质谱法用微波等离子体常压解吸电离源的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以常压解吸电离源为代表的直接离子化技术是近年来质谱领域一次革命性发展。目前已经发展形成了20种以上的常压直接离子化技术,并广泛应用在食品、药品、环境、活体分析、代谢组学、蛋白质组学以及生物组织质谱成像等多个领域,具有非常重要的影响力及实用价值。基于此,本文开发了一种具有自主知识产权的基于微波等离子体的常压离子化技术,并对其进行了应用研究,具体为:
     (1)在微波等离子体炬的基础上,构建了微波等离子体常压解吸电离源。并成功与质谱仪(Consair TOF MS)进行结合联用,开发了固体、液体、气体不同样品的直接检测方法。该方法无需样品预处理,可以直接对样品进行分析。
     (2)研究了微波等离子体常压解吸电离源两种重要初级离子H3O+、NH4+及它们与H2O的团簇离子的产生条件及形成机理。认为质谱仪干燥氮气的流速及温度对这些初级离子及相关产物离子[M+H]+及[M+NH4]+的形成有很大的影响。而微波等离子体的解吸过程受等离子体中粒子的动量及等离子体温度的影响很大。
     (3)采用本电离源比较研究了两种进样方式(即大气压挥发进样及传统的内管进样)下烷烃的电离及裂解规律。发现内管进样更容易使直链烷烃发生裂解,丢失亚甲基—CH2—后,一些碎片离子又会重新结合,致使碳链延长。得到减少或增加n个—CH2—的新烷烃(n不固定)。而大气压挥发进样更容易保证分子的完整性,对于碳数大于等于4的直链饱和烷烃,能够形成[M+13]+的产物离子,据此,提出了一种快速辨别物理性质相似的直链饱和烷烃的新方法。
     (4)通过大气压挥发进样及内管进样两种进样方式研究了几种芳香族化合物在微波等离子体中发生的化学反应,发现芳香族化合物在这两种进样方式下都能够发生复杂多样的化学反应,如还原、氧化、质子化等,大气成分如氧气、氮气等也会参与其中。而在发生还原反应时,能够得到还原程度不同的加氢产物,该过程在微波等离子的参与下进行,无需外加催化剂及化学试剂。
     (5)通过微波等离子体常压解吸电离质谱法对药物中活性成分进行检测研究,开发了一种对片状、膏状及胶囊类药物单一或多种主要成分的快速定性分析的方法。分析方法简单,无需样品预处理,无需有毒有害化学试剂。分析速度快,在手动进样的情况下可以达到360次/小时。一级谱图中所获得的碎裂离子信息有助于对活性成分的定性分析。
     (6)对现有的微波等离子体常压解吸电离源进行了小型化改进,新的小型电离源操作更为灵活方便,功耗进一步降低。通过应用试验证明该电离源的解吸电离性能能够得到充分的保障。
Mass spectrometry has recently undergone a contemporary revolution with the introduction of a new group of ambient desorption/ionization (D1) sources known collectively as direct ionization techniques. To date, more than20ionization techniques have been developed and they are widely used in the field of food, medicine, environment, in vivo analysis, metabolomics, proteomics and bio-tissue mass spectrometry imaging, etc. The techniques show very important influences and the practical values. In this study, an ambient ionization technique with the independent intellectual property rights was developed based on microwave plasma, and the mass spectrometric applications of this technique were done, the main contents are as follows:
     (1) The microwave plasma atmospheric pressure desorption/ionization (MWPAPDI) source was developed based on the microwave plasma torch (MPT), then by coupled it with a mass spectrometer (Consair TOF MS), the direct analysis methods for the various samples of solid phase, liquid phase and gaseous phase were developed. These methods do not need sample pretreatment and the samples can be analyzed directly.
     (2) From the MWPAPDI, the conditions and the mechanisms for the generation of the two important primary ions H3O+and NH4+with their water clusters were studied. The results shows that the flowing rate and the temperature of the drying nitrogen from the mass spectrometer have important effects on these primary ions and the corresponding product ions [M+H]+and [M+NH4]+. While the momentum of the particles in the plasma and the plasma temperature are the important factors to influence the microwave plasma desorption process.
     (3) The rules of dissociation and ionization for the alkanes were studied by MWPAPDI through the two sample introduction ways:the atmospheric pressure-volatizing sampling and the traditional central tube sampling. The results show that the straight-chain alkanes are more easily to dissociate by losing—CH2—then the generated fragment ions will recombine to prolong the carbon chain lengths. The end products are the new alkanes by losing or adding n (—CH2—)(nis not fixed) from the original alkanes through the central tube sampling. For the straight-chain alkanes through the atmospheric pressure-volatizing sampling, their molecules are more easily to be kept intact, and when the number of carbon atoms is equal to or more than4, the straight-chain alkanes can form the product ions of [M+13]+. Based on this rule, a novel direct analysis method for quick-identification of saturated straight-chain alkanes with similar physical properties was proposed.
     (4) The reactions of the aromatic compounds in the microwave plasma were investigated through the atmospheric pressure-volatizing sampling and the central tube sampling. It was found that the complex and various reactions, such as reduction, oxidation and protonation, etc., could occur in either sampling ways. The atmosphereic components, such as oxygen and nitrogen, also participate in the reactions. For the reduction reactions, the hydrogenated products with different deduction degree can be obtained. These processes are facilitated by the microwave plasma and require no additional catalysts.
     (5) Based on the analysis for medicines by MWPAPDI-MS, a rapid qualitative detection method for one or more active pharmaceutical ingredients (APIs) in medicines with different forms (tablets, ointments, and capsules) was developed. This method is simple without the need for chemical reagents and sample pretreatments. It also has high throughput that the analysis speed can reach360samples per hour with manual sampling. In this method, the fragment ion signals exist in the full-scan spectra, these information can assist to identify the APIs.
     (6) The miniaturization was made for the current MWPAPDI source. The new miniature source is more easily to operate and the power consumption reduces. While the abilities for the desorption/ionization of this miniature source are still adequately kept and shown by the observation of the application experiments.
引文
[1]陈焕文,李明,金钦汉.质谱仪器及其发展[J].大学化学.2004,(03):9-15.
    [2]ALBERICI R M, SIMAS R C. SANVIDO G B. et al. Ambient mass spectrometry:Bringing ms into the "real world" [J]. Anal. Bioanal. Chem., 2010,398(1):265-294.
    [3]陈焕文,张燮,王志畅,等.表面解吸常压化学电离源及表面解吸常压化学电离质谱分析方法:中国.
    [4]OBERACHER H. On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA [J]. Anal. Bioanal. Chem.,2008,391(1):135-149.
    [5]KALTASHOV I, ZHANG M, EYLES S, et al. Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry [J]. Anal. Bioanal. Chem.,2006,386(3):472-481.
    [6]NIELEN M W F. Maldi time-of-flight mass spectrometry of synthetic polymers [J]. Mass Spectrom. Rev.,1999,18(5):309-344.
    [7]FENN J B, MANN M, MENG C K, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science,1989,246(4926):64-71.
    [8]KARAS M, BAHR U, GIE MANN U. Matrix-assisted laser desorption ionization mass spectrometry [J]. Mass Spectrom. Rev.,1991,10(5):335-357.
    [9]COLE R B. Electrospray ionization mass spectrometry:Fundamentals, instrumentation, and applications [M]. Wiley-Interscience,1997.
    [10]SANTOS L S. Reactive intermediates:Ms investigations in solution [M]. Vch Pub,2010.
    [11]陈焕文,胡斌,张燮.复杂样品质谱分析技术的原理与应用[J].分析化学,2010,38(8):1069-1088.
    [12]TAKATS Z, WISEMAN J M, GOLOGAN B,et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization [J]. Science,2004,306(5695):471-473.
    [13]PRAMANIK B N, GANGULY A K, GROSS M L. Applied electrospray mass spectrometry [M]. CRC,2002.
    [14]ERVE J C L, VASHISHTHA S C, DEMAIO W, et al. Metabolism of prazosin in rat, dog, and human liver microsomes and cryopreserved rat and human hepatocytes and characterization of metabolites by liquid chromatography/tandem mass spectrometry [J]. Drug Metab. Dispos.,2007, 35(6):908-916.
    [15]SANTOS L S. Online mechanistic investigations of catalyzed reactions by electrospray ionization mass spectrometry:A tool to intercept transient species in solution [J]. Eur. J. Org. Chem.,2008, (2):235-253.
    [16]ROB T, WILSON D J. A versatile microfluidic chip for millisecond time-scale kinetic studies by electrospray mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2009,20(1):124-130.
    [17]BAHR U, DEPPE A, KARAS M, et al. Mass spectrometry of synthetic polymers by uv-matrix-assisted laser desorption/ionization [J]. Anal. Chem., 1992,64(22):2866-2869.
    [18]BROWN R S, LENNON J J. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer [J]. Anal. Chem..1995,67(13):1998-2003.
    [19]THOMAS R C. EDGAR D I., ANDRIES P B, et al. Liquid chromatography/mass spectrometry [J]. Anal. Chem.,1986,58(14): 1451A-1461A.
    [20]LIN S N, MOODY D E, BIGELOW G E, et al. A validated liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry method for quantitation of cocaine and benzoylecgonine in human plasma [J]. J. Anal. Toxicol.,2001,25(7):497-503.
    [21]TIAN Q, FAILLA M L, BOHN T, et al. High-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry determination of cholesterol uptake by caco-2 cells [J]. Rapid Commun. Mass Spectrom.,2006,20(20):3056-3060.
    [22]REZANKA T, SIGLER K. The use of atmospheric pressure chemical ionization mass spectrometry with high performance liquid chromatography and other separation techniques for identification of triacylglycerols [J]. Curr. Anal. Chem.,2007,3(4):252-271.
    [23]ROBB D B, COVEY T R, BRUINS A P. Atmospheric pressure photoionization:An ionization method for liquid chromatography-mass spectrometry [J]. Anal. Chem.,2000,72(15):3653-3659.
    [24]RAFFAELLI A, SABA A. Atmospheric pressure photoionization mass spectrometry [J]. Mass Spectrom. Rev.,2003,22(5):318-331.
    [25]TAKINO M, TANAKA T, YAMAGUCHI K, et al. Atmospheric pressure photo-ionization liquid chromatography/mass spectrometric determination of aflatoxins in food [J]. Food Addit. Contam.,2004,21(1):76-84.
    [26]TABRIZCHI M, BAHRAMI H. Improved design for the atmospheric pressure photoionization source [J]. Anal. Chem.,2011,83(23):9017-9023.
    [27]CAI S S, STEVENS J, SYAGE J A. Ultra high performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry for high-sensitivity analysis of us environmental protection agency sixteen priority pollutant polynuclear aromatic hydrocarbons in oysters [J]. J. Chromatogr. A, 2012,1227:138-144.
    [28]GAUDIN M, IMBERT L, LIBONG D, et al. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies [J]. J. Am. Soc. Mass Spectrom.,2012,23(5):869-879.
    [29]N EZ O, GALLART-AYALA H, MARTINS C P B, et al. Atmospheric pressure photoionization mass spectrometry of fullerenes [J]. Anal. Chem., 2012,84(12):5316-5326.
    [30]VENTER A, NEFLIU M, COOKS R G. Ambient desorption ionization mass spectrometry [J]. TrAC, Trends Anal. Chem.,2008,27(4):284-290.
    [31]GU H, XU N, CHEN H. Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS) [J]. Anal. Bioanal. Chem.,2012.403(8):2145-2153.
    [32]FORD M J. VAN BERKEL G J. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system [J]. Rapid Commun. Mass Spectrom..2004. 18(12):1303-1309.
    [33]CODY R B, LARAM E J A, DURST H D. Versatile new ion source for the analysis of materials in open air under ambient conditions [J]. Anal. Chem., 2005,77(8):2297-2302.
    [34]MCEWEN C N, MCKAY R G, LARSEN B S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments [J]. Anal. Chem.,2005,77(23):7826-7831.
    [35]SHIEA J, HUANG M-Z, HSU H-J, et al. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids [J]. Rapid Commun. Mass Spectrom.,2005,19(24):3701-3704.
    [36]SHIEH I F, LEE C Y, SHIEA J. Eliminating the interferences from tris buffer and sds in protein analysis by fused-droplet electrospray ionization mass spectrometry [J]. J. Proteome Res.,2005,4(2):606-612.
    [37]TAKATS Z, COTTE-RODRIGUEZ I, TALATY N, et al. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry [J]. Chem. Commun.,2005, (15):1950-1952.
    [38]SAMPSON J S, HAWKRIDGE A M, MUDDIMAN D C. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) fourier transform ion cyclotron resonance mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2006,17(12): 1712-1716.
    [39]CHEN H W, VENTER A, COOKS R G. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation [J]. Chem. Commun.,2006, (19):2042-2044.
    [40]HADDAD R, SPARRAPAN R, Eberlin M N. Desorption sonic spray ionization for (high) voltage-free ambient mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2006,20(19):2901-2905.
    [41]RATCLIFFE L V, RUTTEN F J M, BARRETT D A, et al. Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry [J]. Anal. Chem.,2007,79(16):6094-6101.
    [42]NA N, ZHAO M, ZHANG S, et al. Development of a dielectric barrier discharge ion source for ambient mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2007,18(10):1859-1862.
    [43]ANDRADE F J, RAY S J, WEBB M R, et al. proceedings of the Proc.55th ASMS Conf. Mass Spectrometry Allied Topics, F,2007 [C].
    [44]CHEN H, YANG S, WORTMANN A, et al. Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry [J]. Angew. Chem. Int. Ed.,2007,46(40):7591-7594.
    [45]NEMES P, VERTES A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry [J]. Anal. Chem.,2007, 79(21):8098-8106.
    [46]CHEN H. OUYANG Z. COOKS R G. Thermal production and reactions of organic ions at atmospheric pressure [J]. Angew. Chem. Int. Ed.,2006,45(22): 3656-3660.
    [47]HAAPALA M, P L J, SAARELA V, et al. Desorption atmospheric pressure photoionization [J]. Anal. Chem.,2007,79(20):7867-7872.
    [48]IFA D R, MANICKE N E, RUSINE A L, et al. Quantitative analysis of small molecules by desorption electrospray ionization mass spectrometry from polytetrafluoroethylene surfaces [J]. Rapid Commun. Mass Spectrom.,2008, 22(4):503-510.
    [49]MORLOCK G, UEDA Y. New coupling of planar chromatography with direct analysis in real time mass spectrometry [J]. J. Chromatogr. A,2007,1143(1-2): 243-251.
    [50]HUANG M-Z, HSU H-J, LEE J-Y, et al. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry [J]. J. Proteome Res.,2006,5(5):1107-1116.
    [51]VAN BERKEL G J, FORD M J, DOKTYCZ M J, et al. Evaluation of a surface-sampling probe electrospray mass spectrometry system for the analysis of surface-deposited and affinity-captured proteins [J]. Rapid Commun. Mass Spectrom.,2006,20(7):1144-1152.
    [52]NA N, ZHANG C, ZHAO M, et al. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge [J]. J. Mass Spectrom.,2007,42(8):1079-1085.
    [53]WU C, SIEMS W F, HILL H H, JR. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs [J]. Anal. Chem., 2000,72(2):396-403.
    [54]JECKLIN M C, GAMEZ G, TOUBOUL D, et al. Atmospheric pressure glow discharge desorption mass spectrometry for rapid screening of pesticides in food [J]. Rapid Commun. Mass Spectrom.,2008,22(18):2791-2798.
    [55]ANDRADE F J, SHELLEY J T, WETZEL W C, et al. Atmospheric pressure chemical ionization source.2. Desorption-ionization for the direct analysis of solid compounds [J]. Anal. Chem.,2008,80(8):2654-2663.
    [56]REZENOM Y H, DONG J, MURRAY K K. Infrared laser-assisted desorption electrospray ionization mass spectrometry [J]. Analyst,2008,133(2):226-232.
    [57]HARPER J D, CHARIPAR N A, MULLIGAN C C, et al. Low-temperature plasma probe for ambient desorption ionization [J]. Anal. Chem.,2008,80(23): 9097-9104.
    [58]WANG H, LIU J, COOKS R G, et al. Paper spray for direct analysis of complex mixtures using mass spectrometry [J]. Angew. Chem. Int. Ed.,2010, 49(5):877-880.
    [59]SANTOS V G, REGIANI T S, DIAS F F G, et al. Venturi easy ambient sonic-spray ionization [J]. Anal. Chem.,2011,83(4):1375-1380.
    [60]CHEN H W, HU B, ZHANG X. Fundamental principles and practical applications of ambient ionization mass spectrometry for direct analysis of complex samples [J]. Chinese. J. Anal. Chem.,2010,38(8):1069-1088.
    [61]TAKATS Z, CZUCZY N, KATONA M, et al. proceedings of the the 54th ASMS Conference on Mass Spectrom., Seattle, USA, F,2006 [C].
    [62]LI M, HU B, LI J Q, et al. Extractive electrospray ionization mass spectrometry toward in situ analysis without sample pretreatment [J]. Anal. Chem.,2009,81(18):7724-7731.
    [63]VAN BERKEL G J, KERTESZ V, KOEPLINGER K A, et al. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections [J]. J. Mass Spectrom., 2008,43(4):500-508.
    [64]LUFTMANN H. A simple device for the extraction of TLC spots:Direct coupling with an electrospray mass spectrometer [J]. Anal. Bioanal. Chem., 2004,378(4):964-968.
    [65]G NTHER D, HATTENDORF B. Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry [J]. TrAC, Trends Anal. Chem., 2005,24(3):255-265.
    [66]LAIKO V V, BALDWIN M A, BURLINGAME A L. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [J]. Anal. Chem., 2000,72(4):652-657.
    [67]DANIEL J M, EHALA S, FRIESS S D, et al. On-line atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [J]. Analyst, 2004,129(7):574-578.
    [68]HARADA T, YUBA-KUBO A, SUGIURA Y, et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope [J]. Anal. Chem.,2009,81(21):9153-9157.
    [69]WU J, HUGHES C S, PICARD P, et al. High-throughput cytochrome p450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry [J]. Anal. Chem.,2007,79(12): 4657-4665.
    [70]韩京,李建强,张燮,等.常压热解离化学电离源的研制及表征[J].分析化学,2011,39(2):288-292.
    [71]MANICKE N E, WISEMAN J M, IFA D R, et al. Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids:Ionization, adduct formation, and fragmentation [J]. J. Am. Soc. Mass Spectrom.,2008,19(4):531-543.
    [72]CHEN H W, ZENOBI R. proceedings of the 6th European Workshop on Secondary Ion Mass Spectrometry, Munich, Germany, F,2008 [C].
    [73]LUO M, HU B, ZHANG X, et al. Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples [J]. Anal. Chem.,2010,82(1):282-289.
    [74]STEEB J, GALHENA A S, NYADONG L, et al. Beta electron-assisted direct chemical ionization (BADCI) probe for ambient mass spectrometry [J]. Chem. Commun.,2009, (31):4699-4701.
    [75]HUANG M Z, CHENG S C, CHO Y T, et al. Ambient ionization mass spectrometry:A tutorial [J]. Anal. Chim. Acta,2011,702(1):1-15.
    [76]HUANG M Z, YUAN C H. CHENG S C. et al. Ambient ionization mass spectrometry [J]. Annual Review of Analytical Chemistry, Vol 3.2010.3: 43-65.
    [77]HONG C-M, LEE C-T, LEE Y-M, et al. Generating electrospray from solutions predeposited on a copper wire [J]. Rapid Commun. Mass Spectrom., 1999,13(1):21-25.
    [78]HIRAOKA K, NISHIDATE K, MORI K, et al. Development of probe electrospray using a solid needle [J]. Rapid Commun. Mass Spectrom.,2007, 21(18):3139-3144.
    [79]HAGER D B, DOVICHI N J, KLASSEN J, et al. Droplet electrospray mass spectrometry [J]. Anal. Chem.,1994,66(22):3944-3949.
    [80]KIM H I, KIM H J, SHIN Y S, et al. Interfacial reactions of ozone with surfactant protein b in a model lung surfactant system [J]. J. Am. Chem. Soc., 2010,132(7):2254-2263.
    [81]WU C-I, WANG Y-S, CHEN N G, et al. Ultrasound ionization of biomolecules [J]. Rapid Commun. Mass Spectrom.,2010,24(17):2569-2574.
    [82]JENG J, LIN C-H, SHIEA J. Electrospray from nanostructured tungsten oxide surfaces with ultralow sample volume [J]. Anal. Chem.,2005,77(24): 8170-8173.
    [83]CHEN L C, YOSHIMURA K, YU Z, et al. Ambient imaging mass spectrometry by electrospray ionization using solid needle as sampling probe [J]. J. Mass Spectrom.,2009,44(10):1469-1477.
    [84]LIU J, WANG H, MANICKE N E, et al. Development, characterization, and application of paper spray ionization [J]. Anal. Chem.,2010,82(6): 2463-2471.
    [85]WANG H, MANICKE N E,YANG Q A, et al. Direct analysis of biological tissue by paper spray mass spectrometry [J]. Anal. Chem.,2011,83(4): 1197-1201.
    [86]TAK TS Z, WISEMAN J M, COOKS R G. Ambient mass spectrometry using desorption electrospray ionization (DESI):Instrumentation, mechanisms and applications in forensics, chemistry, and biology [J]. J. Mass Spectrom.,2005, 40(10):1261-1275.
    [87]COSTA A B, COOKS R G. Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization [J]. Chem. Commun.,2007, (38):3915-3917.
    [88]OZDEMIR A, CHEN C-H. Electrode-assisted desorption electrospray ionization mass spectrometry [J]. J. Mass Spectrom.,2010,45(10):1203-1211.
    [89]HADDAD R, CATHARINO R R, MARQUES L A, et al. Perfume fingerprinting by easy ambient sonic-spray ionization mass spectrometry: Nearly instantaneous typification and counterfeit detection [J]. Rapid Commun. Mass Spectrom.,2008,22(22):3662-3666.
    [90]COTTE-RODRIGUEZ I, HERNANDEZ-SOTO H, CHEN H, et al. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization [J]. Anal. Chem.. 2008,80(5):1512-1519.
    [91]WU Z C, CHEN H W, WANG W L, et al. Differentiation of dried sea cucumber products from different geographical areas by surface desorption atmospheric pressure chemical ionization mass spectrometry [J]. J. Agr. Food Chem.,2009,57(20):9356-9364.
    [92]CHEN L C, HASHIMOTO Y, FURUYA H, et al. Rapid detection of drugs in biofluids using atmospheric pressure chemi/chemical ionization mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2009,23(3):333-339.
    [93]LIU Y, LIN Z, ZHANG S, et al. Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe [J]. Anal. Bioanal. Chem.,2009,395(3):591-599.
    [94]ZHANG Y, MA X X, ZHANG S C, et al. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry [J]. Analyst,2009,134(1):176-181.
    [95]ANDRADE F J, SHELLEY J T, WETZEL W C, et al. Atmospheric pressure chemical ionization source.1. Ionization of compounds in the gas phase [J]. Anal. Chem.,2008,80(8):2646-2653.
    [96]LI X, WANG H, SUN W, et al. Desorption corona beam ionization coupled with a poly(dimethylsiloxane) substrate:Broadening the application of ambient ionization for water samples [J]. Anal. Chem.,2010,82(22):9188-9193.
    [97]WANG H, SUN W, ZHANG J, et al. Desorption corona beam ionization source for mass spectrometry [J]. Analyst,2010,135(4):688-695.
    [98]INUTAN E D, TRIMPIN S. Laserspray ionization-ion mobility spectrometry-mass spectrometry:Baseline separation of isomeric amyloids without the use of solvents desorbed and ionized directly from a surface [J]. J. Proteome Res.,2010,9(11):6077-6081.
    [99]YUAN M, KANEKO T, YOKOYAMA Y, et al. Liquid ionization mass spectrometry of some triorganotin carboxylates [J]. Anal. Sci.,2001,17(12): 1405-1411.
    [100]HIRAOKA K, FUJIMAKI S, KAMBARA S, et al. Atmospheric-pressure penning ionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2004,18(19):2323-2330.
    [101]BRADY J J, JUDGE E J, LEVIS R J. Identification of explosives and explosive formulations using laser electrospray mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2010,24(11):1659-1664.
    [102]LIU J, QIU B, LUO H. Fingerprinting of yogurt products by laser desorption spray post-ionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2010,24(9):1365-1370.
    [103]COON J J, HARRISON W W. Laser desorption-atmospheric pressure chemical ionization mass spectrometry for the analysis of peptides from aqueous solutions [J]. Anal. Chem.,2002,74(21):5600-5605.
    [104]HSU H-J, KUO T-L, WU S-H, et al. Characterization of synthetic polymers by electrospray-assisted pyrolysis ionization-mass spectrometry [J]. Anal. Chem.. 2005,77(23):7744-7749.
    [105]BASILE F, ZHANG S, SHIN Y-S. et al. Atmospheric pressure-thermal desorption (AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of bacillus spores [J]. Analyst.2010,135(4):797-803.
    [106]LIN J-Y, CHEN T-Y, CHEN J-Y, et al. Multilayer gold nanoparticle-assisted thermal desorption ambient mass spectrometry for the analysis of small organics [J]. Analyst,2010,135(10):2668-2675.
    [107]LEE C-Y, SHIEA J. Gas chromatography connected to multiple channel electrospray ionization mass spectrometry for the detection of volatile organic compounds [J]. Anal. Chem.,1998,70(13):2757-2761.
    [108]BRENNER N, HAAPALA M, VUORENSOLA K, et al. Simple coupling of gas chromatography to electrospray ionization mass spectrometry [J]. Anal. Chem.,2008,80(21):8334-8339.
    [109]TAM M, HILL H H. Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection [J]. Anal. Chem.,2004,76(10): 2741-2747.
    [110]BEAN H D, ZHU J, HILL J E. Characterizing bacterial volatiles using secondary electrospray ionization mass spectrometry (SESI-MS) [J]. J Vis Exp, 2011,(52):e2664.
    [111]CHANG D-Y, LEE C-C, SHIEA J. Detecting large biomolecules from high-salt solutions by fused-droplet electrospray ionization mass spectrometry [J]. Anal. Chem.,2002,74(11):2465-2469.
    [112]CHINGIN K, CHEN H, GAMEZ G, et al. Detection of diethyl phthalate in perfumes by extractive electrospray ionization mass spectrometry [J]. Anal. Chem.,2009,81(1):123-129.
    [113]HIRAOKA K, FURUYA H, KAMBARA S, et al. Atmospheric-pressure penning ionization of aliphatic hydrocarbons [J]. Rapid Commun. Mass Spectrom.,2006,20(21):3213-3222.
    [114]PENG I X, SHIEA J, LOO R R O, et al. Electrospray-assisted laser desorption/ionization and tandem mass spectrometry of peptides and proteins [J]. Rapid Commun. Mass Spectrom.,2007,21(16):2541-2546.
    [115]SAMPSON J S, HAWKRIDGE A M, MUDDIMAN D C. Development and characterization of an ionization technique for analysis of biological macromolecules:Liquid matrix-assisted laser desorption electrospray ionization [J]. Anal. Chem.,2008,80(17):6773-6778.
    [116]SAMPSON J S, MURRAY K K, MUDDIMAN D C. Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to FT-ICR mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2009,20(4):667-673.
    [117]JUDGE E J, BRADY J J, DALTON D, et al. Analysis of pharmaceutical compounds from glass, fabric, steel, and wood surfaces at atmospheric pressure using spatially resolved, nonresonant femtosecond laser vaporization electrospray mass spectrometry [J]. Anal. Chem.,2010,82(8):3231-3238.
    [118]JUDGE H J. BRADY J J, LEVIS R J. Mass analysis of biological macromolecules at atmospheric pressure using nonresonant femtosecond laser vaporization and electrospray ionization [J]. Anal. Chem.,2010,82(24): 10203-10207.
    [119]BRADY J, JUDGE E, LEVIS R. Analysis of amphiphilic lipids and hydrophobic proteins using nonresonant femtosecond laser vaporization with electrospray post-ionization [J]. J. Am. Soc. Mass Spectrom.,2011,22(4): 762-772.
    [120]CHENG S C, CHENG T L, CHANG H C, et al. Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions [J]. Anal. Chem.,2009,81(3):868-874.
    [121]COON J J, STEELE H A, LAIPIS P J, et al. Laser desorption-atmospheric pressure chemical ionization:A novel ion source for the direct coupling of polyacrylamide gel electrophoresis to mass spectrometry [J]. J. Mass Spectrom.,2002,37(11):1163-1167.
    [122]MCEWEN C, GUTTERIDGE S. Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method [J]. J. Am. Soc. Mass Spectrom.,2007,18(7):1274-1278.
    [123]NILLES J M, CONNELL T R, DURST H D. Quantitation of chemical warfare agents using the direct analysis in real time (DART) technique [J]. Anal. Chem.,2009,81(16):6744-6749.
    [124]GRANGE A H, SOVOCOOL G W. Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2011,25(9):1271-1281.
    [125]LUOSUJARVI L, ARVOLA V, HAAPALA M, et al. Desorption atmospheric pressure photoionization-mass spectrometry in drug analysis [J]. Eur. J. Pharm. Sci.,2008,34(1):S29-S29.
    [126]MASON R, MILTON D. Glow discharge mass spectrometry of some organic compounds [J]. Int. J. Mass Spectrom. Ion Processes,1989,91(2):209-225.
    [127]CARAZZATO D, BERTRAND M J. Characterization of a glow discharge ion source for the mass spectrometric analysis of organic compounds [J]. J. Am. Soc. Mass Spectrom.,1994,5(4):305-315.
    [128]HANSEL A, JORDAN A, HOLZINGER R, et al. Proton transfer reaction mass spectrometry:On-line trace gas analysis at the ppb level [J]. Int. J. Mass Spectrom. Ion Processes,1995,149-150(0):609-619.
    [129]P. GUZOWSKI J J, A. C. BROEKAERT J, J. RAY S, et al. Development of a direct current gas sampling glow discharge ionization source for the time-of-flight mass spectrometer [J]. J. Anal. Atom. Spectrom,1999,14(8): 1121-1127.
    [130]NEWMAN K, MASON R S. Gas chromatography combined with fast flow glow discharge mass spectrometry (GC-FFGD-MS) [J]. J. Anal. Atom. Spectrom,2004,19(9):1134-1140.
    [131]ANDRADE F J, WETZEL W C, CHAN G C Y, et al. A new, versatile, direct-current helium atmospheric-pressure glow discharge[J].J. Anal. Atom. Spectrom,2006,21 (11):1175-1184.
    [132]ZHAO J, LUBMAN D M. Detection of liquid injection using an atmospheric pressure ionization radiofrequency plasma source [J]. Anal. Chem.,1993, 65(7):866-876.
    [133]GUEVREMONT R, STURGEON R E. Atmospheric pressure helium RF plasma source for atomic and molecular mass spectrometry [J]. J. Anal. Atom. Spectrom,2000,15(1):37-42.
    [134]SOFER I, ZHU J, LEE H-S, et al. An atmospheric-pressure glow discharge ionization source [J]. Appl. Spectrosc.,1990,44(8):1391-1398.
    [135]ZHAO J, ZHU J, LUBMAN D M. Liquid sample injection using an atmospheric pressure direct current glow discharge ionization source [J]. Anal. Chem.,1992,64(13):1426-1433.
    [136]JACKSON A U, GARCIA-REYES J F, HARPER J D, et al. Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry [J]. Analyst,2010,135(5):927-933.
    [137]WILEY J S, GARCIA-REYES J F, HARPER J D, et al. Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry [J]. Analyst,2010,135(5):971-979.
    [138]MA X X, ZHANG S C, LIN Z Q, et al. Real-time monitoring of chemical reactions by mass spectrometry utilizing a low-temperature plasma probe [J]. Analyst,2009,134(9):1863-1867.
    [139]NA N, XIA Y, ZHU Z L, et al. Birch reduction of benzene in a low-temperature plasma [J]. Angew. Chem. Int. Ed.,2009,48(11):2017-2019.
    [140]ZHANG J I, TAO W A, COOKS R G. Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry [J]. Anal. Chem.,2011,83(12):4738-4744.
    [141]TAGHIOSKOUI M, ZAGHLOUL M, MONTASER A. An atmospheric pressure ultrahigh frequency plasma jet for ambient mass spectrometry; proceedings of the Sensors,2010 IEEE, F 1-4 Nov.2010,2010 [C].
    [142]TAGHIOSKOUI M, ZAGHLOUL M, MONTASER A. Tongue-shaped ultrahigh frequency atmospheric pressure plasma jet; proceedings of the Plasma Science (ICOPS),2011 Abstracts IEEE International Conference on, F 26-30 June 2011,2011 [C].
    [143]SHELLEY J T, WILEY J S, HIEFTJE G M. Ultrasensitive ambient mass spectrometric analysis with a pin-to-capillary flowing atmospheric-pressure afterglow source [J]. Anal. Chem.,2011,83(14):5741-5748.
    [144]陈杰瑢.低温等离子体化学及其应用[M].北京;科学出版社.2001.
    [145]金钦汉,杨广德,于爱民,等.一种新型的等离子体光源[J].吉林大学自然科学学报,1985,(1):90-92.
    [146]JIN Q, ZHU C, BORDER M W, et al. A microwave plasma torch assembly for atomic emission spectrometry [J]. Spectrochim. Acta Part B,1991,46(3): 417-430.
    [147]汪淑华.氧屏蔽氩微波等离子体炬(Os-ArMPT)激发光源的诊断及其应 用研究[D];吉林大学.2006.
    [148]QUIMBY B D. SULLIVAN J J. Evaluation of a microwave cavity, discharge-tube, and gas-flow system for combined gas-chromatography atomic emission detection [J]. Anal. Chem.,1990,62(10):1027-1034.
    [149]JIN Q H. YANG G D, YU A M, et al. A novel plasma emission source-microwave plasma torch (MPT) [M]. Pittcon'85,. New Orleans USA. 1985:1171.
    [150]杨广德,郭振库,于爱民,等.微波等离子体炬离子化色谱检测器(MPTID)的研究[J].吉林大学自然科学学报,1987,(03):87-90.
    [151]金钦汉,王芬蒂.微波等离子体炬光源基本特性的研究[J].高等学校化学学报,1990,11(12):1353-1356.
    [152]JIN Q H, WANG F D, ZHU C, et al. Atomic emission detector for gas-chromatography and supercritical fluid chromatography [J]. J. Anal. Atom. Spectrom,1990,5(6):487-494.
    [153]JIN Q H, ZHANG H Q, YU A M, et al. Studies on fundamental characteristics of a new analytical source—microwave plasma torch (MPT) discharge [J]. Ana. Sci. (Supplement),1991,7:559-562.
    [154]DUAN Y X, KONG X X, ZHANG H Q, et al. Evaluation of a low-powered argon microwave plasma discharge as an atomizer for the determination of mercury by atomic fluorescence spectrometry [J]. J. Anal. Atom. Spectrom, 1992,7(1):7-10.
    [155]JIN Q H, YU A M, FAN F L. Spectrosc. Spect. Anal,1992,12:51
    [156]YE D M, ZHAO J H, ZHANG H Q, et al. Studies on combination of flow injection and microwave plasma torch-atomic emission spectrometry [J]. Chem. Res. Chin. Univ.,1993,9(3):246-247.
    [157]MADRID Y, WU M, JIN Q, et al. Evaluation of flow-injection techniques for microwave plasma torch atomic emission spectrometry [J]. Anal. Chim. Acta, 1993,277(1):1-8.
    [158]PEREIRO R, WU M, BROEKAERT J A C, et al. Direct coupling of continuous hydride generation with microwave plasma torch atomic-emission spectrometry for the determination of arsenic, antimony and tin [J]. Spectrochim. Acta B,1994,49(1):59-73.
    [159]WU M, DUAN Y, JIN Q, et al. Elemental mass spectrometry using a helium microwave plasma torch as an ion source [J]. Spectrochim. Acta Part B,1994, 49(2):137-148.
    [160]CAMU A-AGUILAR J F, PEREIRO-GARCIA R, S NCHEZ-UR A J E, et al. A comparative study of three microwave induced plasma sources for atomic emission spectrometry—ⅰ. Excitation of mercury and its determination after on-line continuous cold vapour generation [J]. Spectrochim. Acta Part B,1994, 49(5):475-484.
    [161]LIANG F, ZHANG D I, LEI Y H, et al. Determination of selected noble metals by MPT-AES using a pneumatic nebulizer [J]. Microchem. J.,1995, 52(2):181-187.
    [162]梁枫,赵丽巍,张寒琦,等.一种可用于微波等离子体炬原子发射光法的 热雾化系统[J].高等学校化学学报,1997,18(7):1031-1034.
    [163]杨文军.微波等离子体炬原子发射光谱法新技术与新仪器的研究[D];吉林大学,1997.
    [164]PACK B W. Novel instrumentation systems for atomic spectrometry [D]; Indiana University,1997.
    [165]PACK B W, BROEKAERT J A C, GUZOWSKI J P, et al. Determination of halogenated hydrocarbons by helium microwave plasma torch time-of-flight mass spectrometry coupled to gas chromatography [J]. Anal. Chem.,1998, 70(18):3957-3963.
    [166]杨文军,张达欣,赵晓君,等.离子色谱用微波等离子体炬原子发射光谱检测器[J].吉林大学自然科学学报,1997,(01):87—89.
    [167]BILGIC A M, PROKISCH C, BROEKAERT J A C, et al. Design and modelling of a modified 2.45 GHz coaxial plasma torch for atomic spectrometry [J]. Spectrochim. Acta Part B,1998,53(5):773-777.
    [168]PACK B W, HIEFTJE G M, JIN Q. Use of an air/argon microwave plasma torch for the detection of tetraethyllead [J]. Anal. Chim. Acta,1999,383(3): 231-241.
    [169]PROKISCH C, BILGIC A M, VOGES E, et al. Photographic plasma images and electron number density as well as electron temperature mappings of a plasma sustained with a modified argon microwave plasma torch (MPT) measured by spatially resolved thomson scattering [J]. Spectrochim. Acta Part B,1999,54(9):1253-1266.
    [170]弓振斌,梁枫,金钦汉,等.微波等离子体炬离子/原子荧光光谱研究—稀土元素铕的离子/原子荧光光谱[J].光谱学与光谱分析,1999,(03):101—104.
    [171]弓振斌,梁枫,杨艽原,等.空心阴极灯激发的微波等离子体炬原子/离子荧光光谱研究——钙的原子/离子荧光光谱[J].光谱学与光谱分析,2002,(01):63—66.
    [172]ZHAO L, SONG D, ZHANG H, et al. Studies on end-on-viewed microwave plasma torch atomic emission spectrometry [J]. J. Anal. Atom. Spectrom,2000, 15(8):973-978.
    [173]LIANG P, LI A. Determination of arsenic by continuous hydride generation with direct introduction into an O2-argon microwave plasma torch atomic emission spectrometer [J]. Fresenius'J. Anal. Chem.,2000,368(4):418-420.
    [174]GONG Z, CHAN W F, WANG X, et al. Determination of arsenic and antimony by microwave plasma atomic emission spectrometry coupled with hydride generation and a PTFE membrane separator [J]. Anal. Chim. Acta, 2001,450(1-2):207-214.
    [175]BARNES IV J H, GR N O A, HIEFTJE G M. Characterization of an argon microwave plasma torch coupled to a mattauch-herzog geometry mass spectrometer [J]. J. Anal. Atom. Spectrom,2002,17(9):1132-1136.
    [176]金钦汉,曹彦波,郇延富,等.微波等离子体炬全谱仪:中国,ZL03127672.5[P/OL].
    [177]VAN DER MULLEN J, BOIDIN G, VAN DE SANDEA M. High-resolution electron density and temperature maps of a microwave plasma torch measured with a 2-D thomson scattering system [J]. Spectrochim. Acta Part B.2004. 59(7):929-940.
    [178]FENG G-D, JIANG J. HUAN Y-F, et al. Evaluation of improved ultrasonic nebulizer for miniature simultaneous microwave plasma torch spectrometer [J]. Chem. Res. Chin. Univ.,2006,22(3):297-301.
    [179]FENG G-D, WAN Y, HUAN Y-F, et al. Study of spectral character of alkali metals using microwave plasma torch simultaneous spectrometer [J]. Chem. Res. Chin. Univ.,2006,22(6):703-707.
    [180]师宇华,吴立航,李红梅,等.气相色谱-微波等离子体炬双检测器及其气相色谱的响应特性[J].高等学校化学学报,2007,28(10):1842-1845.
    [181]HUANG M, HANSELMAN D S, JIN Q, et al. Non-thermal features of atmospheric-pressure argon and helium microwave-induced plasmas observed by laser-light thomson scattering and rayleigh scattering [J]. Spectrochim. Acta Part B,1990,45(12):1339-1352.
    [182]BROEKAERT J A C, BILGIC A M, ENGEL U, et al. Investigations with microwave plasma torch (MPT) atomic emission spectrometry for the determination of elements and their compounds [M]. FACCS. Providence. 1997.
    [183]北京邮电学院微波专业编.微波技术基础(下册)[M].北京:人民邮电出版社,1976.
    [184]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.
    [185]CAMU A-AGUILAR J F, PEREIRO-GARCIA R, S NCHEZ-UR A J E, et al. A comparative study of three microwave-induced plasma sources for atomic emission spectrometry-ⅱ. Evaluation of their atomization/excitation capabilities for chlorinated hydrocarbons [J]. Spectrochim. Acta Part B,1994, 49(6):545-554.
    [186]DUAN Y X, WU M, JJN Q H, et al. Vapor generation of nonmetals coupled to microwave plasma-torch mass-spectrometry [J]. Spectrochim. Acta B,1995, 50(9):1095-1108.
    [187]LI G Q, DUAN Y X, HIEFTJE G M. Space-charge effects and ion distribution in plasma source-mass spectrometry [J]. J. Mass Spectrom.,1995,30(6): 841-848.
    [188]DUAN Y, KONG X, ZHANG H, et al. Evaluation of atomic fluorescence spectrometry for determination of mercury using a low-powered argon microwave plasma torch (MPT) [J]. Chem. Res. Chin. Univ.,1991,7(1): 59-61.
    [189]段忆翔,杜晓光,刘军,等.气动雾化进样微波等离子体炬(MPT)原子荧光光谱法测定锌的研究[J].分析化学,1993,(05):610-614.
    [190]LI Y, DUAN Y, LIU J, et al. Evaluation of microwave plasma torch for atomic fluorescence spectrometry with ultrasonic nebulization sample introduction system [J]. Chin. Chem. Lett.,1993,4(7):615-618.
    [191]DUAN Y X, DU X G, LI Y M, et al. Characterization of a modified, low-power argon microwave plasma torch (MPT) as an atomization cell for atomic fluorescence spectrometry [J]. Appl. Spectrosc.,1995,49(8): 1079-1085.
    [192]李一木,段忆翔,张寒琦,等.超声雾化进样法MPT-AFS的研究[J].分析试验室,1996,(03):24-27.
    [193]NG K C, JENSEN R S, BRECHMANN M J. et al. Microwave induced plasma atomic-absorption spectrometry with solution nebulization [J]. Anal. Chem., 1988,60(24):2818-2821.
    [194]HUI L, YULIN R, HANQI Z, et al. Quantitation of cadmium by microwave-induced plasma atomic-absorption spectrometry [J]. Microchem. J., 1991,44(1):86-92.
    [195]凌笑梅,张寒琦,邴贵德,等.铅的MIP-AAS测定[J].吉林大学自然科学学报,1990,(02):99-101.
    [196]GALANTE L J, SELBY M, LUFFER D R, et al. Characterization of microwave-induced plasma as a detector for supercritical fluid chromatography [J]. Anal. Chem.,1988,60(14):1370-1376.
    [197]金钦汉,黄矛,HIEFTJE G M.微波等离子体原子光谱分析[M].长春:吉林大学出版社,1993.
    [198]ABDALLAH M H, COULOMBE S, MERMET J M, et al. An assessment of an atmospheric pressure helium microwave plasma produced by a surfatron as an excitation source in atomic emission spectroscopy [J]. Spectrochim. Acta Part B,1982,37(7):583-592.
    [199]JIN Q H, ZHU C, BRUSHWYLER K, et al. An efficient and inexpensive ultrasonic nebulizer for atomic spectrometry [J]. Appl. Spectrosc.,1990,44(2): 183-186.
    [200]LIANG F, ZHANG H Q, JIN Q, et al. Use of microwave plasma torch atomic emission spectrometry for the determination of silicon [J]. Fresenius'J. Anal. Chem.,1997,357(4):384-388.
    [201]JIN Q, ZHANG H, LIANG F, et al. Determination of trace amounts of boron by microwave plasma torch atomic emission spectrometry using an on-line separation and preconcentration technique [J]. J. Anal. Atom. Spectrom,1996, 11(5):331-337.
    [202]WU M, MADRID Y, AUXIER J A, et al. New spray chamber for use in flow-injection plasma emission-spectrometry [J]. Anal. Chim. Acta,1994, 286(2):155-167.
    [203]HOUK R S, FASSEL V A, FLESCH G D, et al. Inductively coupled argon plasma as an ion-source for mass-spectrometric determination of trace-elements [J]. Anal. Chem.,1980,52(14):2283-2289.
    [204]DOUGLAS D J, FRENCH J B. Elemental analysis with a microwave-induced plasma/quadrupole mass spectrometer system [J]. Anal. Chem.,1981,53(1): 37-41.
    [205]OLSON L K, HEITKEMPER D T, CARUSO J A. Chromatographic detection by plasma mass-spectrometry [J]. ACS Symp. Ser.,1992,479:288-308.
    [206]READ P, BEERE H, EBDON L, et al. Gas chromatography microwave-induced plasma mass spectrometry (GC-MIP-MS):A multi-element analytical tool for organic geochemistry [J]. Org. Geochem., 1997,26(1-2):11-17.
    [207]STORY W C, CARUSO J A. Gas-chromatographic determination of phosphorus, sulfur and halogens using a water-cooled torch with reduced-pressure helium microwave-induced plasma-mass spectrometry [J]. J. Anal. Atom. Spectrom,1993,8(4):571-575.
    [208]KWON J Y, MOINI M. Analysis of underivatized amino acid mixtures using high performance liquid chromatography/dual oscillating nebulizer atmospheric pressure microwave induced plasma ionization-mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,2001,12(1):117-122.
    [209]MOINI M, XIA M, STEWART J B, et al. Atmospheric pressure microwave induced plasma ionization source for molecular mass spectrometry [J]. J. Am. Soc. Mass Spectrom.,1998,9(1):42-49.
    [210]ZAP ATA A M, BOCK C L, ROBBAT A. Performance evaluation of a gas chromatograph coupled to a capillary microwave-induced plasma mass spectrometer [J]. J. Anal. Atom. Spectrom,1999,14(8):1187-1192.
    [211]WAN T, YU D, ZHANG T, et al. A rapid method for detection of gunshot residue using microwave plasma torch-mass spectrometry [J]. Procedia Eng., 2010,7(0):22-27.
    [212]SU Y X, DUAN Y X, JIN Z. Helium plasma source time-of-flight mass spectrometry:Off-cone sampling for elemental analysis [J]. Anal. Chem.,2000, 72(11):2455-2462.
    [213]DUAN Y X, WU M, JIN W H, et al. Vapor-generation assisted nebulization for nonmetal determination [J]. Spectrochim. Acta B,1995,50(9):971-974.
    [214]RAY S J, HIEFTJE G M. Microwave plasma torch-atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra [J]. Anal. Chim. Acta,2001, 445(1):35-45.
    [215]SHELLEY J T, HIEFTJE G M. Ambient mass spectrometry:Approaching the chemical analysis of things as they are [J]. J. Anal. Atom. Spectrom,2011, 26(11):2153-2159.
    [216]CHEN H W, GAMEZ G, ZENOBI R. What can we learn from ambient ionization techniques? [J]. J. Am. Soc. Mass Spectrom.,2009,20(11): 1947-1963.
    [217]COOKS R G, OUYANG Z, TAKATS Z, et al. Ambient mass spectrometry [J]. Science,2006,311(5767):1566-1570.
    [218]DUAN Y, KONG X, ZHANG H, et al. Evaluation of atomic fluorescence spectrometry for determination of mercury using a low-powered argon microwave plasma torch (MPT) [J]. Chem. Res. Chinese U.,1991,7(1):59-61.
    [219]Corsair API-ToF mass spectrometer instrument handbook [M/OL].2007 [
    [220]SYMONDS J M, GALHENA A S, FERNANDEZ F M, et al. Microplasma discharge ionization source for ambient mass spectrometry [J]. Anal. Chem., 2010,82(2):621-627.
    [221]FUJII T, IWASE K, SELVIN P C. Mass spectrometric analysis of a N2/H2 microwave discharge plasma [J]. Int. J. Mass. Spectrom.,2002,216(2): 169-175.
    [222]PEREZ J J, HARRIS G A, CHIPUK J E, et al. Transmission-mode direct analysis in real time and desorption electrospray ionization mass spectrometry of insecticide-treated bednets for malaria control [J]. Analyst,2010.135(4): 712-719.
    [223]WESTMORE J B, ALAUDDIN M M. Ammonia chemical ionization mass-spectrometry [J]. Mass Spectrom. Rev.,1986,5(4):381-465.
    [224]NAKATA H, KONISHI H, TAKEDA N, et al. Ammonium adduct ion in ammonia chemical ionization mass spectrometry. Formation of adduct ion [J]. Journal of the Mass Spectrometry Society of Japan,1983,31(4):275-279.
    [225]KEOUGH T, DESTEFANO A J. Factors affecting reactivity in ammonia chemical ionization mass spectrometry [J]. Organic Mass Spectrometry,1981, 16(12):527-533.
    [226]MAHLE N H, COOKS R G, KORZENIOWSKI R W. Hydroxylation of aromatic hydrocarbons in mass spectrometer ion sources under atmospheric pressure ionization and chemical ionization conditions [J]. Anal. Chem.,1983, 55(14):2272-2275.
    [227]LI X, HARRISON A G. Structures of the adduct ions formed in the ammonia chemical ionization of ketones [J]. J. Am. Chem. Soc.,1993,115(14): 6327-6332.
    [228]钱秉钧,董庆年.烃类结构族的红外光谱分析ⅰ.正构烷烃的测定[J]. 燃料化学学报,1965,(2):
    [229]HANSEL A, JORDAN A, HOLZINGER R, et al. Proton transfer reaction mass spectrometry:On-line trace gas analysis at the ppb level [J]. International Journal of Mass Spectrometry and Ion Processes,1995,149-150:609-619.
    [230]BLAKE R S, MONKS P S, ELLIS A M. Proton-transfer reaction mass spectrometry [J]. Chem. Rev.,2009,109(3):861-896.
    [231]HANSEL A, JORDAN A, WARNEKE C, et al. Improved detection limit of the proton-transfer reaction mass spectrometer:On-line monitoring of volatile organic compounds at mixing ratios of a few pptv [J]. Rapid Commun. Mass Spectrom.,1998,12(13):871-875.
    [232]HUNTER E P L, LIAS S G. Evaluated gas phase basicities and proton affinities of molecules:An update [J]. J. Phys. Chem. Ref. Data,1998,27(3): 413-656.
    [233]JOBSON B T, ALEXANDER M L, MAUPIN G D, et al. On-line analysis of organic compounds in diesel exhaust using a proton transfer reaction mass spectrometer (PTR-MS) [J]. Int. J. Mass. Spectrom.,2005,245(1-3):78-89.
    [234]SPANEL P, SMITH D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several aromatic and aliphatic hydrocarbons [J]. Int. J. Mass. Spectrom.,1998,181(1-3):1-10.
    [235]ARNOLD S T, VIGGIANO A A, MORRIS R A. Rate constants and product branching fractions for the reactions of H3O+ and NO+ with C2-C12 alkanes [J]. The Journal of Physical Chemistry A,1998,102(45):8881-8887.
    [236| CAMPBELL J L. CRAWFORD K E. KENTT MAA H I. Analysis of saturated hydrocarbons by using chemical ionization combined with laser-induced acoustic desorption/fourier transform ion cyclotron resonance mass spectrometry [J]. Analytical Chemistry.2004,76(4):959-963.
    [237]赵华侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [238]Nist chemistry webbook [M].
    [239]MCTAGGART F K. Plasma chemistry in electrical discharges [M]. Amsterdam, New York:Elsevier Publishing Co.,1967.
    [240]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001.
    [241]FRANKE R, GRUSKA A, GIULIANI A, et al. Prediction of rodent carcinogenicity of aromatic amines:A quantitative structure-activity relationships model [J]. Carcinogenesis,2001,22(9):1561-1571.
    [242]YE S Q, WU H, ZHANG C H, et al. Separation of carcinogenic aromatic amines in the food colourants plant wastewater treatment [J]. Desalination., 2008,222(1-3):294-301.
    [243]YASUNAGA Y, NAKANISHI H, NAKA N, et al. Alterations of the p53 gene in occupational bladder cancer in workers exposed to aromatic amines [J]. Lab. Invest.,1997,77(6):677-684.
    [244]OGATA A, YAMANOUCHI K, MIZUNO K, et al. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure [J]. Plasma Chem. Plasma P,1999,19(3):383-394.
    [245]TEZUKA M, YAJIMA T. Oxidation of aromatic hydrocarbons with oxygen in a radiofrequency plasma [J]. Plasma Chem. Plasma P,1996,16(3):329-340.
    [246]SHIH S I, LIN T C, SHIH M L. Decomposition of benzene in the rf plasma environment-part ⅱ. Formation of polycyclic aromatic hydrocarbons [J]. J. Hazard. Mater.,2005,117(2-3):149-159.
    [247]SHIH S I, LJN T C, SHIH M L. Decomposition of benzene in the rf plasma environment-part ⅰ. Formation of gaseous products and carbon depositions [J]. J. Hazard. Mater.,2004,116(3):239-248.
    [248]SEKIGUCHI H. Catalysis assisted plasma decomposition of benzene using dielectric barrier discharge [J]. Can. J. Chem. Eng.,2001,79(4):512-516.
    [249]CAL M P, SCHLUEP M. Destruction of benzene with non-thermal plasma in dielectric barrier discharge reactors [J]. Environ. Prog.,2001,20(3):151-156.
    [250]DING W, MCCORKLE D, MA C Y, et al. Dissociation of benzene in a pulsed glow discharge, F,1999 [C].
    [251]OGATA A, YAMANOUCHI K, MIZUNO K, et al. Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors [J]. Industry Applications, IEEE Transactions on,1999,35(6):1289-1295.
    [252]OGATA A, SHINTANI N, MIZUNO K, et al. Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets [J]. Industry Applications, IEEE Transactions on,1999,35(4):753-759.
    [253]TEZUKA M Y, T.; TSUCHIYA, A. Direct hydroxylation of aromatic compounds in an rf plasma [J]. Chem. Lett.,1982:1437-1438.
    [254]WERTHEIMER M R. SCHREIBER H P. Surface property modification of aromatic polyamides by microwave plasmas [J]. J. Appl. Polym. Sci.,1981, 26(6):2087-2096.
    [255]AUE D H, GUIDONI M, BETOWSKI L D. Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons [J]. Int. J. Mass. Spectrom., 2000,201(1-3):283-295.
    [256]BIRCH A J. Reduction by dissolving metals. Part i. [J]. J. Chem. Soc.,1944: 430-436.
    [257]STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis-a review [J]. Catal. Rev.,1994,36(1):75-123.
    [258]MUETTERTIES E L, BLEEKE J R. Catalytic-hydrogenation of aromatic-hydrocarbons [J]. Accounts. Chem. Res.,1979,12(9):324-331.
    [259]BIANCHINI C, CAULTON K G, FOLTING K, et al. Stepwise metal-assisted reduction of eta-4-coordinated benzene to cyclohexene [J]. J. Am. Chem. Soc., 1992,114(18):7290-7291.
    [260]GRUNDY S L, SMITH A J, ADAMS H, et al. The selective reduction of benzene to cyclohexene mediated by platinum metal complexes:X-ray crystal structure of [([small eta]5-C5Me5)Ir([small eta]5-C6H6CH2NO2)][BF4] [J]. J. Chem. Soc., Dalton Trans.,1984, (8):1747-1754.
    [261]PEZ G P, MADOR I L, GALLE J E, et al. Selective alkali-metal and hydrogen reduction of benzene to cyclohexene [J]. J. Am. Chem. Soc.,1985,107(13): 4098-4100.
    [262]HAND O W, DETTER L D, LAMMERT S A, et al. Reduction induced by ion-beams-hydrogenation of nitrogen-containing heterocycles and quinones in molecular secondary ion mass-spectrometry [J]. J. Am. Chem. Soc.,1989, 111(15):5577-5583.
    [263]VAN BERKEL G J, GLISH G L, MCLUCKEY S A, et al. Mechanism of porphyrin reduction and decomposition in a high-pressure chemical ionization plasma [J]. J. Am. Chem. Soc.,1989,111(16):6027-6035.
    [264]CHEN H W, TALATY N N, TAKATS Z, et al. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment [J]. Anal. Chem.,2005,77(21): 6915-6927.
    [265]KAUPPILA T J, WISEMAN J M, KETOLA R A, et al. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites [J]. Rapid Commun. Mass Spectrom.,2006,20(3):387-392.
    [266]PETUCCI C, DIFFENDAL J, KAUFMAN D, et al. Direct analysis in real time for reaction monitoring in drug discovery [J]. Anal. Chem.,2007,79(13): 5064-5070.
    [267]HELMY R, SCHAFER W, BUHLER L, et al. Ambient pressure desorption ionization mass spectrometry in support of preclinical pharmaceutical development [J]. Org. Process. Res. Dev.,2010,14(2):386-392.
    [268]ZHOU Z, JIN M, DING J, et al. Rapid detection of atrazine and its metabolite in raw urine by extractive electrospray ionization mass spectrometry [J]. Metabolomics.2007.3(2):101-104.
    [269]GU H W, HU B. LI J Q, et al. Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry [J]. Analyst.2010. 135(6):1259-1267.
    [270]CHEN H W, ZHENG J, ZHANG X, et al. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination [J]. J. Mass Spectrom.,2007, 42(8):1045-1056.
    [271]ZHANG X L, JIA B, HUANG K K, et al. Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry [J]. Anal. Chem.,2010,82(19): 8060-8070.
    [272]HADDAD R, SPARRAPAN R, KOTIAHO T, et al. Easy ambient sonic-spray ionization-membrane interface mass spectrometry for direct analysis of solution constituents [J]. Anal. Chem.,2008,80(3):898-903.
    [273]HADDAD R, MILAGRE H M S, CATHARINO R R, et al. Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography [J]. Anal. Chem.,2008,80(8):2744-2750.
    [274]GALHENA A S, HARRIS G A, NYADONG L, et al. Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization [J]. Anal. Chem.,2010,82(6):2178-2181.
    [275]BEENAKKER C I M. Evaluation of a microwave-induced plasma in helium at atmospheric-pressure as an element-selective detector for gas-chromatography [J]. Spectrochim. Acta B,1977,32(3-4):173-187.
    [276]VAN DALEN J P J, DE LEZENNE COULANDER P A, DE GALAN L Improvements of the cylindrical tm010 cavity for an atmospheric pressure microwave-induced plasma [J]. Spectrochim. Acta Part B,1978,33(8): 545-549.
    [277]BEENAKKER C I M, BOSMAN B, BOUMANS P W J M. Assessment of a microwave-induced plasma generated in argon with a cylindrical tm010 cavity as an excitation source for emission spectrometric analysis of solutions [J]. Spectrochim. Acta Part B,1978,33(7):373-381.
    [278]HAAS D L, CARNAHAN J W, CARUSO J A. An internally tuned tm010 microwave resonant cavity for moderate power microwave-induced plasmas [J]. Appl. Spectrosc.,1983,37(1):82-85.
    [279]RAIT N, GOLIGHTLY D W, MASSONI C J. An improved beenakker-type cavity for microwave induced plasma spectrometry [J]. Spectrochim. Acta Part B,1984,39(7):931-937.
    [280]BROWN M R, SHERIDAN T E, HAYES M A. Reentrant cavity as a low-power plasma source [J]. Rev. Sci. Instrum.,1986,57(12):2957-2960.
    [281]MURAYAMA S, MATSUNO H, YAMAMOTO M. Excitation of solutions in a 2450 mhz discharge [J]. Spectrochim. Acta Part B,1968,23(8):513-520.
    [282]HANAMURA S, SMITH B W, WINEFORDNER J D. Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission-spectrometry [J]. Anal. Chem.,1983,55(13): 2026-2032.
    [283]KIRSCH B, HANAMURA S. WINEFORDER J D. Diagnostical measurements in a single electrode, atmospheric pressure, microwave plasma [J]. Spectrochim. Acta Part B,1984,39(8):955-963.
    [284]PATEL B M, HEITHMAR E, WINEFORDNER J D. Tubular electrode torch for capacitatively coupled helium microwave plasma as a spectrochemical excitation source [J]. Anal. Chem.,1987,59(19):2374-2377.
    [285]UCHIDA H, JOHNSON P A, WINEFORDNER J D. Evaluation of the capacitively coupled helium microwave plasma as an excitation source for the determination of inorganic and organic tin [J]. J. Anal. Atom. Spectrom,1990, 5(1):81-85.
    [286]ALI A H, NG K C, WINEFORDNER J D. Direct solid sampling in capacitively coupled microwave plasma atomic emission-spectrometry [J]. J. Anal. Atom. Spectrom,1991,6(3):211-213.
    [287]WENSING M W, LIU D-Y, SMITH B W, et al. Determination of lead in whole blood using a capacitively coupled 4wave plasma atomic emission spectrometer [J]. Anal. Chim. Acta,1994,299(1):1-7.
    [288]LEE Y J, PERDIAN D C, SONG Z H, et al. Use of mass spectrometry for imaging metabolites in plants [J]. Plant J.,2012,70(1):81-95.
    [289]IFA D R, WU C, OUYANG Z, et al. Desorption electrospray ionization and other ambient ionization methods:Current progress and preview [J]. Analyst, 2010,135(4):669-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700