森林红壤微生物的功能生态学分析及宏基因组文库构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济适用的木质纤维素水解工艺是实现纤维素乙醇商品化的关键环节。研究土壤中多样性的木质纤维素分解微生物及其酶基因资源,将为开发新型木质纤维素水解酶系奠定基础。本文通过对一系列不同环境不同来源的森林土壤的理化及生物酶活性分析,筛选出一组具有着良好木质纤维素分解能力的酸性森林土壤样品SD。提取样品SD总基因组DNA为模板,用特异的16S rDNA及18S rDNA引物进行PCR扩增,构建环境微生物的16S rDNA及18S rDNA基因文库,并对文库进行RFLP分析(restriction fragment length polymorphism)、测序、序列分析和构建系统进化树。对该土壤细菌和真菌的菌群结构及生态功能进行分析。结果表明,从挑取的112个克隆中一共鉴定出66个不同细菌类群,主要类群包括Acidobacteria(包含Gp1、Gp2、Gp3、Gp10以及Gp13等5个簇),Proteobacteria(包含alpha,beta,delta和gamma四亚门),Verrucomicrobia和Unclassified Bacteria。其中,Acidobacteria是最大的类群,含有80个克隆,占总克隆数的71.5%;Proteobacteria次之,含有27个克隆,占总克隆数的24.1%。相对细菌来说,真菌菌群具有更为丰富的多样性则,鉴定出的40个不同的真菌带型包括6大类,即Ascomycota(36.2%),Basidiomycota(42.8%),Zygomycota(13.8%),Chytridiomycota(2.9%)和Fungi incertae sedis(4.3%)。其中Basidiomycota和Ascomycota是18S rDNA文库克隆中的主要菌型,占总菌群的79%。分析表明SD土壤样品中包含有丰富的木质纤维素分解微生物,细菌有Sphingomonas和Burkholderia以及一些固氮细菌;真菌中包含有更多的参与木质纤维素分解的微生物种类,主要包括担子菌门的Tricholomataceae,Strophariaceae和Agaricaceae;子囊菌门的Orbilia,Aspergillus,Phialocephala,Epicoccum,Phoma和Zygomycota的Mucorales等。
     为了开发这些土壤微生物所蕴含的丰富的木质纤维素分解酶基因资源,我们构建了森林土壤的宏基因组文库。通过对土壤样品总基因组DNA大量抽提、剪切、浓缩,首先获得适合文库构建的DNA。纯化的基因组片段插入Cosmid粘粒,包装,转染大肠杆菌宿主,构建成功森林土壤宏基因组文库。文库包含约230000个克隆,随机酶切和测序分析显示,插入片段平均大小为35kb,总库容为8.03 Gb。
     根据NCBI数据库公布的木聚糖酶基因和漆酶基因的保守序列分别设计特异性引物,扩增获得包含有漆酶基因保守区域长121bp的DNA片段,利用该片段对宏基因组文库进行原位杂交筛选。同时通过高通量功能筛选方法对文库进行了木聚糖酶、纤维素酶、淀粉酶以及蛋白酶等工业用酶的初步筛选,得到了35个具有明显蛋白酶水解圈的阳性克隆,进一步的分析正在进行中。我们的研究为以后对文库的进一步筛选以及将来从土壤中鉴定更多的木质纤维素水解酶奠定了坚实的基础。
The emerging technology about conversion of lignocellulosic biomass to biofuels has not yet been demonstrated at commercial scale.The central question is the general absence of commercial technology for biodegrading lignocellulosic biomass to fermentable sugars.Fundamental understanding of microbial lignocellulose utilization will drive biotechnology innovations in developing commercial technologies for converting lignocellulosic biomass to biobased fuels and products.SD-1,a soil sample, with excellent wood-decaying performance,screened from the acidic decomposed-hollowed stump ecosystem of native forest in Fujian in China during the surveys of lignocelluse-decomposing abilities of the forest soils.Microbial communities of SD-1 were characterized by constructing and analyzing rRNA gene clone libraries.66 phylotypes were identified from 112 bacterial clones,including Acidobacteria(71.5%), Proteobacteria(24.1%) and Verrucomicrobia(0.9%).Acidobacteria were the predominant group,suggested their ecologically importance in this ecosystem. Proteobacteria included alpha,beta,delta and gamma subdivisions.They were belonged to members of photosynthetic,nitrogen-fixing,and bacteriolytic bacteria.None of there bacteria has been reported to be able to degrade lignocellulose in nature and/or in the laboratory.Total 40 phylotypes were obtained from 138 fungal clones,including Ascomycota(36.2%),Basidiomycota(42.8%),Zygomycota(13.8%),Chytridiomycota (2.9%) and Fungi incertae sedis(4.3%).RFLP and phylogenetic analysis showed a variety of clones related to the strains reported to have lignocellulose-degrading capability. They included some important bacterial decomposers,such as Sphingomonas and Burkholderia,and a number of wood-decaying fungi,such as Tricholomataceae, Strophariaceae and Agaricaceae of Basidiomycota;Orbilia,Aspergillus,Phialocephala, Epicoccum and Phoma of Ascomycota;and Mucorales of Zygomycota.
     To explore the abundant lignocellulolytic enzyme genes from the diverse soil microorganisms,a soil metagenomic library has been constructed.Total soil genomic DNA was extracted from the acid forest soil sample SD-1,sheared and concentrated.The target total genomic DNA was ligated with Cosmid,packaged,and transformed into the E. coil to lead to a forest soil metagenome library.The metagenome library contained a total of 230000 clones,the average length of foreign insert DNA fragments about 35kb,the capacity of foreign DNA of the library was 8.03Gb(8.03×10~6 kb.The digestion by restriction enzyme and sequencing for the inserted fragments from the positive clones showed that the lengths of inserted DNA fragments were big and random.
     The xylanase genes and laccase genes were screened from the library by PCR sequence-based method.A 21-base pairs laccase gene fragment contained two conservative region was first amplified by designed specific primer pairs.However,the xylanase gene PCR products cannot find similar sequence through blast analysised.The cloned laccase gene fragment was used in the next noethern blot to identify the positive clones contained laccase genes.And also,based on functional screening method,we screened for novel enzymes which used in industrial enzyme,included xytanase,cellulose, amylase and proteases.Meanwhile we obtained 35 positive clones with protease activity. Our works provided a solid basis for the future library screening and evaluation,also follow-up of other environmental samples metagenome library construct to identify the potential industrial enzyme sources.
引文
[1] Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: The unseen majority[J]. PNAS. 1998, 95(12):6578-6583.
    
    [2] Cowan D, Meyer Q, Stafford W, et al. Metagenomic gene discovery: past, present and future[J]. TRENDS in Biotechnology. 2005,23(6):321-329.
    [3] Kellenberger E. Exploring the unknown: The silent revolution of microbiology[J]. EMBO reports. 2001,2(1):5.
    [4] Voget S, Leggewie C, Uesbeck A, et al. Prospecting for Novel Biocatalysts in a Soil Metagenome[J]. Applied and environmental microbiology. 2003, 69(10):6235-6242.
    [5] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chemistry & Biology. 1998, 5(10):245-249.
    [6] Bochner BR. Sleuthing out bacterial identities[J]. Nature. 1989, 339(6220):157-158.
    [7] Garland JL, Mills AL. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization[J]. Am Soc Microbiol. 1991,57(8):2351-2359.
    [8] Haack SK, Garchow H, Klug MJ, et al. Analysis of Factors Affecting the Accuracy, Reproducibility, and Interpretation of Microbial Community Carbon Source Utilization Patterns[J]. Applied and environmental microbiology. 1995,61(4):1458-1468.
    [9] Zak JC, Willig MR, Moorhead DL, et al. Functional diversity of microbial communities: A quantitative approach[J]. Soil Biology and Biochemistry. 1994,26(9):1101-1108.
    [10] Choi KH, Dobbs FC. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods. 1999, 36(3): 203-213.
    
    [11] Dobranic JK, Zak JC. A microtiter plate procedure for evaluating fungal functional diversity[J]. Mycologia. 1999, 91(5):756-765.
    
    [12] Findlay RH, Trexler MB, Guckert JB, et al. Laboratory study of disturbance in marine sediments: Response of a microbial community[J]. Marine ecology progress series. 1990, 62(1):121-133.
    [13] Campbell CD, Grayston SJ, Hirst DJ. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities[J]. Journal of Microbiological Methods. 1997, 30(1):33-41.
    [14] Knight B, Zhao FJ, McGrath SP, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution[J]. Plant and Soil. 1997, 197(1):71-78.
    [15]Kelly JJ,Tate RL.Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter[J].J.Environ.Qual.1998,27(3):609-617.
    [16]Yao HY,He ZL,Campbell CD,et al.Some limitations of BIOLOG system for determining soil microbial community[J].Pedosphere.2000,10(1):37-44.
    [17]Guckert JB,Hood MA,White DC.Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae:increases in the trans/cis ratio and proportions of cyclopropyl fatty acids[J].Applied and environmental microbiology.1986,52(4):794-801.
    [18]Zelles L,Bai QY.Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS[J].Soil Biology and Biochemistry.1993,25(4):495-507.
    [19]Yao H,Liu Y,Xue D,et al.Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils[J].Journal of Environmental Sciences.2006,18(3):503-509.
    [20]Syakti AD,Mazzella N,Nerini D,et al.Phospholipid fatty acids of a marine sedimentary microbial community in a laboratory microcosm:Responses to petroleum hydrocarbon contamination[J].Organic Geochemistry.2006,37(11):1617-1628.
    [21]Puglisi E,Nicelli M,Capri E,et al.A soil alteration index based on phospholipid fatty acids[J].Chemosphere.2005,61(11):1548-1557.
    [22]Labidi S,Nasr H,Zouaghi M,et al.Effects of compost addition on extra-radical growth of arbuscular mycorrhizal fungi in Acacia tortilis ssp.raddiana savanna in a pre-Saharan area[J].Applied Soil Ecology.2007,35(1):184-192.
    [23]Zelles L.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review[J].Biology and Fertility of Soils.1999,29(2):111-129.
    [24]Lei F,VanderGheynst JS.The effect of microbial inoculation and pH on microbial community structure changes during composting[J].Process Biochemistry.2000,35(9):923-929.
    [25]Botstein D,White RL,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[M].American Society of Human Genetics,1980.
    [26]王倩,王斌.DNA分子标记在果树遗传学研究上的应用[J].遗传.2000,22(5):339-344.
    [27]Zuckerkandl E,Pauling L.Molecules as documents of evolutionary history[J].J Theor Biol.1965,8(2):357-366.
    [28]Zuckerkandl E,Pauling L.Molecules as documents of evolutionary history[J].J Theor Biol.1965,8(2):357-366.
    [29]Olsen GJ,Woese CR,Overbeek R.The winds of(evolutionary) change:breathing new life into microbiology[J].Journal of bacteriology.1994,176(1):1-6.
    [30]Woese CR,Gutell R,Gupta R,et al.Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids[J].Microbiology and Molecular Biology Reviews.1983,47(4):621-669.
    [31]Williams JGK,Kubelik AR,Livak KJ,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic acids research.1990,18(22):6531-6535.
    [32]Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucleic acids research.1990,18(24):7213-7218.
    [33]Torsvik V,Daae FL,Sandaa RA,et al.Novel techniques for analysing microbial diversity in natural and perturbed environments[J].Journal of Biotechnology.1998,64(1):53-62.
    [34]Weidner S,Arnold W,Puhler A.Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes[J].Applied and environmental microbiology.1996,62(3):766.
    [35]Dunbar J,Ticknor LO,Kuske CR.Phylogenetic Specificity and Reproducibility and New Method for Analysis of Terminal Restriction Fragment Profiles of 16S rRNA Genes from Bacterial Communities[J].Applied and environmental microbiology.2001,67(1):190-197.
    [36]Muthumeenakshi S,Mills PR,Brown AE,et al.Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles[J].Microbiology.1994,140(4):769-777.
    [37]陈平,李辉,牟伯中.油藏水样细菌群落16S rRNA基因的RFLP分析[J].微生物学杂志.2005,25(6):1-5.
    [38]Liu WT,Marsh TL,Cheng H,et al.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J].Applied and environmental microbiology.1997,63(11):4516-4522.
    [39]Lamontagne MG,Michel FC,Holden PA,et al.Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis[J].Journal of Microbiological Methods.2002,49(3):255-264.
    [40]Eschenhagen M,Schuppler M,R?ske I.Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents[J].Water Research.2003,37(13):3224-3232.
    [41]Grodzicker T,Williams J,Sharp P,et al.Physical mapping of temperature-sensitive mutations of adenoviruses[J].Journal of molecular biology.1975,39(1):439-446.
    [42]Heyndrickx M,Vauterin L,Vandamme P,et al.Applicability of combined amplified ribosomal DNA restriction analysis(ARDRA) patterns in bacterial phylogeny and taxonomy[J].Journal of Microbiological Methods.1996,26(3):247-259.
    [43]Di Cello F,Pepi M,Baldi F,et al.Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species,Acinetobacter venetianus[J].Research in Microbiology.1997,148(3):237-249.
    [44]张瑜,杨宇,师舞阳,et al.应用ARDRA技术对细菌性阴道病的微生态分析[J].南方医科大学学报.2008,28(009):1626-1629.
    [45]夏月,Khan S,贺纪正,et al.限制性片段长度多态性分析(ARDRA)方法对重金属污染土壤中细菌群落多样性的研究[J].环境科学学报.2007,27(6):953-960.
    [46]Muyzer G,Smalla K.Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J].Antonie van Leeuwenhoek.1998,73(1):127-141.
    [47]Muyzer G,de Waal EC,Uitterlinden AG.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and environmental microbiology.1993,59(3):695-700.
    [48]Logemann S,Schantl J,Bijvank S,et al.Molecular microbial diversity in a nitrifying reactor system without sludge retention[J].FEMS Microbiology Ecology.1998,27(3):239-249.
    [49]王慧,马建伟,范向宇,et al.重金属污染土壤的电动原位修复技术研究[J].生态环境.2007,16(1):223-227.
    [50]陈桐生,李建军,岑英华,et al.不同pH条件下除臭生物滤池微生物种群结构的分子生态分析[J].微生物学报.2005,45(3):3.
    [51]陈桐生,李建军,岑英华,et al.DG-DGGE分析除臭生物滤池微生物多样性及富集后的种群结构差异[J].应用与环境生物学报.2006,12(1):113-117.
    [52]Gordon W,Carole JN,John C.Microbial diversity in deep sub-seafloor sedimentsassessed by denaturing gradient geletectrophoresis(DGGE)[J].Lettle in Apply Microbiology.2002,62(9):3.
    [53]李志勇,何丽明,吴杰,et al.基于PCR-DGGE基因指纹的对虾体内优势细菌组成分析[J].微生物学通报.2005,32(003):82-86.
    [54]Lovres,Torsvik V.Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities[J].Microbial ecology.1998,36(3):303-315.
    [55]庞小燕,张宝让,魏桂芳,et al.应用TGGE技术分析人肠道中双歧杆菌的组成[J].微生物学报.2005,45(5):738-743.
    [56]张伟,李闻,张伟尉,et al.采用温度梯度凝胶电泳(TGGE)分析消毒剂对池塘型微宇宙细菌群落结构的影响[J].应用与环境生物学报.2008,14(1):4.
    [57]Orita M,Iwahana H,Kanazawa H,et al.Detection of Polymorphisms of Human DNA by Gel Electrophoresis as Single-Strand Conformation Polymorphisms[J].Proceedings of the National Academy of Sciences.1989,86(8):2766-2770.
    [58] Suarkia D, Mgone CS, Bhatia K, et al. HLA-DQA1 genotyping by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and restriction endonuclease digestion in Papua New Guinea[J]. PNG Med J,. 1999,42(3-4): 114-123.
    [59] Maruya E, Saji H, Yokoyama S. PCR-LIS-SSCP (Low ionic strength single-stranded conformation polymorphism)--a simple method for high-resolution allele typing of HLA-DRB1,-DQB1, and-DPBl[J]. Genome Research. 1996, 6(1):51.
    [60] Brandao PFB. Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes[J]. Applied microbiology and biotechnology. 2002, 58(1):77-83.
    [61] Ferrer M, Beloqui A, Golyshin PN. Microbial metagenomes: moving forward industrial biotechnology[J]. Journal of Chemical Technology & Biotechnology. 2007, 82(5):421-423.
    [62] Rajendhran J, Gunasekaran P. Strategies for accessing soil metagenome for desired applications[J]. Biotechnol Adv. 2008.
    [63] Smalla K, Cresswell N, Mendonca-Hagler LC, et al. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification[J]. Journal of Applied Microbiology. 1993, 74(1): 78-85.
    [64] Yeates C, Gillings MR, Davison AD, et al. Methods for microbial DNA extraction from soil for PCR amplification[J]. Biological Procedures Online. 1998, 1(1):40-47.
    [65] Kauffmann IM, Schmitt J, Schmid RD. DNA isolation from soil samples for cloning in different hosts[J]. Applied microbiology and biotechnology. 2004,64(5):665-670.
    [66] Maarit Niemi R, Heiskanen I, Wallenius K, et al. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J]. Journal of Microbiological Methods. 2001,45(3):155-165.
    [67] Martin-Laurent F, Philippot L, Hallet S, et al. DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods[J]. Applied and environmental microbiology. 2001, 67(5):2354-2359.
    [68] Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition[J]. Applied and environmental microbiology. 1996, 62(2):316-322.
    
    [69] Gabor EM, Vries EJ, Janssen DB. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods[J]. FEMS Microbiology Ecology. 2003, 44(2):153-163.
    [70] Miller DN, Bryant JE, Madsen EL, et al. Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples[J]. Applied and environmental microbiology. 1999, 65(11):4715-4724.
    [71] Liu X, Bagwell CE, Wu L, et al. Molecular Diversity of Sulfate-Reducing Bacteria from Two Different Continental Margin Habitats[J]. Applied and environmental microbiology. 2003, 69(10):6073-6081.
    [72] Yu Z, Mohn WW. Killing two birds with one stone: simultaneous extraction of DNA and RNA from activated sludge biomass[J]. Canadian Journal of Microbiology. 1999,45:269-272.
    
    [73] Demaneche S, Philippot L, David MM, et al. Characterization of Denitrification Gene Clusters of Soil Bacteria via a Metagenomic Approacher[J]. Applied and environmental microbiology. 2009, 75(2): 534-537.
    
    [74] Gillespie DE, Brady SF, Bettermann AD, et al. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA[J]. Applied and environmental microbiology. 2002, 68(9):4301-4306.
    [75] Lee SW, Won K, Lim HK, et al. Screening for novel lipolytic enzymes from uncultured soil microorganisms[J]. Applied microbiology and biotechnology. 2004, 65(6):720-726.
    
    [76] Lorenz P, Liebeton K, Niehaus F, et al. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space[J]. Current Opinion in Biotechnology. 2002,13(6):572-577.
    [77] Lorenz P, Schleper C. Metagenome—a challenging source of enzyme discovery[J]. Journal of Molecular Catalysis. 2002, 19:13-19.
    
    [78] Hardeman F, Sjoling S. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment[J]. FEMS Microbiology Ecology. 2007, 59(2):524-534.
    
    [79] Yun J, Kang S, Park S, et al. Characterization of a Novel Amylolytic Enzyme Encoded by a Gene from a Soil-Derived Metagenomic Library[J]. Applied and environmental microbiology. 2004, 70(12):7229-7235.
    
    [80] Rondon MR, Raffel SJ, Goodman RM, et al. Toward functional genomics in bacteria: Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus[J]. Proceedings of the National Academy of Sciences. 1999,96(1:6451-6455.
    
    [81] Knietsch A, Bowien S, Whited G, et al. Identification and Characterization of Coenzyme B12-Dependent Glycerol Dehydratase-and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures[J]. Applied and environmental microbiology. 2003, 69(6):3048-3060.
    
    [82] Daniel R. The metagenomics of soil[J]. Nature Reviews Microbiology. 2005, 3(6):470-478.
    [83] Ferrer M, Martinez-Abarca F, Golyshin PN. Mining genomes and 'metagenomes' for novel catalysts[J]. Current opinion in biotechnology. 2005, 16(6):588-593.
    [84] Martinez A, Kolvek SJ, Yip CLT, et al. Genetically Modified Bacterial Strains and Novel Bacterial Artificial Chromosome Shuttle Vectors for Constructing Environmental Libraries and Detecting Heterologous Natural Products in Multiple Expression Hosts[J]. Applied and environmental microbiology. 2004, 70(4):2452-2463.
    
    [85] Chae JC, Song B, Zylstra GJ. Identification of genes coding for hydrolytic dehalogenation in the metagenome derived from a denitrifying 4-chlorobenzoate degrading consortium[J]. FEMS Microbiology Letters. 2008, 281(2):203-209.
    [86] Yun J, Ryu S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it[J]. Microb Cell Fact. 2005,4(1):8.
    [87] Martinez A, Kolvek SJ, Hopke J, et al. Environmental DNA Fragment Conferring Early and Increased Sporulation and Antibiotic Production in Streptomyces Species This paper is dedicated to the memory of Steven J. Kolvek, our colleague and friend[J]. Applied and environmental microbiology. 2005, 71(3):1638-1641.
    [88] Rhee JK, Ahn DG, Kim YG, et al. New Thermophilic and Thermostable Esterase with Sequence Similarity to the Hormone-Sensitive Lipase Family, Cloned from a Metagenomic Library[J]. Applied and environmental microbiology. 2005, 71(2):817-825.
    [89] Beja O, Aravind L, Koonin EV, et al. Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea[J]. 2000,289(5486): 1902-1906.
    [90] Nasser S, Breland A, Harris FC, et al. A fuzzy classifier to taxonomically group DNA fragments within a metagenome[J]. Fuzzy Information Processing Society. 2008, 5(3):1-6.
    [91] Courtois S, Cappellano CM, Ball M, et al. Recombinant Environmental Libraries Provide Access to Microbial Diversity for Drug Discovery from Natural Products[J]. Applied and environmental microbiology. 2003, 69(1):49-55.
    [92] Venter JC, Remington K, Heidelberg JF, et al. Environmental Genome Shotgun Sequencing of the Sargasso Sea[J]. Science. 2004, 304(5667):66-74.
    [93] Rondon MR, August PR, Bettermann AD, et al. Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms [J]. Applied and environmental microbiology. 2000, 66(6):2541-2547.
    [94] Porteous LA, Armstrong JL. Recovery of bulk DNA from soil by a rapid, small-scale extraction method[J]. Current Microbiology. 1991, 22(6):345-348.
    
    [95] Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast[J]. Applied and environmental microbiology. 1993, 59(8):2657-2665.
    [96]Hiorns WD,Hastings RC,Head IM,et al.Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment[J].Microbiology.1995,141(11):2793-2800.
    [97]Ogawa J,Shimizu S.Microbial enzymes:new industrial applications from traditional screening methods[J].Trends in Biotechnology.1999,17(1):13-20.
    [98]Takeyama H,Takeda D,Yazawa K,et al.Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp.in a transgenic marine cyanobacterium,Synechococcus sp[J].Microbiology.1997,143(8):2725-2731.
    [99]Carlile MJ,Gooday GW,Watkinson SC.The Fungi[M].Academic Press,2001.
    [100]Torsvik V,L(?)vreas L.Microbial diversity and function in soil:from genes to ecosystems[J].Current Opinion in Microbiology.2002,5(3):240-245.
    [101]白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护.1997,16(6):252-256.
    [102]佩奇AL,米勒RH.土壤分析法[M].北京:中国农业科技出版社,1991.
    [103]Nelson N.A photometric adaptation of the Somogyi method for the determination of glucose[J].Journal of Biological Chemistry.1944,153(2):375-380.
    [104]Jc Z,Willig MR,Moorherd DJ,et al.Functional diversity of microbial communities[J].Soil Biology and Biochemistry.1994,26:1101-1108.
    [105]Lindahl V,Aa K,Olsen RA.Effects on microbial activity by extraction of indigenous cells from soil slurries[J].FEMS Microbiology Ecology.1996,21(3):221-230.
    [106]Matsumoto LS,Martines AM,Avanzi MA,et al.Interactions among functional groups in the cycling of,carbon,nitrogen and phosphorus in the rhizosphere of three successional species of tropical woody trees[J].Applied Soil Ecology.2005,28(1):57-65.
    [107]Kassen R,Rainey PB.The ecology and genetics of microbial diversity[J].Annual Reviews.2004,58(1):207-231.
    [108]Hugenholtz P,Goebel BM,Pace NR.Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity[J].Journal of bacteriology.1998,180(18):4765.
    [109]DeLong EF,Franks DG,Alldredge AL.Phylogenetic diversity of aggregate-attached vs.free-living marine bacterial assemblages[J].Limnology and oceanography.1993,38(5):924-934.
    [110]Ulrich A,Wirth S.Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment[J].Microbial ecology.1999,37(4):238-247.
    [111]Inagaki F,Suzuki M,Takai K,et al.Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk[J].Applied and environmental microbiology.2003,69(12):7224-7235.
    [112] Wamecke F, Luginbuhl P, Ivanova N, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite[J]. Nature. 2007,450(7169):560-565.
    [113] Lane DJ. 16S/23S rRNA sequencing[J]. Nucleic acid techniques in bacterial systematics: 1991, 1991:115-175.
    
    [114] Vainio EJ, Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA[J]. Mycological research. 2000, 104(08):927-936.
    [115] Maidak BL, Cole JR, Parker Jr CT, et al. A new version of the RDP (Ribosomal Database Project)[J]. Nucleic acids research. 2005,27(1):171-173.
    
    [116] Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. 1990,215(3):403-410.
    [117] Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic acids research. 1983, 25(24):4876-4882.
    [118] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0[J]. Molecular Biology and Evolution. 2007, 24(8): 1596.
    [119] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of molecular evolution. 1980,16(2): 111-120.
    [120] Saitou N. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular biology and evolution. 1987,4(4):406-425.
    [121] Eichorst SA, Breznak JA, Schmidt TM. Isolation and Characterization of Soil Bacteria That Define Terriglobus gen. nov., in the Phylum Acidobacterial[J]. Applied and environmental microbiology. 2007, 73(8):2708-2717.
    [122] Janssen PH, Yates PS, Grinton BE, et al. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia[J]. Applied and environmental microbiology. 2002, 68(5):2391-2396.
    [123] Kuske CR, Barns SM, Busch JD. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions[J]. Applied and environmental microbiology. 1997, 63(9):3614-3621.
    [124] Liesack W, Bak F, Kreft JU, et al. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds[J]. Archives of microbiology. 1994, 162(1): 85-90.
    [125] Nogales B, Moore ERB, Abraham WR, et al. Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil[J]. Environmental Microbiology. 1999, 1(3): 199-212.
    [126]Barns SM,Takala SL,Kuske CR.Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment[J].Applied and environmental microbiology.1999,65(4):1731-1737.
    [127]Janssen PH.Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes[J].Applied and environmental microbiology.2006,72(3):1719-1728.
    [128]Spano SD,Jurgensen MF,Larsen MJ,et al.Nitrogen-fixing bacteria in Douglas-fir residue decayed byFomitopsis pinicola[J].Plant and Soil.1982,68(1):117-123.
    [129]Peng X,Masai E,Kitayama H,et al.Characterization of the 5-Carboxyvanillate Decarboxylase Gene and Its Role in Lignin-Related Biphenyl Catabolism in Sphingomonas paucimobilis SYK-6[J].Applied and environmental microbiology.2002,68(9):4407-4415.
    [130]Yang HC,Im WT,Kim KK,et al.Burkholderia terrae sp.nov.,isolated from a forest soil[J].International Journal of Systematic and Evolutionary 2006,56(2):453-457.
    [131]Mohana S,Shah A,Divecha J,et al.Xylanase production by Burkholderia sp.DMAX strain under solid state fermentation using distillery spent wash[J].Bioresource Technology.2008,99(16):7553-7564.
    [132]罗莎,张俊杰,周宁一.Burkholderia sp.NCIMB 10467菌株中原儿茶酸3,4-双加氧酶基因的分子克隆和生化特性研究[J].2008:05.
    [133]Margalith P.Bacteriolytic principles of Myxococcus fulvus[J].Nature.1962,196(4861):1335-1336.
    [134]Schwudke D,Bernhardt A,Beck S,et al.Transcriptional Activity of the Host-Interaction Locus and a Putative Pilin Gene of Bdellovibrio bacteriovorus in the Predatory Life Cycle[J].Current Microbiology.2005,51(5):310-316.
    [135]Hethener P,Brauman A,Garcia JL.Clostridium termitidis sp.nov.,a cellulolytic bacterium from the gut of the wood-feeding termite,Nasutitermes lujae[J].Systematic and applied microbiology.1992,15(1):52-58.
    [136]Lynd LR,Weimer PJ,van Zyl WH,et al.Microbial cellulose utilization:fundamentals and biotechnology[J].Microbiology and Molecular Biology Reviews.2002,66(3):506-577
    [137]Hammel KE.Fungal degradation of lignin[J].G.Cadish and GE Giller.1997,1:33-45.
    [138]Osono T.Ecology of ligninolytic fungi associated with leaf litter decomposition[J].Ecological Research.2007,22(6):955-974.
    [139]Antonin V,Legon NW.Gymnopus obscuroides(Agaricomycetes,Omphalotaceae),a new species of sect.Levipedes from England[J].2008,60(1):13-19.
    [140]Vizzini A,Antonin V,Noordeloos ME.Crinipellis pedemontana sp.nov.(Agaricomycetes),a new basidiomycete from Italy[J].Mycologia.2007,99(5):786.
    [141] ArauJo JV, Gomes APS, Guimaraes MP. Biological control of bovine gastrointestinal nematode parasites in southeastern Brazil by the nematode-trapping fungus Arthrobotrys robusta[J]. 1998, 7(2): 117-122.
    [142] Jaffee SR, Caspi A, Moffitt TE, et al. Physical Maltreatment Victim to Antisocial Child: Evidence of an Environmentally Mediated Process[J]. Journal of Abnormal Psychology. 2004,113(1):44-55.
    [143] Pfister DH. Orbilia fimicola, a nematophagous discomycete and its Arthrobotrys anamorph[J]. Mycologia. 1994, 86(3):451-453.
    
    [144] Pramer D.Nematode-Trapping Fungi[J]. Science. 1964,144(3617):382-388.
    [145] Osono T. Effects of prior decomposition of beech leaf litter by phyllosphere fungi on substrate utilization by fungal decomposers[J]. Mycoscience. 2003,44(1):41-45.
    [146] Gawande PV, Kamat MY. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application[J]. Journal of Applied Microbiology. 1999, 87(4):511-519.
     [147] Okada G. Purification and Properties of a Cellulase from Aspergillus niger[J]. Agricultural and Biological Chemistry. 1985, 49(5):1257-1265.
    [148] Quirce S, Cuevas M, Diez-Gomez ML, et al. Respiratory allergy to Aspergillus-derived enzymes in bakers' asthma[J]. Journal of allergy and clinical immunology. 1992, 90(6):970-978.
    [149] P. de Vries R, Visser J, de Graaff LH. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation[J]. Research in Microbiology. 1999, 150(4): 281-285.
    [150] Park Y, Kang S, Lee J, et al. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs[J]. Applied microbiology and biotechnology. 2002, 58(6): 761-766.
    [151] Addy HD, Hambleton S, Currah RS. Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta[J]. Mycological Research. 2000, 104(10):1213-1221.
    [152] O'Dell TE, Massicotte HB, Trappe JM. Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox[J]. New Phytologist. 1993, 124(1):93-100.
    [153] Queloz V, Grunig CR, Sieber TN, et al. Monitoring the spatial and temporal dynamics of a community of the tree-root endophyte Phialocephala fortinii sl[J]. New Phytologist. 2005, 168(3):651-660.
    
    [154] Braun U, Hill CF, Schubert K. New species and new records of biotrophic micromycetes from Australia, Fiji, New Zealand and Thailand[J]. Fungal Diversity. 2006, 22:13-35.
    [155] Dugan FM, Schubert K, Braun U, et al. Check-list of Cladosporium Names[J]. Schlechtendalia. 2004, 11:1-103.
    [156] Sung GH, Hywel-Jones NL, Sung JM, et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fongi[J]. Studies in Mycology. 2007, 57(1):5.
    [157] Goh TK, Hyde KD. A revision of Dactylaria, with description of D. tunicata sp. nov. from submerged wood in Australia[J]. Mycological Research. 1997,101(10):1265-1272.
    [158] Barr DJS. Phylum Chytridiomycota[J]. Handbook of Protoctista 1990:454-466.
    [159] James TY, Porter D, Leander CA, et al. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics[J]. Canadian Journal of Botany. 2000, 78(3): 336-350.
    [160] O'Donnell K, Lutzoni FM, Ward TJ, et al. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyphyly on a large scale[J]. Mycologia. 2001, 93(2):286-296.
    [161] White M, James T, O'Donnell K, et al. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data[J]. Mycologia. 2006,98(6):872.
    
    [162] Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, et al. PCR-Induced Sequence Artifacts and Bias: Insights from Comparison of Two 16S rRNA Clone Libraries Constructed from the Same Samples[J]. Applied and environmental microbiology. 2005, 71(12):8966-8969.
    
    [163] Anderson IC, Campbell CD, Prosser JI. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil[J]. 2003, 5(1): 36-47.
    [164] Kanagawa T. Bias and artifacts in multitemplate polymerase chain reactions (PCR)[J]. Journal of bioscience and bioengineering. 2003, 96(4):317-323.
    
    [165] Ishii K, Fukui M. Optimization of Annealing Temperature To Reduce Bias Caused by a Primer Mismatch in Multitemplate PCR[J]. Applied and environmental microbiology. 2001, 67(8):3753-3755.
    
    [166] Massol-Deya AA, Odelson DA, Hickey RF, et al. Molecular Microbial Ecology Manual[M]. Academic Publishers, 1995.
    [167] Kurata S, Kanagawa T, Magariyama Y, et al. Reevaluation and Reduction of a PCR Bias Caused by Reannealing of Templates[J]. Applied and environmental microbiology. 2004, 70(12):7545-7549.
    [168] Sipos R, Szekely AJ, Palatinszky M, et al. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis[J]. FEMS Microbiology Ecology. 2007, 60(2):341-350.
    
    [169] Countway PD, Gast RJ, Savai P, et al. Protistan Diversity Estimates Based on 18S rDNA from Seawater Incubations in the Western North Atlantic 1[J]. The Journal of Eukaryotic Microbiology. 2005, 52(2):95-106.
    [170] Diez B, Pedros-Alio C, Massana R. Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and Sequencing[J]. Applied and environmental microbiology. 2001, 67(7):2932-2941.
    [171] Speksnijder A, Kowalchuk GA, De Jong S, et al. Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences[J]. Applied and environmental microbiology. 2001,67(1):469-472.
    [172] Lynd L, Cushman JH, Nichols RJ, et al. Fuel Ethanol from Cellulosic Biomass[J]. Science. 1991, 251(4999):1318-1323.
    [173] Osono T, Takeda H. Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan[J]. Mycologia. 2002,94(3):421-427.
    [174] Handelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms[J]. Microbiology and Molecular Biology Reviews. 2004, 68(4):669.
    [175] Helen L. Steelea, Karl-Erich Jaegerb, Rolf Danielc, et al. Advances in Recovery of Novel Biocatalysts from Metagenomes[J]. FEMS microbiology letters. 2009,16(1-2).
    [176] Fieseler L, Quaiser A, Schleper C, et al. Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics[J]. Environmental Microbiology. 2006, 8(4):612-624.
    
    [177] Hallam SJ, Girguis PR, Preston CM, et al. Identification of Methyl Coenzyme M Reductase A (mcrA) Genes Associated with Methane-Oxidizing Archaea[J]. Applied and environmental microbiology. 2003,69(9):5483-5491.
    [178] Moreira D, Rodriguez-Valera F, Lopez-Garcia P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes[J]. Environmental Microbiology. 2004, 6(9):959-969.
    [179] Sabehi G, Loy A, Jung K, et al. New Insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins[J]. PLoS Biol,. 2005, 3(8):1409.
    
    [180] Stein JL, Marsh TL, Wu KY, et al. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon[J]. Journal of bacteriology. 1996, 178(3):591-599.
    [181] Yutin N, Beja O. Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics[J]. Environmental Microbiology. 2005, 7(12):2027-2033.
    [182] Cottrell MT, Moore JA, Kirchman DL. Chitinases from uncultured marine microorganisms [J]. Applied and environmental microbiology. 1999, 65(6):2553-2557.
    [183] Daniel R. The soil metagenome - a rich resource for the discovery of novel natural products[J]. Current Opinion in Biotechnology.2004,15(3):199-204.
    [184]Henne A,Schmitz RA,Bomeke M,et al.Screening of Environmental DNA Libraries for the Presence of Genes Conferring Lipolytic Activity on Escherichia coli[J].Applied and environmental microbiology.2000,66(7):3113-3116.
    [185]Lorenz P,Eck J.Metagenomics and industrial applications[J].Nature Reviews Microbiology.2005,2:231-239.
    [186]Sambrook J,Russell DW,Russell DW.Molecular Cloning:A Laboratory Manual(3-Volume Set)[M].Cold Spring Harbor Laboratory Press,2001.
    [187]Ikeda S,Watanabe KN,Minamisawa K,et al.Evaluation of Soil DNA from Arable Land in Japan Using a Modified Direct-extraction Method[J].Microbes and environments.2004,19(4):301-309.
    [188]Park JW,Crowley DE.Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE[J].BioTechniques.2005,38(4):579-586.
    [189]张鹏,段承杰,庞浩,et al.堆肥未培养细菌的宏基因组文库构建及新的木聚糖酶基因的克隆和鉴定[J].广西科学.2005,12(4):343-346,352.
    [190]赵勇,周志华,李武,et al.土壤微生物分子生态学研究中总DNA的提取[J].农业环境科学学报.2005,24(5):854-860.
    [191]Braid MD,Daniels LM,Kitts CL.Removal of PCR inhibitors from soil DNA by chemical flocculation[J].Journal of microbiological methods.2003,52(3):389-393.
    [192]Nagaya A,Takeyama S,Tamegai H.Identification of Aminotransferase Genes for Biosynthesis of Aminoglycoside Antibiotics from Soil DNA[J].Bioscience,biotechnology,and biochemistry.2005,69(7):1389-1393.
    [193]Collins T,Gerday C,Feller G.Xylanases,xylanase families and extremophilic xylanases[J].FEMS microbiology reviews.2005,29(1):3-23.
    [194]Beg QK,Kapoor M,Mahajan L,et al.Microbial xylanases and their industrial applications:a review[J].2001,56(3):326-338.
    [195]Kulkami N,Shendye A,Rao M.Molecular and biotechnological aspects of xylanases[J].FEMS microbiology reviews.1999,23(4):411-456.
    [196]Prade RA.Xylanases:from biology to biotechnology[J].Biotechnology & genetic engineering reviews.1995,13:101-131.
    [197]Krause DO,Denman SE,Mackie RI,et al.Opportunities to improve fiber degradation in the rumen:microbiology,ecology,and genomics[J].FEMS microbiology reviews.2003,27(5):663-693.
    [198]Subramaniyan S,Prema P.Biotechnology of Microbial Xylanases:Enzymology,Molecular Biology,and Application[J].Critical reviews in biotechnology.2002,22(1):33-64.
    [199] Henrissat B, Coutinho PM. Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles[J]. Methods in enzymology. 2001, 330:183-201.
    [200] Bergquist PL, Gibbs MD, Morris DD, et al. Hyperthermophilic xylanases[J]. Methods in enzymology. 2001,330:301-319.
    [201] Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases: families and functional modules[J]. Current opinion in structural biology. 2001, 11(5):593-600.
    [202] Streit WR, Schmitz RA. Metagenomics-the key to the uncultured microbes[J]. Current Opinion in Microbiology. 2004, 7(5):492-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700