1.5μm掺铒窄线宽光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窄线宽光纤激光器在超远距离传感和高精度光谱方面有广泛的应用。特别是作为光纤激光传感器,它具有对电磁场的抗干扰、安全、体积小、可远程控制等特性,并且由于它的高灵敏度以及利用WDM技术实现多路传输,在军事上也有很大的应用潜力。本文针对新型结构的环形腔和线形腔掺Er~(3+)窄线宽光纤激光器的选模器件、腔形设计、测量方法等相关问题,展开相应的理论与实验研究。
     论文的主要工作包括:
     1.概述了激光器的线宽理论。对延迟自外差/零差激光线宽测量方法进行了误差分析。讨论了相干因子、延迟光纤倍数、以及延迟光纤长度对延迟自零差线宽测量结果的影响。讨论了延迟光纤倍数、以及延迟光纤长度对延迟自外差线宽测量结果的影响。并分析了最小二乘曲线拟合谱线的线宽对测量线宽的影响。采用延迟自外差方法测量了一只DFB半导体激光器的线宽。
     2.对掺Er~(3+)窄线宽光纤激光器的进行了理论分析。分别讨论了掺Er~(3+)光纤激光器的输出特性以及窄线宽光纤激光器的设计方案。并利用光纤光栅法布里-珀罗标准具理论,分析了光纤光栅标准具随腔长变化的性质、光纤光栅标准具随光栅反射率变化的性质。
     3.进行了以光纤光栅法布里-珀罗标准具为外腔选模器件的环形腔单频光纤激光器实验研究。使用光纤环行器的环形腔光纤激光器获得9.2mW的激光输出,斜效率约为7%,输出激光3dB线宽为0.01nm,信噪比为50dB。在光纤耦合器结构的环形腔光纤激光器中得到输出单频光功率为42mW,斜率效率为33%。分析了两种方案输出特性不一致的原因。
     4.进行了1535nm线型腔光纤激光器实验研究,以布拉格波长为1535nm的光纤光栅F-P标准具为选模器件,使用了全光纤结构的法拉第旋转器来抑制空间烧孔效应。激光器阈值抽运光功率为12mW,最大输出信号光功率为39.5mW,单端最高输出信号光功率为22mW,斜率效率为29.7%。激光器输出中心波长为1534.83nm,光谱稳定,信噪比高。采用15km单模光纤延迟线进行了延迟自外差线宽测量,得到光纤激光器的3dB线宽小于7.5kHz。
     5.进行了高功率线型腔光纤激光器实验研究。光纤激光器主要由两个中心波长1550nm的光纤光栅F-P标准具(FBG F-P)和高掺Er~(3+)光纤线形腔构成,阈值抽运光功率为11mW,输出信号光功率为73mW,斜率效率达55%。激光器输出中心波长为1550nm,光谱稳定,信噪比高。采用10km单模光纤延迟线进行了延迟自外差线宽测量,得到光纤激光器的3dB线宽小于10kHz。
     6.进行了窄线宽光纤激光器的温度稳定性实验研究。光纤激光器当抽运光功率为200mW时,得到50mW输出信号光功率,激光器斜率效率为27%。采用10km单模光纤延迟线进行了延迟自外差线宽测量,得到光纤激光器的3dB线宽小于10kHz。信噪比为56dB。在温度稳定性实验中,当温度从25℃变化到90℃时,激光器的输出波长变化了1.02nm,光纤光栅的温度灵敏度为0.016nm/℃。在温度变化中,激光器的输出功率略有波动,输出激光波长连续变化,无跳模现象,自外差谱线的3dB带宽的变化小于1kHz。
     7.系统理论分析光纤饱和吸收体压窄光纤激光器线宽的机理。采用环形行波腔结构,将光纤光栅法布里-珀罗标准具作为主要选模器件,以较短的低损耗光纤饱和吸收体稳频,构造了高效的环形行波腔单频光纤激光器。实验中得到了稳定的单频激光,无跳模现象发生,输出信号光功率为39mW,斜率效率为30%,信噪比大于50dB,测量激光线宽小于10kHz。
Narrow linewidth fiber laser has great applications for extremely long-range sensors system and high resolution analysis system of optical spectrum. Especial as fiber laser sensor, it has particular characteristics of safety, remote controller, small bulk and anti-electromagnetic disturbance. It has potential application for defence due to its high sensitivity and the feasibility of multiplex transmission using WDM technology. This thesis is mainly concentrated on the devices of mode selection, design of cavity and measurement method of linewidth in the Erbium-doped narrow linewidth fiber laser. Theoretical analysis and the experiments are both studied.
     The main results are as follows:
     1. Theory of laser linewidth has been summarized. Analyses of measurement error of self-heterodyne/homodyne methods have been studied. The influence of coherence factor, multiple of coherence length and the length of delay fiber to the result of measurement have been discussed in the self-homodyne method. The influences of multiple of coherence length and the length of delay fiber to the result of measurement have been discussed in the self-heterodyne method also. The influence of least squares curve fitting algorithm to the result of measurement has been analyzed too. The linewidth of a DFB semiconductor laser has been measured by the delayed self-heterodyne method.
     2. The model of Erbium-doped fiber laser has been analyzed theoretically. The output characteristic has been illustrated and the scheme of the Erbium-doped fiber laser has been designed. The variations of the performance of the fiber Bragg grating Fabry-Perot etalon with the length of the cavity and the reflection coefficient of fiber Bragg grating have been discussed, according to the theory of fiber Bragg grating Fabry-Perot etalon.
     3. The experiments of single frequency fiber ring laser with mode selection by fiber Bragg grating Fabry-Perot etalon have been performed. About 9.2mW output power and 7% slope efficiency are obtained in the experiment of fiber ring laser using fiber circulator. The 3dB linewidth of fiber laser is less than 0.01nm. In the experiment of fiber ring laser using fiber coupler, single frequency output power is 42 m W and the slope efficiency attain to 33%. The difference in output characteristic of the two fiber ring laser has been analyzed
     4. The experiment of 1535nm fiber laser with linear cavity has been carried out, in which, the fiber Bragg grating Fabry-Perot etalon with the Bragg wavelength of 1535nm is used as mode-selecting device, and the fiber Faraday rotator is used to restrain the spatial hole burning effect. Stable single frequency 1534.83 nm laser is acquired. The fiber laser exhibits 12 mW threshold. Total 39.5 mW output power and one end 22 mW output power are obtained. Optical-optical efficiency is 27% and slope efficiency is 29.7%. The 3dB linewidth of laser is less than 7.5 kHz, measured by the delayed self-heterodyne method with 15 km monomode fiber.
     5. A high output power narrow linewidth fiber laser based on fiber Bragg grating Fabry-Perot etalon has been accomplished. The fiber laser is composed of two 1550nm fiber Bragg grating Fabry-Perot etalons and high Er~(3+)-doped fiber linear cavity. Stable single frequency 1550nm laser is acquired. Pumped by two 976nm laser Diodes, the fiber laser exhibits 11mW threshold. 73mW output power is obtained. The slope efficiency is 55%. The 3dB linewidth of laser is less than 10 kHz, measured by the delayed self-heterodyne method with 10km monomode fiber.
     6. The experiment on the stability of laser linewidth has been performed. The fiber laser exhibits 1 lmW threshold. 50 mW output power is obtained upon the 200 mW pump power. The slope efficiency is 27%. The linewidth of laser is less than 10 kHz, measured by the delayed self-heterodyne method with 10 km monomode fiber. SNR is about 56 dB. The lasing wavelength tuning is achieved by varying temperature of gratings. The lasing wavelength is tuned continuously over 1.02nm when its temperature is varied from 25°C to 90°C. That corresponds to a temperature sensitivity of 0.016nm/°C of these gratings. The output power in the tuning range is not flat because of the variation of gain in Erbium-doped fiber. The change of laser linewidth is less than 1 kHz with tuning. At the same time, no mode hopping is observed.
     7. Linewidth-narrowing mechanism in fiber laser by fiber saturable absorber has been analyzed theoretically. Single frequency Erbium-doped fiber ring laser is demonstrated by introducing fiber saturable absorber and passive fiber Bragg grating Fabry-Perot etalon in laser cavity. Frequency is stabilized by using short and low loss Erbium-doped fiber as saturable absorber. Stable single frequency 1550 nm laser is acquired. Lasing power is 39 mW, and the corresponding slope efficiency is 30%. SNR is larger than 50 dB. The linewidth is less than 10 kHz.
引文
[1] Luis Zenteno, High-power double-clad fiber lasers. Journal of lightwave technology, 1993, 11 (9): 1435-1446
    [2] Muendel M, Engstrom B, Kea D et al. 35-watt cw single mode ytterbium fiber laser at 1.1 pm. CLEO, 1997, CPD30-1
    [3] Dominic V, MacCormack S, Warts et at. 110W fiber laser. Electron Lett, 1999, 35(14):1158-1160
    [4] C. H. Liu, B. Ehlers, F. Doerfel et al. 810W continuous-wave and single transverse-mode fibre laser using 20 μm core Yb-doped double-clad fibre, Electron Lett, 2004, 40:1471-1472
    [5] J. Kirchhof, T. Sandrock, A. Harschak, 1.3 kW Yb-doped fiber laser with excellent beam quality. CLEO, 2004, CPDD2
    [6] Gapontsev V, Gapontsev D, Platonov N et al. 2 kW CW ytterbium fiber laser with record diffraction-limited brightness. CLEO, 2005, 508
    [7] 金友.光纤激光器推动传感器应用.光机电信息,2004,12:7-9
    [8] 葛强.光纤激光器加速光纤传感应用.光机电信息,2005,2:19-21
    [9] E. Snitzer. Proposed fiber cavities for optical laser. J. Appl. Phys, 1961, 32:36-39
    [10] C. J. Koester, E. Snitzer. Amplification in a fiber laser. Appl. Opt, 1964, 3:1182-1186
    [11] 叶震寰,楼祺洪,薛东.窄线宽光纤激光器进展.光学与光电技术,2004,2(1):1-4
    [12] 高雪松,高春清,宋学勇等.窄线宽光纤激光器关键技术研究.激光与红外,2006,36(6): 441-444
    [13] Ball G. A, Morey W. W, Glenn W. H. Standing-wave monomode erbium fiber laser. IEEE Photon. Techn. Lett. 1991, 3(7):613-615.
    [14] J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, et at. Short single frequency Erbium-doped fibre laser. Electronics Letters, 1992, 28(15): 1385-1387
    [15] Hendrik Sabert, Reinhard Ulrich. Gain stabilization in a narrow-band optical filter. Opt. Lett, 1992, 17:1161-1163
    [16] J. T. Kringlebotn, P. R. Morkel, L. Reekie, et al. Efficient diode-pumped single-frequency Erbium:Ytterbium fiber laser. IEEE Photonics Technology Letters, 1993, 5(10): 1162-1164
    [17] G. A. Ball, W. H. Glenn, W. W. Morey, et al. Modeling of short, single-frequency, fiber lasers in high-gain Fiber. IEEE Photonics Technology Letters, 1993, 5(6): 549-651
    [18] Horowitz M, Daisy R. Fischer B, et al. Narrow-linewidth, single-mode erbium-doped fibre laser with intracavity wave mixing in saturable absorber. Electron. Lett, 1994, 30:648-649
    [19] Y. Cheng, J. T. Kringlebotn, W. H. Loh. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter, Optics Letters, 1995, 20(8):875-877
    [20] M. Sejka, P. Varming, J. Hubner, et al. Distributed feedback Er~(3+)-doped fibre laser. Electronics Letters, 1995, 31(17): 1445-1446
    [21] W. H. Loh, R. I. Laming. 1.55μm phase-shifted distributed feedback fiber laser. Electronics Letters, 1995, 31(17): 1440-1442
    [22] D. I. Chang, M. J. Guy, S. V. Chernikov, J. R, et al. Single-frequency erbium fiber laser using the twisted-mode technique. Electronics Letters, 1996, 32(19):1786-1787
    [23] A. S. Kurkov, P. Bernage, P. Niay, et al. 1.55μm single-frequency long cavity fiber laser with π/2 phase shifted DFB mode selection, IEE Colloguium on Optical Fiber Gratings, 1997, 12/1-12/4.
    [24] W. H. Loh, B. N. Samson, L. Dong, et al. High performance single frequency fiber Grating-based Erbium:Ytterbium-codoped fiber lasers. Journal of Lightwave Technology, 1998, 16(1): 114-118
    [25] Kishi N, Yazaki T. Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning. IEEE Photonics Technology Letters, 1999, 11(2):182-184
    [26] 俞本立,钱景仁,罗家童等.线宽小于0.5kHz稳态的单频光纤环形腔激光器.量子电子学报,2001,18(4):345-347
    [27] S. U. Alam, R. Wixey, L. Hickey, et al. High power, single-mode, single-frequency DFB fibre laser at 1550nm in MOPA configuration. CLEO'2003, 2003, 618
    [28] Ch. Spiegelberg, J. Geng, Y. Hu, et al. Compact 100 mW fiber laser with 2 kHz linewidth. OFC 2003.3. PD45:1-3
    [29] Yushi Kaneda, Christine Spiegelberg, Jihong Geng, et al. 200-mW, narrow line-width 1064.2-nm Yb-doped fiber laser. CLEO. 2004, 2, Cth03:1-2
    [30] S. Huang, Y. Feng, J. Dong. 1083 nm single frequency ytterbium doped fiber laser, Laser Phys. Lett., 2005, 2(10):498-501
    [31] Zhou Meng, George Stewart, Gillian Whitenett. Stable single-mode operation of a narrow-linewidth, linearly Polarized, erbium-fiber ring laser using a saturable absorber, Journal of Lightwave Technology, 2006, 24(5):2179-2183
    [32] Ball G A, Glenn W H. Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors. J. Lightwave Technol, 1992, 10:1338-1340
    [33] Takushima Y, Yamashita S, Kikuchi K, et al. Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon. IEEE. Photon. Technol. Lett, 1996, 8(11): 1468-1470
    [34] 陈柏,陈兰荣,李学春等.未抽运掺杂光纤在掺Yb~(3+)窄线宽光纤激光器中的作用.中国激光,2001,A28(5):399-401
    [35] Cheng Y, Kringlebotn J T, Loh W H, et al.. Stable single-frequency traveling-wave loop laser with integral saturable absorber-based tracking narrow-band filter. Opt. Lett, 1995, 20(8):875-877
    [36] Gilbetr S L. Frequency stabilization of a tunable erbium-doped fiber laser. Opt. Lett, 1991, 16:150-152
    [37] Spiegelberg, C.; Jihong Geng; Yongdan Hu, et al. Low-noise narrow-linewidth fiber laser at 1550 nm.. Lightwave Technology, 2004, 22(1):57-62.
    [38] 许远忠,谭华耀,杜卫冲等.短腔Er/Yb光纤光栅激光器,光学学报,1999,19(10): 1327-1331.
    [39] 薛亦元,安宏林,傅立斌等.单频窄线宽分布布拉格反射光纤激光器研究,光学学报,2000,20(9):1251-1254
    [40] 王天枢,郭玉彬,李军等.全光纤型Er/Yb共掺光纤短腔激光器,中国激光,2004,31(10): 1161-1164
    [41] C R, meats R J. Broadband tunable single-frequency diode-pumped erbium-doped fiber laser. Electron. Lett, 1992, 28(2):124-126
    [42] Guy, M. J.; Taylor, J. R.; Kashyap, R.; Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter. Electronics Letters. 1995, 31(22): 1924-1925
    [43] Ammon Yariv.现代通信光电子学,陈鹤鸣等译.北京:电子工业出版社,2004,296-300
    [44] 蓝信钜等.激光技术.北京:科学出版社,2003,214-215
    [45] T. Okoshi. Novel method for high resolution measurement of laser output spectrum. Electron. Lett., 1980, 16:630-631
    [46] Philippe B, Gallion, Guy Debarge. Quantum phase noise and field correlation in single frequency semiconductor laser systems. IEEE J. Quantum Electron., 1984, QE-20(4):342-349
    [47] S. Ryu, S. Yamamoto. Measurment of direct frequency modulation characteristics of DFB-LD by delayed self-homodyne technique. Electron. Lett., 22:1052-1054
    [48] A. Yariv, Quantum Electronics, 2nd Ed. New York: Wiley, 1975
    [49] J. A. Armstrong. Theory of interferometric analysis of laser phase noise. J. Opt. Soc. Am., 1966, 56:1024-1031
    [50] H. E. Rowe. Signal and Noise in Communication Systems. Princeton, NJ: Van Nostrand, 1965
    [51] A. E. Seigman, B. daino, K. R. Manes. Preliminary measurements of laser short term fluvtuations. IEEE J. Quantum Electron., 1967, QE-3:180-189
    [52] M. W. Fleming, A. Mooradian. Fundamental line broadening of single-mode (GaAl) As diode lasers. Appl. Lett., 1981, 38:511-513
    [53] A. Guttner, H. Welting, K. H. Gericke, et al. Fine structure of the field autocrrelation function of a laser in the threshold region. Phys. Rev., 1978, A 18:1157-1168
    [54] 梁可非,陈世翔,杨大容.激光器线宽的测量.南京邮电学院学报,1991,11(2):32-35
    [55] Hanne Ludvigsen, Mika Tossavainen, Matti Kaivola. Laser linewidth measurements using self-homodyne detection with short delay. Optics Communications, 1998, 155:180-186
    [56] Hidemi Tsuchida. Simple technique for improving the resolution of the delayed self-heterodyne method. Optics Letters, 1990, 15(11): 640-642.
    [57] Jay W. Dawson, Namkyoo Park, and Kerry J. Vahala. An improved delay self-heterodyne interferometer for linewidth measurement. IEEE Photonics Technology Letters, 1992, 4(9): 1062-1066.
    [58] Xiaopei Chen. Ultra-narrow laser linewidth measurement. Doctor Dissertation. 2006.
    [59] M. J. F Digonnet and C. J Gaeta. Theoretical analysis of optical fiber laser amplifiers and oscillators. Appl. Opt., 1985, 24(3):333-342
    [60] M. J. F Digonnet. Theory of superfluorescent fiber lasers. IEEE. J. Lightwave Technol., 1986, 4(11):1631-1639
    [61] 黄志坚,孙军强,黄德修.线形腔掺铒光纤激光器输出特性的理论研究.光学学报,1996,16(12):1671-1675
    [62] 徐华斌,陈林.掺铒光纤激光器输出特性的研究.光子学报,2004,33(7):778-781
    [63] 夏江珍,蔡海文,任虹等.掺铒光纤环形激光器输出特性的研究.光学学报,2003,23(7): 823-827
    [64] Giles C R, Desurvire E. Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers. Journal of lightwave technology, 1991, 9(2): 147-154
    [65] Digonnet. Rare earth doped fiber laser and amplifier. Publisher: Marcel dekker, 2001, 183-193
    [66] Mignon M, Desurvire E. An analytical mode for the determination of optimal output reflectivity and fiber length in erbium-doped fiber lasers. IEEE Photonics Technology Letters,1992, 4(8): 850-852
    [67] Peroni M, Tamburrini M. Gain in erbium-doped fiber amplifiers: a single analytical solution for the rate equations. Opt Lett., 1990, 15(15): 842-844
    [68] Peter Horak, Nyuk Yoong Voo, Morten Ibsen, et al. Dominant cause of linewidth in DFB fiber laser. CLEO'05, 2005, CThB7:1-3
    [69] Peter Horak, Nyuk Yoong Voo, Morten Ibsen, et al. Pump-noise-induced linewidth contributions in contributions in distributed feedback fiber lasers. IEEE photonics Technology Letters, 18(9): 998-1000
    [70] K.O.Hill, Y.Fujii, D.C.johnson, et al. Photosensitivity in optical waveguides: application to reflection filter fabrication, Applied Physics Letters, 1978, 32(10): 647-649.
    [71] G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibres by a transverse holographic method, Optics Letters, 1989,14(15):823-825.
    [72] P.J.Lemaire, R.M.Atkins, V.Mizrahi, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. Electron. Lett. 1993, 29(13):1191-1193
    [73] K.O.Hill, B.Malo, F.Bilodeau, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 1993, 62(10):1035-1037
    [74] K.O.Hill, F.Bilodeau, B.Malo, et al. Chirped in fiber Bragg gratings for compensation of optical-fiber dispersion. Opt. Lett., 1994, 19(17): 1313-1316
    [75] J.Albert, K.O.Hill, B.Malo, et al. Apodisation of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency. 1995, 31(3):222-223
    [76] W.H.Loh, M.J.Cole, M.N.Zervas, et al. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. Opt. Lett., 1995, 20(20):2051-2053
    [77] A.Asseh, H.Storoy, B.E. Sahlgren, et al. A writing technique for long fiber Bragg grating with complex reflectivity profiles. J.Lightwave Technol., 1997, 15(8):1419-1423
    [78] Yariv A. Introduction to Optical Electronics. New York: John Wiley and Sons. 1989
    [79] Lam D K W, Garside B K. Characterization of single-mode optical fiber filters. Appl. Opt.,1981, 20(3): 440-445
    [80] Engan H E. Analysis of polarization mode coupling by acoustic torsional wave in optical fibers. I. Opt. Soc. Am., 1996, 13(1): 112-118
    [81] T. Erdogan. Fiber grating spectra. IEEE J. Lightwve Technol., 1997, 15(8):1277-1294
    [82] Bennion I, Williams J A R. et al. UV-written in fiber Bragg gratings. Opt and Quantum Electronics, 1996, 28:93-135
    [83] Kogelnik H. Theory of Dielectric Waveguides. in Integrated Optics, 2nd ed, Tamir T, Ed. New York: Springer-Verlag, 1979
    [84] 金晓峰,张仲先.非均匀光纤光栅响应特性的研究.光学学报,1999,19(6):721-727
    [85] M. Yamada, K. Sakuda. Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach. J. Opt. Soc. Am,. 1987, 26(16):3473-3478
    [86] G. A. Ball. Continuously tunable, single-frequency, linear fiber-lasers with Bragg grating reflectors. LEOS'92, 1992:501-502
    [87] M. Douay, T. Feng, P. Bernage, et al. Birefringence effect of optical fiber laser with intracore fiber Bragg grating. IEEE Photonics Technology Letters, 1992, 4(8): 843-846
    [88] A. Lord, J. M. Boggis. novel single-mode, grating WDM device based network. Electronics Letters, 1988, 24(11): 672-674
    [89] C. M. Ragdale, D. reid, D. J. Robbins, et al. Narrow fiber grating filters. IEEE Journal on Selected Areas in Communications, 1990, 9(6): 1146-1150
    [90] M. Stern, J. P. Heritage, E. W. Chase. Grating compensation of third-order fiber dispersion. IEEE Journal of Quantum Electronics, 1992, 28(12): 2742-2748
    [91] Melle, S. M.; Alavie, A. T.; Karr, S; et al. A Bragg grating-tuned fiber laser strain sensor system. Photonics Technology Letters, IEEE. 1993, 5(2): 263-266
    [92] 卓锋,赵玉成,延凤平等.采用光纤光栅的温度和应力传感技术.光通信技术.2000,24(2):133-137.
    [93] Lam D K W, Garside B K. Characterization of single-mode optical filters. Appl. Opt., 1981, 20(3):440-445
    [94] 关柏鸥,余有龙,葛春风等.光纤光栅法布里-珀罗腔透射特性的理论研究.光学学报,2000,20(1):33-38.
    [95] 吕昌贵,崔一平,王著元等.光纤布拉格光栅法布里-珀罗腔纵模特性研究.物理学报,2004,53(1):145-150.
    [96] Miridonov S V, Shlyagin M G, Tentori D. Twin-grating fiber optic sensor demodulation Opt. Commun., 2001, 191:253-262
    [97] 李家方,吕可诚,韩群等.基于光纤光栅F-P腔的一种新颖传感系统的理论研究.2004, 24(1): 21-26
    [98] J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, et al. Short single frequency Erbium-doped fibre laser. Electronics Letters, 1992, 28(15): 1385-1387
    [99] Alexander Polynkin, Pavel Polynkin, Masud Mansuripur, et al, Single-frequency fiber ring laser with 1W output power at 1.5μm, Optics Express, 2005, 13(8):3179-3184
    [100] Changgui Lu, Zhuyuan Wang, Binfeng Yun, et al, Stable single frequency Er-doped all-fiber ring laser with fiber Bragg grating Fabry-Perot filter. Chinese Optics Letters, 2005, 3(4):212-214
    [101] 伍波,刘永智,代志勇.环形腔窄线宽光纤激光器实验研究.光电子·激光,2006,17(11): 1311-1314
    [102] Wu bo, Liu yongzhi, Liu Shuang. Narrow linewidth fiber grating laser and application. IEEE 2006 International Conference on Communications, Circuits and Systems, 2006, vol 3:1971-1974
    [103] 伍波,刘永智,刘爽等.光纤光栅法布里-珀罗标准具选模单频环形腔光纤激光器.强激光与粒子束,2006,18(12):1987-1990
    [104] 俞本立,甄胜来,朱军等.低噪声光纤激光器的实验研究.光学学报,2006,26(2):217-220
    [105] Wu bo, Liu yongzhi, Liu Shuang et al. 1535nm narrow linewidth fiber grating laser. The 5th International Conference on Optical Communications and Networks, 2006, 433-434
    [106] 伍波,刘永智,张谦述等.基丁光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器,中国激光,2007,34(3):350-353
    [107] 伍波,刘永智,刘爽等.1550nm高效窄线宽光纤激光器.光电子·激光,录用
    [108] M. Auerbach, P. Adel, D. Wandt, et al. 10W widely tunable narrow linewidth double-clad. Optics Express, 2002, 10(2): 139-144
    [109] C. -H. Yeh, T. -T. Huang, H. -C. Chien, et al. Tunable S-band erbium-doped triple-ring laser with single-longitudianl-mode operation. Optics Express, 2007, 15(2): 382-386
    [110] Myeong Soo Kang, Myoung Soo Lee, Jae Chul Yong, et al. Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter. Journal of Lightwave Technology, 2006, 24(4): 1812-1823
    [111] Ball G A, Morey W W. Continuously tunable efficient broad-band fiber filter. IEEE Photon. Technol. Lett., 1999, 11(4): 361-363
    [112] 余有龙,刘志国,董孝义等.基于悬臂梁的光纤光栅无啁啾线性调谐.光学学报,1999,19(7):873-876
    [113] Gob C S, Set S Y, Kikuchi K. Widely tunable optical filters based on fiber Bragg gratings. IEEE Photon. Technol. Lett., 2002, 14(9): 1306-1308
    [114] 王天枢,郭玉彬,白冰等.用超磁致伸缩调谐光纤光栅的光分/插复用器.光子学报,2003,(9):106-1109.
    [115] Ball G A, Morey W W.. Compression-tuned single-frequency Bragg grating fiber laser. Opt. Lett., 1994, 19(23): 1979-1981
    [116] Limberger H G, Nguen hong Ky. Efficiency miniature fibre-optic tunable filter based on in intracore Bragg grating and electrically resistive coating. IEEE Photon. Technol. Lett., 1998, 10(3): 361-363
    [117] Y. W. Song, S. A. Havstad, D. Starodubov, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. 1EEE Photon. Technol. Lett., 13(11): 1167-1169
    [118] Wu Bo, Liu Yongzhi, Dai Zhiyong, et al. Stable narrow iinewidth Er-doped fiber laser at 1550 nm. Microwave and Optical Technology Letters, 2007, 49(6): 1453-1456
    [119] A. Yariv, Quantum Electronics, 2nd ed. New York: Wiley, 1989
    [120] B. E. A. saleh, M. C. Teich. Fundamentals of Photonics. New York: Wiley-Interscience, 1991, Sect. 5.5, p. 181
    [121] E. Desurvire. Study of the complex atomic susceptibility of erbium-doped fiber amplifier. Journal of Lightwave Technology, 1990, 8:1517-1527
    [122] Carsten Thirstrup, Yuan Shi, Bera Palsdottir. Pump-induced refractive index modulation and dispersions in Er3+-doped fibers. Journal of Lightwave Technology, 1996, 14(5): 732-738
    [123] S. C. Fleming, T. J. Whitley. Measurement of pump induced refractive index change in eribium doped fiber amplifier. Electronics Letters, 1991, 27(21): 1959-1961
    [124] Mark Janos, Stephen C. Guy. Signal-induced refractive index changes in Erbium-doped fiber amplifiers. Journal of Lightwave Technology, 1998, 16(4): 542-548
    [125] J. D. Jackson. Classical Electrodynamics, 2nd ed. New york. Wiley, 1975, p. 311
    [126] Moshe Horowitz, Ron Daisy, Baruch Fischer, et al. Linewidth narrowing mechanism in lasers by nonlinear wave mixing. Opt. Lett., 1994, 19(18): 1406-1408
    [127] H. S. Kim, S. K. Kim, B. Y. Kim. Longitudinal mode control in few-mode erbium-doped fiber laser. Opt. Lett., 1996, 21(15): 1144-1146
    [128] 伍波,刘永智,刘爽.光纤饱和吸收体稳频窄线宽光纤激光器.光电工程,录用

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700