,,2010,35(4):20-22.
    [3]叶松,王晓蕾,周树道等.GPS航向与姿态测量系统定点测试分析[J].中国测试,2010,26(3):23-26.
    [4]陈万通,秦红磊,丛丽等.GPS姿态测量中的可靠性理论研究[J].电机与控制学报,2010,14(8):63-69.
    [5]刘瑞华,张鹏,张磊.基于单天线GPS的伪姿态测量算法研究[J].中国民航大学学报,2009,6(27):25-28.
    [6]马安朝,吴洪生.机陀螺姿态模拟器校准方法的探讨[J].计量与测试技术,2010,17(5):27-28.
    [7]贾方秀,丁振良,袁锋.相位法激光测距接收系统[J].光学精密工程,2003,,27(3):2377-2384.
    [8]羊毅,丁全心,刘红漫.激光技术在机载光电探测与制导系统中的应用[J].红外与激光工程,2008,37(9):14-20.
    [9]陈奕,郭颖,杨俊等.脉冲式高精度激光测距技术研究[J].红外,2010,31(6):1-5.
    [10]刘万里,曲兴华,欧阳健飞等.激光跟踪测量系统角度自动校正装置设计[J].光学精密工程,2008,16(9):1695-1700.
    [11]王刚,孙凌宇,王卫宁等.新型便携式激光测距仪的研究[J].激光与光电子学进展,2010,47,07280-1-07280-4.
    [12]侯宏录,李宏.光电经纬仪测量飞行器三维坐标方法及误差分析[J].光电工程,2002,3(29):4-8.
    [13]陈涛,陈娟,王旭超等.光电经纬仪跟踪架结构模式浅析[J].吉林工学院学报,2002.3(23):19-22.
    [14]侯宏录,周德云.光电经纬仪异面交会测量及组网布站优化设计[J].光子学报,2008,5(37):1023-1028.
    [15]朱玮,赵立荣,柳玉晗等.光电经纬仪子母弹多目标提取方法[J].光学精密工程,2008,,11(16):2140-2144.
    [16]戴永江.激光雷达.北京:国防工业出版社.2002:144-243.
    [17]M L SimPoson, M J Paulus. Diserilninator design considerations for time-interval measurement circuits in collider deteetor systems. IEEE Trans. Nuel.Sci., 1998.45(1):98-104.
    [18]任明冰,半导体脉冲激光测距机的硬件电路设计[D].南京:南京理工大学.2004.
    [19]SHUMAKER, J.S.A.D.L,红外光电系统手册(第6卷)[M].孙再龙,熊辉丰.译.天津:航天8358所,1996:1-24.
    [20]李永斌,张昌兵.飞行目标3维姿态测量的新方法[J].激光技术,2009,10(17):185-189.
    [21]张志勇.飞行目标位置和姿态光电测量技术的研究与应用[D].电子科技大学,2008.
    [22]赵立荣,柳玉晗,朱玮.光电经纬仪单站空间余弦及多站面面交汇的飞机姿态测量[J].光学精密工程,2009,11(17):2786-2793.
    [23]于起峰,孙祥一,陈国军.用光测图像确定空间目标俯仰角和偏航角的中轴线法[J].国防科技大学学报,2000,2(22):15-19.
    [24]李喆,丁振良,袁峰.行器姿态参数的光学测量方法及其精度的蒙特卡罗模拟[J].吉林大学学报(工学版),2009,5(39):1402-1407.
    [25]王习文,马军,陈娟.飞机三维姿态测量的角平分线方向向量法[J].光学精密工程,2010,2(18):369-376.
    [26]王习文,陈娟,王秋平.飞目标运动参数的交汇跟踪测量[J].微计算机信息,2009,7(25):69-76.
    [27]陆钧昀,李庆辉,姜华.基于光测图像的无人机姿态测量方法[J].红外与激光工程,2008,37(1):102-105.
    [28]赵玉华,袁峰,丁振良.合作目标的飞行器姿态测量方法及其误差补偿模型的建立[J].电机与控制学报,2010,6(27):25-28.
    [29]张劲锋,孙承启,蔡伟.基于单目视觉的非合作航天器相对位置和姿态测量算法[J].北京控制工程研究所,2009,6(35):50-53.
    [30]祖勋,苏国中,张剑清,等.基于序列影响的飞机姿态跟踪测量方法研究[J].武汉大学学报(信息科学版),2004,29(4):287-291.
    [31]于起峰,孙祥一,邱志强.从单站光测图像确定空间目标三维姿态[J].光学技术,2002,28(1):77-82.
    [32]唐自力,马彩文,刘波,单金玲,陈良红.单站光测图像确定空间目标三维姿态[J].光子学报,2004,33(12):1480-1485.
    [33]赵汝进,张启衡,徐智勇,徐勇,左颢睿.一种基于特征点间线段倾角的姿态测量方法[J].光子学报,2010,39(2):320-324.
    [34]J. E. H. BRAYBON, B.Sc., A. Inst. P.H. B. Measurement of Aircraft Attitude Relative to Flight Path during Dives[M].1951.
    [35]Joseph J. Cottrell Altitude Exposures during Aircraft Flight:Flying Higher. Chest 1988;9;81-84.3
    [36]M.Perez-Ayucar, A.Sarlette. P.Couzin.Huygens Sattitude Reconstruction Based On Flight Engineering Paramrtrer:2005.
    [37]T.D. Cornall, G.K. Egan and A. Price. Aircraft attitude estimation from horizon video: Image and Vision Computing.2007,(25).1864-1874.
    [38]Taylor, B., Bil. C., Watkins, S., and Egan, G.:'Horizon sensing attitude stabilisation:a VMC autopilot'.18th Int. UAV Systems Conf., Bristol. UK,2003.
    [39]Chahl, J.S., Stange, G. Thakoor, S., Le Bouffant, N., Sriivasan, M.V.,Hine, B., and Zornetzer, S.:'Bioinspired engineering of exploration systems:a horizon sensor=attitude reference system based on the Dragonfly Ocelli for Mars Exploration applications", J. Rob. Sys.,2003,20(1),32-42.
    [40]Barrows, G., and Neely, C.:'Mixed-mode VLSI optic flow sensors for in flight control of a micro air vehicle', Proc. SPIE,2000,41(9),52-63.
    [41]Todorovic, S., Nechyba, M.C., and Ifju, P.G.:'Sky=ground modeling for autonomous MAV flight'. Proc. IEEE Int. Conf. on Robotics andAutomation, May 2003, Tiawan.
    [42]Tristan Tzschichholz, Lei Ma, Model-based spacecraft pose estimation and motion prediction using a photonic mixer device camera:Acta Astronautica 2010,3.
    [43]Jian-Gang Wang, Eric Sung. EM enhancement of 3D head pose estimated by point at infinity:Image and Vision Computing 25 (2007) 1864-1874.
    [44]Sotiris Malassiotis, Michael G. Strintzis. Robust real-time 3D head pose estimation from range data:Pattern Recognition 38 (2005) 1153-1165.
    [45]Emanuele Zappaa, Paolo Mazzoleni. Reliability of personal identification base on optical 3D measurement of a few facial landmarks:Procedia Computer Science 1 (2010) 2769-2777.
    [46]Louis-Philippe Morency a. Jacob Whitehill b, Javier Movellan. Monocular head pose estimation using generalized adaptive view-based appearance model:Image and Vision Computing 28 (2010) 754-761.
    [47]Rocco Vertechy, Vincenzo Parenti Castelli. Accurate and fast body pose estimation by three pointposition data:Mechanism and Machine Theory 42 (2007) 1170-1183.
    [48 Louis-Philippe Morency. Jacob Whitehill. Javier Movellan. Monocular head pose estimation using generalized adaptive view-based appearance model:Image and Vision Computing 28 (2010) 754-761.
    [49]Joa-o L. Vilac-a, Jaime C. Fonseca. Anto'nio M. Pinho. Calibration procedure for 3D measurement systems using two cameras and alaser line:Optics & Laser Technology 41 (2009) 112-119.
    [50]JunwenWu. Mohan M. Trivedi. Atwo-stage head pose estimation framework and evaluation:Pattern Recognition 41 (2008) 1138-1158.
    [51]E. Murphy-Chutorian. M. Triverdi. Head pose estimation in computer vision:a survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (4) (2009) 607-626.
    [52]嵇盛育,徐贵力,冯文玲,刘小霞.基于红外视觉的无人机自主着舰合作目标的研究[J].红外与激光工程,2007,29(10):593-597.
    [53]张勇,徐贵力,章凤翎,程月华,田裕鹏,王彪.无人机自主着陆过程中合作目标特征点的提取方法研究[J].航空学报,2010.1:25-28.
    [54]张志勇.飞行目标位置和姿态光电测量技术的研究与应用[D].成都:电子科技大学,2008.
    [55]刘明,匡海鹏,吴宏圣等.像移补偿技术综述[J].电光与控制,2004,11(4):46-49.
    [56]张玉欣,刘宇,葛文奇.像移补偿技术的发展与展望[J].中国光学与应用光学,2010,3(2):112-118.
    [57]肖妹.航空相机的像移补偿[M].长春理工大学,2007.
    [58]刘明,刘钢,李友一等.航空相机的像移计算及其补偿分析[J].光电工程,2004,31(12):12-14.
    [59]HUANG T S, BRUCKSTEUN A M, HOLT R J. Uniqueness of 3D pose under weak perspective:a geometrical proof [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(12):1220-1221.
    [60]LU C P. Fast and globally convergent pose estimation from video images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(6):610-622.
    [61]Berthold K. P. Horn, Hugh M. Hilden, Shahriar Negahdaripour. Closed-form solution of absolute orientation using orthonormal matrices [J]. Optical Society of America,1988,5: 1172-1135.
    [62]高明,吴振森.大气环境下激光光斑瞄准偏差的补偿方法研究[J].光学技术,2009,35(2):252-255.
    [63]续铁权.有向面积及其应用.数学通报[J].2000,(1):22-23.
    [64]李永亮,王建宇,徐睿,等大气湍流对星地激光下行链路最大天顶角的影响[J].应用科学学报,2011,29(1):22-26.
    [65]Z.-S. Wu, H.-Y. Wei. R.-K. Yang, L.-X. Guo. Study on scintillation considering inner-and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence, PIER 80,2008:77-293.
    [66]高明,吴振森.远场光束扩展对光斑瞄准偏差影响的实验[J].光学精密工程,2010,18(3):602-608.
    [67]高明,侯宏录.外场多光轴瞄准偏差测试的基准光轴建立方法[J].光学学报,2008,37(5):1029-1033.
    [68]陈欣,陆迅,朱金福.停机位指派模型的排序模拟退火算法[J].应用科学学报,2007,25(5):520-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700