分布式光纤应变监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式光纤传感器具有传输距离长、抗电磁干扰能力强,能够较全面地获取监测目标体参数信息的特点,可实现长期在线分布式监测,适合长期实时监测大型结构体的变化。基于分布式光纤传感器的优点及国家对地质灾害监测技术发展的重视,论文在“十一五”国家科技支撑计划课题(2006BAC04B03)及中国地质调查局地质调查工作项目(1212010641008)的支持下开展布里渊分布式光纤应变监测技术的研究及仪器的研发。
     在光纤中传播的光会产生布里渊散射现象,布里渊散射光的频移与光纤所处温度环境和所受应变有关。论文通过对布里渊散射机理的介绍,说明了布里渊散射频移与应变和温度之间的关系,阐述了分布式光纤应变监测系统研制的理论基础。
     利用微波电光调制光相干检测技术,采用模块化设计,研制了分布式光纤应变监测系统样机。论文通过对背向布里渊散射光各种检测方案的对比,提出了分布式光纤应变监测系统的设计思路,确定了分布式光纤应变监测系统的结构框架,在此基础上,对监测系统参数、监测系统各模块的硬件与软件设计和实现方法进行了深入研究,研制了分布式光纤应变监测系统样机。通过标定试验和室内模拟试验,验证了样机的性能。监测光纤应变量受温度影响的校正试验中,运用线性回归等统计分析方法,获得了光纤应变受环境温度影响的函数关系,为实际工程的BOTDR应变监测数据处理提供了理论依据。
     在三峡库区巫山县邓家屋场滑坡进行了分布式光纤应变监测试验,探索了光纤选型、网络布设、铺设方法等施工工艺。提出了FBG与BOTDR联合监测滑坡的方案,并在巫山残联滑坡进行了监测试验,进一步探讨了分布式光纤与光纤光栅联合监测的可行性及优点。
Distributed fiber optic sensor can meet the requirements of long-distance and continuous monitoring, be easy to achieve the remote sensing and controlling, obtain the parameter information of monitoring body completely. It is suitable to monitor the variety of large structure body. Based on the advantage and funded by the project "Eleventh Five-Year" National Key Technology R&D Program (2006BAC04B03) and the Geological Survey Project of CGS (1212010641008), the dissertation studied on the Brillouin distributed fiber optic sensing technique and developed the fiber optic strain monitoring system.
     In general, Brillouin scattering would occur when light transmitted in the fiber. The Brillouin frequency shift will change when the fiber materials are affected by the temperature or strain. The dissertation introduced the theory of the Brillouin scattering, and illustrated the relations between the Brillouin frequency shift and strain and temperature.
     According to the principle of BOTDR, we used the optical coherent detection method between the backward Brilliouin scattering light and the local reference light which generated by the microwave electro-optic modulator to develop the BOTDR monitoring system. The dissertation contrasted various detection schemes of the backward Brilliouin scattering light, identified the design of the distributed fiber optic strain monitoring system. Based on that, the author studied on the calculation of parameters of the monitoring system and the design and achievement of the hardware and software intensively, developed the BOTDR monitoring system.
     Through the calibration and simulation test in the lab, the performance of monitoring system was verified. In the correct experiment of fiber strain monitoring influenced by temperature, used statistics analysis method to acquire the function relation of the fiber strain measuring influenced by the environment temperature, provided theory guide for the data processing of the actual BOTDR monitoring project.
     In Deng Jia Wu Chang landslide in Wushan in Chongqing, The distributed fiber optic strain field monitoring experiment was carried on. The approach to monitoring landslide, such as the fiber type choosing, the fiber embedment craft, the fiber network arrangement principle and so on, was explored and practiced. Put forward the approach to monitoring landslide with FBG and BOTDR and practiced in Canlian landslide in Wushan, further discussed the possibility and advantage of BOTDR combining with FBG to monitor landslide.
引文
Alan D Kersey, Michael A. Davis, Heather J. Patrick, et al. Fiber Grating Sensors. Journal of Lightwave Technology, 1997, 15(8): 1441~1462
    Barnowski M. K., Jensen S. M.. Fiber waveguides: A novel technique for investigating attenuation characteristics [J]. Appl. Opt., 1976, 15(9): 2112~2115
    Brian Culshaw. Optical fiber sensor technologies: opportunities and perhaps pitfalls [J]. J. Lightwae Technol., 2004, 22 (1): 39~50
    Brown M. DeMerchant, Bao X., Bremner T.. Analysis of the precision of a Brillouin scattering based distributed strain sensor. SPIE, 1996, 3670: 359~365
    Byoungho Lee. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology, 2003, 1(9): 57~79
    D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, et al. Simple Multiplexing Scheme for a Fiber-Optic Grating Sensor Network. Optics Letters. 1993, 18(14): 1192~1194
    D.Culverhouse, et al. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors. Electron Lett., 1989, vol.25, No.14: 913~915
    DeMerchant M.D., Brown A., Bao X., et a1. Structural monitoring by use of a Brillouin distributed sensor [J]. Appl. Opt., 1999, vol. 38: 2755
    Dewynters-Marty V., Ferdinand P., Bourasseau S., et al. Embedded fiber Bragg grating sensors for industrial composite cure monitoring [J]. Intel. Mater. Sys. And Struct. 1998, Vol. 9: 785~787
    D.Garus, et al. Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements. J. Lightwave technol. 1997, Vol.15, No.4: 654~662
    Dhliwayo J., Webb D.J., Pannell C.N. Statistical analysis of temperature measurementerrors in a Brillouin scattering-based distributed temperature sensor, SPIE, 1996, 2838: 277~286
    Garus D., Krebber K., Hereth R. Distibuted fiber optical sensors using Brillouin backscatter. SPIE, 1995, 2510: 172~183
    Gogolla T., Krebber K.. Distributed beat length measurement in single-mode optical fibers using stimulated Brillouin-scattering and frequency-domain analysis. IEEE J. Lightwave Technol., 2000, 18(3): 320~328
    G.P.Lees, P.C.Wait, M.J.Cole, et al. Advances in Optical Fiber Distributed Temperature Sensing Using the Landau-Placzek Ratio. IEEE Photon. Tech. Lett., 1998, Vol.10, No.1: 126~128
    Grove-Kirkby, C. J. Optical fiber strain sensing for structural health and load monitoring [J]. the GEC J, of Tech., 1998, No. 115: 16~26
    H.H.Kee, G.P.Lees, T.P.Newson. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. Opt. Lett., 2000, Vol.25, No.10: 695~697
    Hiroshige Ohno, Hiroshi Naruse, et al. Industrial Applications of the BOTDR Optical Fiber Strain Sensor [J]. Optical Fiber Technology 7, 2001: 45~64
    Horiguchi T., Shimizu K., Kurashima T., et al. Development of a distributed sensing technique using Brillouin scattering [J]. J. Lightwae Technol., 1995, 13: 1296
    Horiguchi T, Tateda M. BOTDA-nondestructive measurement of single mode optical fiber attenuation characteristics using Brillouin interaction: theory [J]. Lightwave Technology, 1989, 7(8): 1170~1176
    Hotate K.. Recent progress in Brillouin based fiber sensor technology [J]. OFS-15 Portland, WC1, May 2002, 6~10
    Kaoru Shimizu, Tsuneo Horiguchi, Yahei Koyamadaet, et al. Coherent Self-Heterodyne Brillouin OTDR for Measurement of Brillouin Frequency Shift Distribution in Optical Fibers[J]. journal of lightwave technology, 1994, 12(5): 730~736
    K. Aoyama, K. Nakagawa, T. Itoh. Optical time domain reflectometry in a single mode fiber [J]. IEEE. Quantum Electron., vol. QE-17, 1981: 862~868
    K.De Souza, G.P.Lees, P.C.Wait, et al. Diode-Pumped Landau-Placzek based distributed temperature sensor utilizing an all-fibre Mach-Zehnder interferometer. Electron. Lett., 1996, Vol.32, No.23: 2174~2175
    Kihara M, Hiramatsu K, Shima M, et al. Distributed Optical Fiber Strain Sensor for Detecting River Embankment Collapse [J]. IEICE Trans Electron l, 2002, E85-C: 952~959
    K.O.Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication. Applied Physics Letters, 1978, 32: 647~649
    Kurashima T., Horiguchi T., Yoshizawa N., et al. Measurement of distributed strain due to laying and recovery of submarine optical fiber cable [J]. Appl. Opt., 1991, 30: 334~339
    Kurashima T., Hogari K., Matsuhashi S., et a1. Measurement of distributed strain in frozen cables and its potential for use in predicting cable failure. in International Wire&Cable Symposium Proceedings, 1994: 593~602
    Kurashima T., Tateda M., Horiguchi T., Koyamada Y. Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state, IEEE Photonics Technology Letters, 1997, 9(3): 360~362
    Liu Diren, Song Muping, Zhang Xianmin, et al. Polarization-Induced Fading Eliminated Technique for Coherent Detection of Brillouin Scattering Spectrum [J]. Acta Optica Sinica, 2005, 25(9)
    Lo Y. L., Xiao F. Y. Measurement of corrosion and temperature using a single-pitch Bragg grating fiber sensor [J]. Intel. Mater. Sys. And Struct. 1998, Vol. 9: 800~807
    Malider F P, Proctor B A. Elastic Constants of fused silica as a function of large tensile strain. Phys [J]. Chem. Glass, 1964(5): 91~103
    M.K.Barnoski. Optical time domain reflectometer. Appl. Opt., 1997, Vol.16, No.9: 2375-2379 [45] N. Yasue, H. Naruse, J. Masuda, et a1. Concrete pipe strain measurement using optical fiber sensor [J]. IEICE Trans. Electron., 2000, vol.E83-C: 468
    Naruse H., Uchiyama Y., Kurashima T., et al. River levee change detection using distributed fiber optic strain sensor. IEICE TRANS. ELECTRON., 2000, E83-C (3): 462~467
    Okoshi T. Polarization-state control schemes for heterodyne or homodyne optical fiber communications, IEEE Transactions on Electron Devices. 1985, 32(12): 2624~2629
    Parker T R, Farhadiroushan M,Handerek V A,et al. A Fully Distributed Simultaneous Strain and Temperature Sensor using Spontaneous Brillouin Backscatter[J]. IEEE Photon. Technol. Lett., 1997, 9(7): 979~981
    P.C.Wait, T.P.Newson. Landau Placzek ratio applied to distributed fiber sensing. Opt. Commun., 1996, 122(4-6): 141~146
    Poggiolini P., Benedetto S. Theory of polarization spreading techniques[J]. IEEE Transactions on Communications, 1994, 42(5): 2105~2118
    Rao. Y J. Recent progress in applications of in-fiber Bragg grating sensors[J]. Optics and lasers in Engg., 1999, Vol. 31: 297~324
    Rogers A., et al. Distributed optical-fiber sensing Proc. SPIE. 1991(1511): 2~24
    Romeo Bernini, Lorenzo Crocco, Aldo Minardo, et al. All Frequency Domain distributed Fiber-Optic Brillouin Sensing. IEEE SENSORS JOURNAL, 2003, 3(1): 36~43
    Shimizu K., Horiguchi T., Koyamada Y.,et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in opticalfibers[J]. J. Lightwae Technol., 1994, 12 (5): 730~736
    Shimizu K., Horiguchi T., Koyamada Y., et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber [J]. Opt. Lett., 1993, 18(3): 185~187
    Smith P. G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering [J]. Appl. Opt., 1972, 11(11): 2489~2494
    Takada K. Analysis of polarization dependence of optical low coherence reflectometry using an active Faraday rotator [J]. Journal of Lightwave Technology, 2003, 21(11): 2916~2922
    Tkach, et al. Spontaneous Brillouin scattering for single-mode optical-fiber characterization [J]. Electron. Lett., 1986, 22(19): 1011~1013
    T. Kurashima, T. Horiguchi, H. Izumita, et al. Distributed strain measurement using BOTDR improved by taking account of temperature dependence of Brillouin scattering power [J]. ECOC Conference Publication, 1997, 448: 119~122
    T.Horiguchi, T.Kurashima and M.Tateda. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon. Tech. Lett., 1989, Vol.1, No.5: 107~108
    T Horiguchi, M.Tateda. Optical Fiber Attenuation Investigation using Stimulated Brillouin Scattering between a Pulse and a Continuous Wave. Opt. Lett., 1989, Vol.14, No.8: 408~410
    T. Horiguchi, T.Kurashima, and M.Tateda. Nondestructive measurement of optical fiber tensile strain distribution based on Brillouin spectroscopy. IEICE of Japan, 1990, Vol.J73-B-I, No.2: 141~152
    T. Horiguchi, M. Tageda. Optical fiber attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave [J]. Optical Letters, 1990, 2: 352~357
    T. Horiguchi, et al. Tensile strain dependence of Brillouin Frequency Shift in silica optical fibers [J]. IEEE Electronics Technology Letters, 1989(1): 107~108
    Toshio Kurashima, Tsuneo Horiguchi, Hiroshige Ohno, et al. Strain and temperature characteristics of brillouin spectra in optical fiber for distributed sensing techniques [A], ECOC"98[C], Madrid, Spain, September 1998, 20~24
    T. R. Parker, V. A. Handerek, A. J. Rogers. Temperature and strain dependence of the power lever and frequency of spontaneous Brillouin scattering of optical fiber[J]. Optical Letters, 1997, 22(11): 787~789
    T.R.Parker, et al. A Fully Distributed Simultaneous Strain and Temperature Sensor using Spontaneous Brillouin Backscatter. IEEE Photon. Tech. Lett., 1997, Vol.9, no.7: 979~981
    T.R.Parker, M.Farhadiroushan, R.Feced, et al. Simultaneous Distributed Measurement of Strain and Temperature from Noise-Initiated Brillouin Scattering in Optical Fibers. IEEE J. Quantum. Electron, 1998, Vol.34, No.4: 645~659
    Tsuji K., Shimizu K., Horiguchi T., et al. Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization [J]. Electronics Letters, 1997, 33(5): 408~410
    Vonder Weid J. P., Passy R., Mussi G., et al. Self-heterodyne coherent optical frequency-domain reflectometer [J]. Electronics Letters, 1995, 31(23): 2037~2038
    Walker N.G., Walker G.R. Polarization control for coherent communications [J]. Lightwave Technology, 1990, 8(3): 438~458
    Willsch R. Application of Optical Fibre Sensors: Technical and Market Trends [A]. Proceedings of the SPIE [C]. 2000, 4074: 24~31
    X.Bao, D.J.Webb and D.A.Jackson. 22-km Distributed Temperature Sensor using Brillouin Gain in an Optical Fiber. Opt. Lett., 1993, Vol.18, No.7: 552~554
    X.Bao, D.J.Webb and D.A.Jackson. 32-km Distribute Temperature Sensor Based on
    Brillouin Loss in an Optical Fiber. Opt. Lett., 1993, Vol.18, No.18: 1561~1563 X.Bao, D.J.Webb and D.A.Jackson. Combined Distributed Temperature and Strain Sensor
    Based on Brillouin Loss in an Optical Fiber. Opt. Lett., 1994, Vol.19, No.2: 141~143
    X.Bao, et al. Experimental and Theoretical Studies on a Distributed Temperature Sensor Based on Brillouin Scattering. J. Lightwave Technol. 1995, Vol.13, No.7: 1340~1348.
    Yeniay A., Delavaux J.-M., Toulouse J. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers. J. Lightwave Technology, 2002, 20(8): 1425~1432
    Yoshino T., Yokota M., Kenmochi T. High-speed all-fibre polarisation controller. Electronics Letters, 2003, 39(25): 1800~1802
    Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson. Simultaneously Spatial-Time and Wavelength Division Multiplexed in-Fiber Bragg Grating Sensor Network. SPIE. 1996, 2838: 23~30
    Zhang Qing, Shi Yanxin. A Survey of geologic hazard monitoring instrument used in Three Gorge. Progress in Environmental and Engineering Geophysics. Proceedings of the international Conference on Environmental and Engineering Geophysics, ICEEG 2004: 564~569
    陈安健.光纤传感器及应用.传感器世界, 1999, No.11: 23~27
    陈好.布里渊分布式传感器的光路控制系统设计. [硕士学位论文].杭州:浙江大学信电系, 2004
    Culshaw R., Dakin J.著.李少慧,宁雅农,李志高,等译.光纤传感器[M].武汉:华中理工大学出版社, 1997. 583~605
    董志明.分布式光纤传感器在土木工程中的应用: [硕士学位论文].合肥:安徽理工大学,2003
    范胜利.基于高速数字BOXCAR的布里渊DOFS数据处理系统的实现:[硕士学位论文].杭州:浙江大学信电系, 2004
    费浩生.非线性光学.北京:高等教育出版社,1990. 116~118
    弗兰兹(Franz,J.H.)等著,徐洪杰等译,光通信器件与系统.电子工业出版社, 2002
    耿军平,许家栋,韦高,等.基于布里渊散射的分布式光纤传感器的进展[J].测试技术学报, 2002, 16(2): 87~91
    耿军平,许家栋,郭陈江,等.全分布式光纤温度传感系统研究进展及趋势[J].传感器技术, 2001, 20(2): 4~8
    Govind P., Agrawal..非线性光纤光学原理及应用.贾东方,余震虹译.北京:电子工业出版社, 2002: 4
    郭陈江,韦高,李众,等.基于光频域喇曼散射的全分布式光纤温度传感器模型研究.光子学报, Vo1.31, No.10, 2002
    韩子夜,薛星桥.地质灾害监测方法技术现状及发展趋势.中国地质灾害与防治学报, 2005, Vol 16(3): 138~141
    何玉钧,尹成群,李永倩,等.一个新型的基于全光纤Mach-Zehnder干涉仪BOTDR系统[J],光子学报, 2004, 33(6): 721~724
    胡晓东,胡小唐.基于布里渊放大结构的分布式光纤温度传感技术的研究.天津大学学报,1999, Vol.32, No.6: 678~681
    黄民双.分布式光纤布里渊散射应变传感器参数计算[J].航空学报, 1999(1): 137~140
    黄民双,陈伟民,黄尚廉.光纤中的光散射及在分布式传感技术中的应用.传感器技术, 1995, No.2: 49~51
    黄民双,陈伟民,黄尚廉.基于Brillouin散射的分布式光纤拉伸应变传感器的理论分析[J].光电工程, 1995(4): 11~16
    黄尚廉,等.分布式光纤温度传感器系统的研究[J].仪器仪表学报,1991, 12 (4): 359~364
    廖延彪.光纤光学.北京:清华大学出版社, 2003
    刘德华.超长距离分布式光纤传感技术及其应用[D]: [博士学位论文].杭州:浙江大学,2005
    刘迪仁.长距离分布式布里渊散射光纤传感技术研究:[博士学位论文].杭州:浙江大学, 2005, 28~29
    刘建胜,李铮,张其善.光纤完全分布式温度传感系统研究进展[J].电子科技导报, 1999, (3): 10~13
    刘增基,周洋溢,等.光纤通信.西安电子科技大学出版社, 2001
    裴昌幸.现代通信系统与网络测量.人民邮电出版社, 2008
    许家栋,李众,耿军平,等.光时域背向拉曼散射分布式光纤传感器与光频域背向拉曼散射分布式光纤传感器对比研究[J].贵州工业大学学报(自然科学版), 2002, 31(5): 49~53
    施斌,俆洪钟,张丹,等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报, 2004, 23(3): 493~499
    宋牟平.微波电光调制的布里渊散射分布式光纤传感技术[J],光学学报, 2004, 24(8): 1111~1114.
    王延恒.光纤通信技术基础[M].天津大学出版社,第四版, 1998.
    王洪德,高幼龙,等.地质灾害预警关键技术方法研究与示范.北京:中国大地出版社, 2008
    小川智藏.应用晶体物理学[M].北京:科学出版社, 1985, 197
    苑立波.光纤光栅原理与应用(一).光通信技术, 1997, 22 (1): 70~78
    张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究[J],工程地质学报, 2004,12(04): 422~426.
    张俊义,晏鄂川,薛星桥,等. BOTDR技术在三峡库区崩滑灾害监测中的应用分析.地球与环境, 2005, Vol 33: 355~357
    张耀,谭跃虎,陶西贵,等.光纤传感器FBG和BOTDR应用于结构监测的若干比较研究.防灾减灾工程学报, 2004, Vol24(4): 465~470
    张在宣,等.激光喇曼型分布光纤温度传感系统.光学学报, 1995, Vol.15, No.11: 1585~1589
    周效东,周文.干涉型光纤传感器及阵列的分集检测消偏振衰落技术的研究.光学学报, 1998, Vol. 18 (6): 773~778
    我国地质灾害分布概况. http://www.xian.cgs.gov.cn/wenhuaziyuan/2008/0604/article_1621.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700