黄土高原半干旱区陆面能量不平衡和陆面过程参数化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表能量不平衡问题一直是陆面过程研究的一个重要科学难题,而陆面过程参数化对于陆面模式则有着重要的意义。利用兰州大学半干早气候与环境观测站(SACOL)2007-2009年的观测资料,在分析陇中黄土高原陆面辐射和热量收支特征的基础上,探讨了其地表能量不平衡特征及其影响机制,并计算和讨论了黄土高原自然植被下垫面陆面过程相关参数。主要结论如下:
     (1)通过研究不同典型天气条件对陆面过程微气象特征的影响,发现地表反照率在晴天会出现早晨偏大的不对称结构;晴天与多云的天气相比能量收支不平衡量较大,而阴天时的阵性降水会使局地能量收支出现不平衡。在半干旱区,云和降水对能量和辐射收支的影响不容忽视,可达到约25%的削弱程度,比极端干旱的敦煌荒漠区要大,进一步证明了半干旱区夏季的平均气候特征与云量较多的多云天气(5≦Mean total cloud amount<8)接近。另外,7月日平均波恩比最大是4.1,平均是1.95,比处于极端干旱区的敦煌波恩比小一个数量级,说明榆中所处的黄土高原半干旱区比极端干旱区在气候上要湿润很多。
     (2)计算了地表和5cm深处土壤热通量板之间的热储存,并对地表能量不平衡特征重新进行了评价。当把土壤热储存作为地表能量收支的一部分考虑后,不平衡差额绝对值平均降低了23Wm-2,能量不闭合度平均减小了0.104,利用最小二乘法(OLS)进行线性回归得到的不闭合度减小了0.085。从白天和晚上的能量不闭合度频率分布图上也能够看出,土壤热储存的考虑对地表能量平衡有很大改善。即使考虑了土壤热储存项,仍然有很明显的地表能量不闭合。
     (3)估算了空气热储存和光合作用储存的大小,并分别用水分守恒关系和两层土壤温度方法计算了浅层土壤水分垂直通量,考察了空气热储存、光合作用储存和水分垂直运动热量输送对地表能量平衡的影响。黄土高原区自然植被下垫面的空气热储存、光合作用储存和土壤水分垂直运动热量输送平均日变化峰值分别达到1.5、2.0和7.9Wm-2;在能量平衡方程中引入这三项后,地表能量闭合度由88.1%提高到89.6%.空气热储存、光合作用储存和水分垂直运动热量输送对于改善黄土高原地表能量不平衡状况有一定作用,研究区域的半干旱气候背景和植被状况是导致各热储存量与其他试验区存在差异的根本原因.
     (4)分析了总体输送系数的不同季节平均日变化和频率分布特征,考察了地面粗糙度的变化趋势以及降水对其的影响。降水正常年份的粗糙度是0.009m,偏干年份粗糙度是0.006m,月平均粗糙度变化与正常年份相比较为平缓。对总体输送系数与粗糙度以及总体理查孙数的关系分别进行了讨论,在中性层结下黄土高原区动力输送作用占主要地位,发现动量总体输送系数和奈曼流动沙丘下垫面很接近,而感热输送系数与戈壁下垫而接近。分析了反照率和太阳高度角以及土壤湿度的关系,并拟合得到以这两个物理量为因子的参数化公式。总体上,黄土高原自然植被下垫面的反照率比敦煌荒漠小,而大于长白山松林下垫面,与三个地区植被覆盖和土壤质地的不同有关。通过对参数化公式模拟效果的检验,发现低太阳高度角下的反照率对土壤湿度和太阳高度角以外的其他因素敏感,而对应高太阳高度角的反照率受土壤湿度和太阳高度角的控制较强。最后,计算了土壤热传导率和热扩散率等土壤热力参数,相同湿度的热传导率比敦煌荒漠要大并拟合得到热传导率以土壤湿度为自变量的参数化公式。
The surface energy imbalance problem has been a challenge in the study of surface land process since it was found in the late1980s. Besides, physical parameters related to land-surface processes are significant to land surface process models. Based on the data collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) from2007to2009, the paper analyzed characteristics of land surface radiation and energy budget in summer, investigated characteristics of the surface energy imbalance and mechanisms causing it and calculated physical parameters related to land-surface processes over the natural vegetation surface in the Loess Plateau of middle Gansu. Main results arc concluded as follows:
     (l)By studying the impacts of different weather conditions on micrometcorological characteristics, the asymmetric structure of diurnal variation of surface albedo appears on the morning of sunny days with larger albedo values. The surface energy budget on a sunny day has a larger amount of imbalance, compared with that on a cloudy day. Besides.the shower on an obscure day can also lead to large energy imbalance. The unclosure of energy balance obtained by using OLS(Ordinary Least Squares) linear regression method is19.6%.In the semi-arid area, the clouds and the precipitation cause about25%disturbances to each component of energy balance. Weakening impact of clouds and precipitation on surface energy budget is apparent and much stronger than Dunhuang Gobi. Furthermore, it shows that the mean climatic characteristics in summer relatively close to those of cloudy days with more clouds(5=Mean total cloud amount<8). Moreover, the maximum daily average Bowen ratio in July reaches4.1and the monthly mean value is1.95. The Bowen ratio in Yuzhong is much smaller than that in Dunhuang Gobi, which reflects the semi-arid area is more humid than the extreme arid area.
     (2)The soil heat storage between the ground surface and the heat flux plate at5cm depth was calculated from some soil thermal parameters, and the surface energy imbalance condition was re-estimated. When the soil heat storage as an energy budget component was taken into the surface energy balance equation, the mean absolute value of surface energy balance residual decreases23W m~(-2) and the mean unclosure of energy balance is reduced by0.104. Moreover, the unclosure of energy balance obtained by using OLS(Ordinary Least Squares) linear regression method decreases0.085.Overall,the storage term can improve the surface energy budget condition and makes a large contribution to the unclosurc of energy balance, which can also be seen from the frequency distributions of the surface energy balance unclosure during the day and night.However,even if we take the soil heat storage into account, the surface energy imbalance still exists and it remains apparent.
     (3)The paper estimates the heat storage associated with change of air temperature and humidity as well as the energy stored in plants due to the photosynthesis, determines the water vertical flux in the shadow soil layer both by water conservation principle and two-level soil temperature, and investigates impacts of air and plant photosynthesis energy storages and heat transferred by the soil water movement on the surface energy budget. It is found that the diurnal variation peaks of averaged energy storages of air and plant photosynthesis reach1.5and2.0W m~(-2) respectively. Additionally, the diurnal variation peak of mean heat transferred by vertical water movement is close to8.0W~(-2). The closure of energy balance is improved from88.1%to89.6%by adding the three additional energy terms to the energy balance equation. As a whole, the energy storage related to air and the plant photosynthesis, and the heat transferred by the soil water movement both promote the surface energy balance to some extent. Furthermore, the semi-arid climate and the vegetation condition of Loess Plateau essentially lead to significant differences of various energy storages among this area and other climatic districts.
     (4)The paper studied averaged diurnal variations and the frequency distributions of the bulk transfer coefficients in different seasons, and analyzed the trend of surface roughness as well as effects of precipitation on the roughness. Monthly averages of the roughness in a normal year for precipitation have more changes compared with those in a dryer year and increasing the precipitation tends to increase the roughness. The roughness in a normal year is9×10~(-3)m, while the roughness in a dryer year decreases to6×10~(-3)m. Relationships among the bulk transfer coefficients and the two factors including surface roughness and the Richardson number are discussed. The role of dynamical transfer in land-atmosphere energy exchange over the Loess Plateau is dominant. Additionally, the neutral bulk transfer coefficient for momentum is close to those over movable dune at Naiman in Inner Mongolia and the neutral bulk transfer coefficient for momentum is close to those over Gobi. We also analyzed effects of solar elevation angle and soil moisture on surface albedo and preliminarily a multiple factorial parameterization formulae of surface albedo are raised.Generally, the albedo over the Loess Plateau is smaller than that over the desert of Dunhuang and larger than that over pine forest in Changbai Mountain. Various vegetation covers and soil types in the three regions lead to differences of albedo.By testing the simulation results of the albedo formula, it is found that albedo with low solar elevation angles is sensitive to other factors except soil moisture and solar elevation angle, while soil moisture and solar elevation angle affect albedo with high solar elevation angles significantly.What's more, soil thermal parameters including soil thermal conductivity and thermal diffusion are calculated. In the same soil moisture, the soil thermal conductivity larger than that in desert of Dunhuang In the end, a parameterization formula of soil thermal conductivity is gotten by fitting thermal conductivity and soil moisture.
引文
[1]张强.王胜.关于黄土高原陆面过程及其观测试验研究[J].地球科学进眨,2008.23(2):167-173
    [2]张强,胡向军,王胜.等.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J].地球科学进展.2009.24(4:363-371
    [3]Holtslag A A M. Ek M. Simulation of Surface Fluxes and Boundary Layer Development over the Pine Forest in HAPEX-MOBILHY[J]. Journal of Applied Meteorology and Climatology.1996.35.202-213
    [4]Hall F G, Huemmrich K F, Goetz S J. et al. Satellite remote sensing of surface energy balance:Success, failures. and unresolved issues in FIFE[J]. Journal of Geophysical Research,1992.97(D17):19061-19089.
    [5]Bolle H J, Andre J C, Arrue, et al.EFEDA—uropean field experiment in a desertification-threatened area[J].Annual Geophysics,1993,11(2):173-189.
    [6]Piers Sellers. Forrest Hall, K Jon Ranson.et al.The boreal ecosystem Atmosphere Study(BOREAS):An overview and early results from the 1994 field year[J].Bulletin of the American Meteorological Society.1995.76(9):1549-1577
    [7]Halldin S.Gottschalk L, Griend van de,et al. NOPEX-A northern hemisphere climate processes land surface experiment[J]. Journal of Hydrology.1998.212(1):172-187.
    [8]Yamazaki N. Kalahari H, Yatagai A,et al.Current status of GAME reanalysis project and sone preliminary results[C]//Internation GAME/HUBEX,Workshop.Sapporo:12-14 September.2000:24-29.
    [9]Steven P O.Foken T,Vogt R,et al.The Energy Balance Experiment EBEX-2000[C]//15th Conference on Boundary Layer and Turbulence.Wageningen:American Meteorology Society.2002:1-4.
    [10]王介民.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibe/TIPEX[J]高原气象,1999.18(3):280-294
    [11]吕达仁,陈佐忠,陈家宜.等.内蒙古半干旱草原土壤-植被-大气相互作用(IMGRASS)综合研究[J].地学前缘,2002,9(2):295-306
    [12]张强,黄荣辉,卫国安,等.西北十早区陆面过程观测野外试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441
    [13]王润元,杨兴国,把多辉.等.半干旱雨养农田典型晴天感热潜热的阶段差异[J].干早气象.200.1.22(4):26-39
    [14]王澄海.黄宝霞.杨兴国.陇中黄土高原植被覆盖和裸露下垫面地表通量和总体输送系数研究[J].高原气象,2007.6(1):31-37
    [15]韦志刚,文军.吕世华,等.黄土高原陆—气相互作用预试验及其晴天地表能量特征分析[J].高原气象.2005.24(4:545-555
    [16]毕建荣,黄建平,刘玉芝,等.黄十高原半十旱区地表辐射特征[J].兰州大学学报(自然科学版).2008,44(3):33-38
    [17]杨兴国,张强,王润元等.陇中黄土高原夏季地表能量平衡观测研究[J].高原气象.2004,23(6):828-834
    [18]乔娟,张强.张杰.非均匀下垫面陆面过程参数化问题研究进展[J].干旱气象,2008,26(1):73-77
    [19]张强.王胜,张杰.等.十旱区陆面过程和大气边界层研究进展[J].地球科学进展,2009.11(24):1185-1194
    [20]马伟强.马耀明.西北十旱区地表能量初步分析[J].干旱区研究,2006.23(1):76-82
    [21]师庆三.高翔.谭军,等.双层模型下艾比湖湿地植物群落蒸散计算[J].干旱区研究.2010.27(6):933-938
    [22]赵文智.吉喜斌,刘鹄.蒸散发观测研究进展及绿洲蒸散研究展望[J].干旱区研究.2011.28(3):463-470
    [23]张鹏飞,刘树华,胡非,等.湍流通量计算方法和误差的比较研究[J].气象学报.2010,68(4):487-500.
    [24]李正泉,于贵瑞.温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学[D].2004.34(S2):46-56.
    [25]Albertson J D, Parlange M B, Katul G G, et al. Sensible heat flux from arid:a simple flux-variance method[J]. Water Resource Research,1995,31:969-973.
    [26]Unland H E. Houser P H, Shuttleworth W J. et al. Surface flux measurement and modeling at a semi-arid Sonoran Desert sile[J]. Agricultural and Forest Meteorology,1996.82:119-153
    [27]Heusinkvld B G, Jacobs A F G. Holtslag A A M, et al. Surface energy balance closure in an arid region:role of soil heat flux[J], Agricultural and Forest Meteorology.2004.122:21-31.
    [28]王润元.张强.西北戈壁地表能量闭合分析[C]//中国气象年会2008年会论文集.北京.2008
    [29]Panin G N, Tetzlaff G, Raabe A. Inhomogeneity of the Land Surface and Problems in the Parameterization of Surface Fluxes in Natural Conditions[J]. Theoretical and Applied Climatology,1998.60.163-178.
    [30]Foken T. Buck A L, Nye R A. et al. A Lyman-alpha hygrometer with variable path length[J]. Journal of Atmospheric and Oceanic Technology.1998.15:211-214.
    [31]Beyrich F. Foken T. Herzog H J.The LITFASS-98 experiment[J]. Theoretical and Applied Climatology. 2002,73:1-2.
    [32]Gao Z. Determination of soil heat flux in a Tibetan short-grassprairie[J]. Boundary-Layer Meteorology. 2005.114:165-178.
    [33]刘远永,文军,韦志刚,等.黄土高原塬区地表辐射和热量平衡观测与分析[J].高原气象.2007.26(5):928-937.
    [34]李宏宇.张强,王胜.陇中黄土高原夏季陆面辐射和热量特征研究[J].地球科学进展.2010.25(10):1070-1081
    [35]Lee X, Black T A. Atmospheric turbulence within and above a Douglas-fir stand. Part Ⅱ:Eddy fluxes of sensible heat and water vapor[J]. Boundary-Layer Meteorology,1993,64:369-389.
    [36]Wilson K., Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sitcs[J]. Agricultural and Forest Meteorology,2002.113.223-243.
    [37]王介民,王维真,刘绍民,等.近地层能量平衡闭合问题—综述及个例分析[J].地球科学进展.2009.24(7):705-713.
    [38]郭建侠,卞林根.戴永久.苄米生育期地表能量平衡的多时间尺度特征分析及不平衡原因的探索[J].中国科学(D).2008.38(9):1103-1111.
    [39]Gao Z, Chen G T J, Hu Y B. Impact of soil vertical water movement on the energy balance of different land surfaces[J]. International Journal of Biometeorology,2007,51:565-575.
    [40]Delsol F. Miyakoda K, Clarke R H. Parameterized processes in the surface boundary layer of an atmospheric circulation model. Q J R Meteorol Soc.1971.97(412):181-208
    [41]Dickinson R E. Land-atmosphere interaction. Rev Geophys.1995.233:917-922
    [42]Zhang L,Zhang H Q.Li Y H. Surface energy, water and carbon cycle in China simulated by the Australian communiiy land surface model (CABLE). Theor Appl Climatol.2009.96:375-394
    [43]Zhang Q. Cao X Y. Wei G A. Observation and Study of Land Surface Parameters over Gobi in Typical Arid Region. Adv AtmosSci.2002.19(1):121-135
    [44]Zhang Q. Huang R H. Parameters of Land-Surface Processes for Gobi in North-West China. Bound-Layer Meteorol. 2004,110(3):417-418
    [45]Wang G Y,Huang J P,Guo W D, et al. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China. J Geophys Res.2010.115. DOOK.17. doi:10.1029/2009.ID013372
    [46]Bi X, Gao Z. Deng X. et al. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over grassland in the tropical monsoon region of southern China. J Geophys Res.2007,112. D10106. doi:10.1029/2006.1 D007889
    [47| Charney J G, Quirk W J, Chow S, et al.A comparative study of the effect s of albedo change on drought in semi-arid regions..I Atmos Sci,1977,34 (9):1366-1385
    [48]Dickinson R E. Kenney P J.1986.Biosphere-Atmsphere Transfer Scheme(BATS) for the NCAR Community Climate Model National Center for Atmospheric Research. Boulder. Co Tech Note/Tn-275+STR.12-51
    [49]张强,王胜,卫国安.西北地区戈壁局地陆面物理参数的研究.地球物理学报.2003.46(5):616-623
    [50]Li Y.Hu Z Y. A Study on Parameterization of Surface Albedo over Grassland Surface in the Northern Tibetan Plateau. Adv Atmos Sci.2009.26(1):161-168
    [51]Sud Y C. Smith W E. Influence of local land-surface processes on the Indian monsoon:A numerical study. J Appl Meteor,1985.24(10):1015-1036
    [52]Alain M B. Silans P D. Bruno A. Monteny.et al..Apparent soil thermal diffusivily. a case study:I lAPEX-Sahel experiment. Agric For Meteor,1996,81:201-206
    [53]韩博,吕世华,奥银焕.两北戈壁区夏季一次降水前后土壤温度变化舰律分析高原气象,2009,28(1):36-45
    [54]李国平.赵邦杰,卢敬华.青藏高原总体输送系数的特征.气象学报.2002.60(1):60-67
    [55]左洪超,胡隐樵.黑河试验区沙漠和戈壁的总体输送系数.高原气象.1992.11(4):371-380
    [56]张强,卫国安.荒漠戈壁大气总体曳力系数和输送系数观测研究.高原气象.2004,23(3):305-312
    [57]陈家宜,王介民.一种确定总体粗糙度的独立方法.大气科学,1993.17(1):21-26
    [58]Zhang Q. Huang R H, Tian H. The Study on Parameterization Scheme of Surface Turbulent Momentum and Sensible over Gobi Underlying Surface, Adv Atmos Sci,2003,20(1),1-7
    [59]张文煜,张宇.陆晓静等.黄土高原半干旱区非均一下垫面粗糙度分析.高原气象.2009.28(4):763-768
    [60]Huang J P. An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau[J]. Advances Atmos Sci,2008.25(6):906-921
    [61]尚伦宇.吕世华,张宇等.青藏高原东部土壤冻融过程中地表粗糙度的计算.高原气象.2010.29(1):17-22
    [62]张强,曹晓彦.敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J]..大气科学.2003.27(2):2.16-254.
    [63]王慧,胡泽勇,马伟强,等.鼎新戈壁下垫面近地层小气候及地表能量平衡特征季节变化分析.大气科学.2008.32(8):1458-1470.
    [64]张强,王胜.卫国安.西北地区戈壁局地陆面物理参数的研究[J].地球物理学报.2003.46(5):616-623.
    [65]王胜,张强,张鸿.稀疏植被地表反照率及土壤热传导率特征研究[J].中国沙漠,2008,28(1):119-124
    [66]文丽娟,吕世华,陈世强,等.干旱区绿洲地表反照率不对称观测研究[.1].太阳能学报.2009.30(7):953-956.
    [67]Agam N, Berliner P R. Dew formation and water vapor adsorption in semi-arid environments-A revie[J].Journal of Arid Environments..2006,65:572-590.
    [68]Kidron G J. Herrnstadt I, Barzilay E. The role of dew as a moisture source for sand macrobiotic crust in the Negev Desert, Israel[J]. Journal of Arid Environments,2002,52:517-533.
    [69]黄洪峰.十壤·植物·大气相互作用原理及模拟研究[Ml.北京:气象出版社.1997.
    [70]Foken T. The energy balance closure problem:An overview[J]. Ecological Applications.2008.18(6):1351-1367
    [71]Letzel M O, Raasch S. Large-Eddy simulation of thermally induced oscillations in the convective boundary layer[J]. Journal of Atmospheric.Sciences.2003,60:2328-2341
    [72]Inagaki A, Letzel M O, Raasch S.et al.Impact of surface heterogeneity on energy imbalance: a study using LES[J]. Journal of the Meteorological Society of Japan,2006,84(1):187-198
    [73]张强,胡隐樵,赵鸣.降水强迫对戈壁局地气候系统水、热输送的影响[J].气象学报.1997.55(4):492-498.
    [74]胡泽勇.黄荣辉.卫国安.等.2000年6月4日沙尘暴过境时敦煌地而气象要素及地表能量平衡特征的变化.大气科学,2002.26(1):1-8.
    [75]Bi X, Gao Z, Deng X, et al. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over grassland in the tropical monsoon region of southern China. J Geophys Res,2007. 112. D10106. doi:10.1029/2006JD007889
    [76]Jacobs A F G, Heusinkveld B G, Holtslag A A M. Towards Closing the Surface Energy Budget of a Mid-latitude Grassland[J]. Boundary-Layer Meteorology,2008,126:125-136.
    [77]Meyers T P, Hollinger S E. An assessment of storage terms in the surface energy balance of maize and soybean[J]. Agricultural and Forest Meteorology,2004,125:105-115.
    [78]Wang R Y.Zhang Q.An assessment of storage terms in the surface energy balance of subalpine meadow in northwest China[J]. Advances in Atmospheric Sciences.2011.28(3):691-698.
    [79]Zhiqiu Gao. George Tai-Jen Chen.Yanbing Hu. Impact of soil vertical water movement on the energy balance of different land surfaces. Int. J. Biometeorol. DOI 10.1007/s00484-007-0095-6
    [80]李震坤.武炳义.朱伟军.辛羽飞.CLM3.0模式中冻-土过程参数化的改进及模拟试验.气候与环境研究.2011.16(2):137-148
    [81]石广玉,刘玉芝.地球气候变化的米兰科维奇理论研究进展.地球科学进展.2006.21(3):278-285
    [82]申彦波.赵宗慈,石广玉.地面太阳辐射的变化、影响因子及其可能的气候效应最新研究进展.地球科学进展,2008,23(9):915-923
    [83]Zhang Q. Huang R H, Tian H. The Study on Parameterization Scheme of Surface Turbulent Momentum and Sensible over Gobi Underlying Surface, Adv Atmos Sci,2003.20(1).1-7
    [84]杨兴国,张强,杨启国等.陇中黄土高原半干旱区总体输送系数的特征.高原气象.2010.29(1):44-50
    [85]Mwenderaa E J, Feyen J. Effects of tillage and rainfall on soil surface roughness and properties. Soil Technology. 1994,7(1):93-103
    [86]丹利,谢明.基于MODIS资料的贵州植被叶面积指数的时空变化及其对气候的响应气候与环境研究.2009.14(5):455-464
    [87]李国平,陶红专.高原降雨天气过程中总体输送系数的变化特征.高原气象.2005.24(4):577-584
    [88]Stull R B.1991边界层气象学导论.徐静琦,杨殿荣译.青岛:青岛海洋大学出版社.452-455
    [89]黄宝霞,王澄海,刘辉志等.内蒙古奈曼流动沙丘下垫面近地面能量收支研究.干旱区地理.2007..30(2):177-183
    [90]苗曼倩,钱峻屏.陆面.上总体输送系数的特征.气象学报,1996.54(1):95-101
    [91]冯超,古松,赵亮等.青藏高原三江源区退化草地生态系统的地表反照率特征 高矗原气象.2010.29(1):70-77
    [92]Wen J G. Liu Q, Liu Q L,et al. Scale effect and scale correction of land-surface albedo in rugged terrain.Int.J Remote Sensing,2009,30(20):5397-5420
    [93]张果,周广胜,阳伏林.内蒙古荒漠草原地表反照率变化特征.生态学报,2010..30(24):6943-6951
    [94]关德新,金明淑,徐浩.长白山阔叶红松林生长季反射率特征.应用生态学报.2002.13(12):1 543-1546
    [95]张强,王胜.干旱荒漠区十壤水热特征和地表辐射平衡年变化规律研究.自然科学进展,2007.17(2):211-216
    [96]李毅,邵明安,王文焰.质地对十壤热性质的影响研究.农业工程学报.2003.19(4):62-65
    [97]左金清,王介民,黄建平等.半十旱草地地表十壤热通量的计算及其对能量平衡的影响.高原气象.2010,29(4):840-848
    [98]Mauder M.Desjardins R L.Patty E. Measurement of the sensible eddy heat flux based on spatial averaging of continuous ground-based observations[J]. Boundary-Layer Meteorology,2008.128:151-172.
    [99]Lee X H. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology,1998,91:39-50
    [100]张强,李宏宇.黄土高原地表能量不闭合度与垂直感热平流的关系[J].物理学报,2010.59(8).716-723
    [101]胡隐樵,左洪超.边界层湍流输送的若干问题和大气线性热力学[J].高原气象.2004,23(2):132-138.
    [102]Hoedjes J C B, Chehbouni A, Ezzahar J. Comparison of Large Aperture Scintillometer and Eddy Covariance Measurements:Can Thermal Infrared Data Be Used to Capture Footprint-Induced Differences?[J].Journal of Hydrometeorology,2007,8(2),194-206.
    [103]杨兴国.杨启国,柯晓新.等.旱作春小麦蒸散量测算方法的比较[J].中国沙漠,2004,24(5):651-656
    [104]柯晓新.林日暖.徐国昌.等.大型称重式蒸渗计的研制[J].应用气象学报,1994.5(2):151-157.
    [105]张强,王胜,问晓梅,等.关于陆面水分不平衡问题的研究[J].气象学报.已接收

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700