磁性壳聚糖改性以及对金属离子的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性壳聚糖对金属离子有良好的吸附性能,适于大规模吸附,传质速率快,易于分离和改性。本课题考察了氨基化、硫基化及羧甲基化改性磁性壳聚糖对不同金属离子的吸附特性。从磁性吸附、模板吸附、纳米吸附和多组分吸附等多层次研究了改性磁性壳聚糖对金属离子的吸附特性。
     利用反相交联法制备磁性壳聚糖微球,并经硫脲改性(TMCS)和乙二胺改性(EMCS)。利用XRD、FTIR、TGA等对吸附剂进行了表征。考察了TMCS对Hg~(2+)、Cu~(2+)、Ni~(2+)和EMCS Hg~(2+)对UO2~(2+)的吸附特性,考察了不同因素如接触时间、温度、pH值、金属离子初始浓度和搅拌速率的影响,以及进液流率、床层高度对Hg~(2+),Cu~(2+)和Ni~(2+)穿透曲线的影响。
     利用铜模板交联乙二胺改性壳聚糖磁性微球用于吸附水溶液中的Cu~(2+),考察了不同温度下Cu~(2+)吸附平衡、吸附动力学、吸附热力学以及pH、离子强度以及共存离子(如Ni~(2+), Zn~(2+), Cd~(2+), Pb~(2+))对Cu-EMCS吸附Cu~(2+)的影响。
     利用表面接枝法制备磁性羧甲基化壳聚糖纳米粒子(Fe3O4/CMC),利用TEM、XRD以及FTIR等进行表征,考察了它对Pd~(2+)和Pt~(2+)的单组分吸附和双组分吸附特性。
     TMCS对Hg~(2+),Cu~(2+)和Ni~(2+)吸附动力学符合拟二级反应动力学模型。最大吸附容量(mg/g)分别为:Hg~(2+)625.2; Cu~(2+)66.7; Ni~+15.3。随进液流率增大或床层高度下降,Hg~(2+),Cu~(2+)和Ni~(2+)穿透曲线变陡,且穿透点前移。临界床层高度Z_0(cm)分别为:Hg~(2+) 2.35;Cu~(2+) 3.41;Ni~(2+) 2.27。EMCS对Hg~(2+)和UO_2~(2+)的吸附动力学也符合拟二级反应动力学模型。pH<3时可选择性分离Hg~(2+)和UO_2~(2+)。饱和吸附容量qm(mmol/g)为:Hg~(2+)2.14、UO2~(2+)1.50。
     Cu-EMCS对Cu~(2+)的吸附容量随温度升高而下降。用Avrami动力学等式能很好地拟合Cu~(2+)吸附动力学数据,Cu~(2+)吸附可分为1至2段动力学区域。与非模板磁性壳聚糖树脂相比,Cu-EMCS对Cu~(2+)的吸附选择性明显提高。FTIR表明Cu-EMCS对Cu~(2+)的吸附机理以主链-NH2基和-OH基络合Cu~(2+)为主。
     Fe3O4/CMC对Pd和Pt的单组分吸附符合Langmuir模型和R-P模型,对Pd的亲和性优于Pt,最大吸附容量分别(mg/g)为:Pd 263.18;Pt 222.22;双组分吸附符合Langmuir多组分吸附模型。Pd和Pt之间存在竞争吸附。用0.5mol. L~(-1)硫脲脱附,脱附率较高(>75%),但用5mol. L~(-1)氨水对Pd的脱附选择性较好。
Magnetic chitosan has excellent adsorption performance toward many metal ions. It is suitable for large-scale adsorption and has the fast mass transferring rate. The adsorbent can be separated from the medium by a simple magnetic process. It also have a variety of surface functional groups for modification. In this paper, the magnetic chitosan particles were modified with amine groups, sulfur groups and carboxymethyl groups and their adsorption properties toward various metal ions were investigated. The adsorption properties of the modified chitosan magnetic particles were studied by the methods of magnetic adsorption, template adsorption, nano-adsorption and multi-component adsorption.
     Magnetic chitosan microspheres was prepared and then chemically modified with thiourea (TMCS) for use in the adsorption of metal ions. TMCS obtained was investigated by means of XRD, IR, magnetic properties and TG analysis. The adsorption properties of TMCS toward Hg~(2+), Cu~(2+) and Ni~(2+) were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated using batch methods. The breakthrough curves of the uptake of Hg~(2+), Cu~(2+) and Ni~(2+) ions by TMCS at various flow rates and bed height of the adsorbents were investigated using column adsorption.
     Chitosan magnetic microspheres were prepared with the inverse-phase crosslinking method and modified with ethylenediamine. This adsorbent was characterized by XRD, IR, TGA, etc.The adsorption performance of the modified chitosan microspheres toward Hg~(2+) and UO_2~(2+) was investigated.
     The ethylenediamine- modified magnetic chitosan microparticles with Cu(II) as template ion (Cu -EMCS) were prepared and utilized as a novel adsorbent (Cu -EMCS) for the removal of Cu(II) from the aqueous solution. Cu-EMCS was characterized optical micrograph, IR spectra and TGA. The adsorption equilibrium and kinetics of Cu(II) andd the influence factors of the pH value, ions strength and co-existed ions such as Ni(II), Zn(II), Cd(II), and Pb (II) ions the adsorption for Cu(II) ion were investigated.
     The magnetic carboxymethyl chitosan (Fe3O4/CMC) magnetic nanoparticles were prepared with a surface- tailing method. Chitosan was first carboxymethylated and then bound onto the surface of Fe3O4 nanoparticles. The obtained Fe3O4/CMC nanoparitcles were characterized by TEM、XRD and FTIR. The single and binary adsorption equilibrium and kinetics of Pd and Pt by Fe3O4/CMC were investigated.
     The results of adsorption of Hg~(2+),Cu~(2+) and Ni~(2+) ions by TMCS indicated that the adsorption kinetics follow the mechanism of the pseudo-second-order equation for all studied systems. The best interpretation for the equilibrium data was given by Langmuir isotherm and the maximum adsorption capacities were 625.2, 66.7 and 15.3 mg g-1 for Hg~(2+), Cu~(2+) and Ni~(2+) ions , respectively. The breakthrough time became earlier with the flow rate increasing or the bed height decreasing. The critical bed height for Hg~(2+), Cu~(2+) and Ni~(2+) ions were calculated as 2.35 cm for Hg~(2+),3.41 cm for Cu~(2+) and 2.27 cm for Ni~(2+), respectively . The adsorption kinetics of Hg~(2+) and UO2~(2+) ions by EMCS also follows the pseudo-second-order model. Selective seperation of Hg~(2+) and UO_2~(2+) was achieved at pH<3. The maximum adsorption capacity (qm) was 2.14 mmol/g for Hg~(2+) and 1.50 mmol/g for UO_2~(2+).
     The results of adsorption of Cu~(2+) ions by Cu-EMCS indicated that Cu~(2+) adsorption decreased with increasing temperature. Avrami kinetic equation was successfully fitted to the kinetic adsorption quantities. From this new equation, from one to two regions presenting distinct kinetic parameters were found. The results showed that the selectivity of Cu-EMCS for Cu(II) was greatly increased in relation to that of magnetic chitosan microparticles without Cu(II) template ion. The FTIR spectra reveals that Cu-EMCS coordinated with Cu (II) mainly through–OH groups and–NH2 group of the polymer chain.
     The results of adsorption of Pd and Pt by Fe3O4 /CMC nanoparticles indicated that the single-component adsorption isotherms were well fitted with Langmuir equations and R-P models. The saturated adsorption capacity was 263.18 mg/g for Pd and 222.22 mg/g for Pt, respectively. The bi-component isotherm adsorption data were well fitted with extended Langmuir models. The competition adsorption between Pd and Pt was observed. Desorption efficiency of more than 75% for both Pd and Pt was achieved using 0.5mol. L~(-1) thiourea as eluant, while the higher selectivity was observed with 5mol. L~(-1) ammonia.
引文
[1] Rio S, Delebarre A. Removal of mercury in aqueous solution by fluidized bed plant fly ash. Fuel , 2003, 82: 153~159.
    [2] Van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Poll, 2003, 122: 435~445.
    [3] Cassano A, Molinari R, Romano M, et al. Treatment of aqueous effluents of the leather industry by membrane processes: a review. J Membr Sci, 2001, 181:111~126.
    [4] Goncharuk VV, Kucheruk DD, Kochkodan VM, et al. Removal of organic substances from aqueous solutions by reagent enhanced reverse osmosis. Desalination, 2002, 143: 45~51.
    [5] Von Gunten U. Ozonation of drinking water: Part I Oxidation kinetics and product formation. Water Res, 2003, 37: 1443~1467.
    [6] Chen X, Chen G, Yue PL. Novel electrode system for electroflotation of wastewater. Environ Sci Technol , 2002, 36: 778~783.
    [7] Hu CY, Lo SL, Kuan WH. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes. Water Res, 2003, 37: 4513~4523.
    [8] Hu Z, Lei L, Li Y, et al. Chromium adsorption on highperformance activated carbons from aqueous solution. Sep Purif Technol, 2003, 31:13~18.
    [9] Chern JM, Chien YW. Competitive adsorption of benzoic acid and p-nitrophenol onto activated carbon: isotherm and breakthrugh curves. Water Res, 2003, 37: 2347~2356.
    [10] Pereira MFR, Soares SF, Orfao JMJ, et al. Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 2003, 41: 811~821.
    [11] Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia MA, et al. Bioadsorption of Pb(II) Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon, 2003, 41: 323~330.
    [12] Nouri S, Haghseresht F, Lu GQM. Comparison of adsorption capacity of p-cresol 1 p-nitrophenol by activated carbon in single and double solute. Adsorption, 2002, 8: 215~223.
    [13] Jung MW, Ahn KH, Lee Y, et al. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (CAC). Microchem J, 2001, 70: 123~131.
    [14] Bosso ST, Enzweiler J. Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Res , 2002, 36: 4795~4800.
    [15] Inglezakis VJ, Loizidou MD, Grigoropoulou HP. Ion exchange of Pb2+, Cu2+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J Colloid Int Sci , 2003, 261: 49~54.
    [16] Abollino O, Aceto M, Malandrino M, et al. Adsorption of heavy metals on Na-montmorillonite Effect of pH and organic substances. Water Res, 2003, 37: 1619~1627.
    [17] Al-Asheh S, Banat FA, Abu-Aitah L. Adsorption of phenol using different types of activated bentonites. Sep Purif Technol, 2003, 33: 1~10.
    [18] Shen YH. Removal of phenol from water by adsorption- flocculation using organobentonite. Water Res , 2002, 36: 1107~1114.
    [19] Celis R, Carmen Hermosin M, et al. Heavy metal adsorption by functionalized clays. Environ Sci Technol, 2000, 34: 4593~4599.
    [20] Yavuz O, Altunkaynak Y, Guzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res, 2003, 37: 948~952.
    [21] Ghoul M, Bacquet M, Morcellet M. Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels. Water Res, 2003, 37: 729~734.
    [22] Krysztafkiewicz A, Binkowski S, Jesionowski T. Adsorption of dyes on a silica surface. Appl Surf Sci , 2002, 199: 31~39.
    [23] Lopez FA, Martin MI, Perez C, et al. Removal of copper ions from aqueous solutions by a steel-making by-product. Water Res, 2003, 37: 3883~3890.
    [24] Garg VK, Gupta R, Yadav AB, et al. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol , 2003, 89: 121~124.
    [25] Netpradit S, Thiravetyan P, Towprayoon S. Application of waste metal hydroxide sludge for adsorption of azo reactive dyes. Water Res, 2004, 38: 71~78.
    [26] Gupta VK, Jain CK, Ali I, et al. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res, 2003, 37: 4038~4044.
    [27] Reddad Z, Gerente C, Andres Y, et al. Cadmium and lead adsorption by natural polysaccharide in MF membrane reactor: experimental analysis and modeling. WaterRes, 2003, 37: 3983~3991.
    [28] Calace N, Nardi E, Petronio BM, et al. Adsorption of phenols by papermill sludges. Environ Poll, 2002, 118: 315~319.
    [29] Robinson T, Chandran B, Nigam P. Studies on desorption of individual textile dyes and a synthetic dye effluent from dyeadsorbed agricultural residues using solvents. Bioresour Technol, 2002, 84: 299~301.
    [30] Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res, 2002, 36: 2824~2830.
    [31] Vasudevan P, Padmavathy V, Dhingra SC. Kinetics of biosorption of cadmium on Baker’s yeast. Bioresour Technol, 2003, 89: 281~287.
    [32] Loukidou MX, Matis KA, Zouboulis AI, et al. Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res, 2003, 37: 4544~4552.
    [33] Zhang A, Asakura T, Uchiyama G. The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React Funct Polym, 2003, 57: 67~76.
    [34] Atia A, Donia AM, Abou-El-Enein SA, et al. Studies on uptake behavior of copper(II) and lead(II) by amine chelating resins with different textural properties. Sep Purif Technol, 2003, 33: 295~301.
    [35] Pan BC, Xiong Y, Su Q, et al. Role of amination of a polymeric adsorbent on phenol adsorption from aqueous solution. Chemosphere, 2003, 51: 953~962.
    [36] Azanova VV, Hradil J. Sorption properties of macroporous and hypercrosslinked copolymers. React Funct Polym, 1999, 41:163~175.
    [37] Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazardous Mat, 2003, B97: 219~243.
    [38] Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym, 2004, 55: 77~93.
    [39] Bailey SE, Olin TJ, Bricka RM, et al. A review of potentially low-cost sorbents for heavy metals. Water Res, 1999, 33: 2469~2479.
    [40] Tianwey T. Adsorption behavior of metal ions on imprinted chitosan resin, J. Chem. Technol. Biotechnol., 2001, 76 : 191~197.
    [41] Beppua MM, Arruda EJ, Vieira RS. Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine Journal of Membrane Science, 2004,240:227~235.
    [42] Schmuhl R, Krieg HM, Keizer K. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies, WaterSA, 2001,27:1~8. [43 ] Kurita K, Sannan T , Iwakura Y. Controlled functionalization of polysaccharide chitin. J Appl Polym Sci , 1979 ,23: 511~521.
    [44]柯火仲,吕禹泽.壳聚糖氨基含量对铜吸附量和氨基酸回收率的影响.化学世界, 1991 ,4:158~160.
    [45] Burke A , Yilmaz E , Hasirci N , et al . Fe(III) ion removal from solution through adsorption. onto chitosan. J Appl Polym Sci, 2002 ,84 :1185~1192.
    [46]刘振南.壳聚糖对重金属离子的吸附的研究.广西化工, 1996 ,25(2):9~10.
    [47]刘维俊.高分子壳聚糖对微量金属离子的螯合作用研究.应用化工, 2002 ,31(4) :16~18.
    [48]唐兰模,符迈群,张萍,等.用壳聚糖除去溶液中的微量铬(Ⅵ)的研究.化学世界, 2001, 22(2): 59~63.
    [49]李继平,邢巍巍,杨德君,等.壳聚糖对镧系金属离子吸附性的研究.辽宁师范大学学报(自然科学版) , 2001 ,24(1):54~56.
    [50] Crini G, Morcellet M. Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci, 2002, 25: 789~813.
    [51] Chao AC, Shyu SS, Lin YC, et al. Enzymatic grafting of carboxyl groups on to chitosan—to confer o chitosan the property of a cationic dye adsorbent. Bioresour Technol, 2004, 91: 157~162.
    [52] Liu XD, Tokura S, Nishi N, et al. A novel method for immobilization of chitosan onto non-porous glass beads through a 1,3-thiazolidine linker. Polymer, 2003, 44: 1021~1026.
    [53] Guven O, Sen M, Karadag E, et al. A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat Phys Chem , 1999, 56: 381~386.
    [54] Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedicals applications. Eur J Pharma Biopharm, 2004, 57: 19~34.
    [55] Mi FL, Shyu SS, Chen CT, et al. Adsorption of indomethacin onto chemically modified chitosan beads. Polymer, 2002, 43: 757~65.
    [56] Juang RS, Shao HJ. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res, 2002, 36: 2999~3008.
    [57] Ruiz M, Sastre AM, Guibal E. Palladium sorption on glutaraldehyde-crosslinked chitosan. React Funct Polym, 2000, 45: 155~173.
    [58] Chiou MS, Li HY. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazardous Mat, 2002, B93: 233~248.
    [59] Dzul Erosa MS, Saucedo Medina TI, et al. Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy, 2001, 61: 157~167.
    [60] Guibal E, Von OSN, Vincent T, et al. Sulfur derivatives of chitosan for palladium sorption. React Funct Polym, 2002, 50: 149~163.
    [61] Chiou MS, Li HY. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 2003, 50: 1095~1105.
    [62] Wan Ngah WS, Endud CS, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym, 2002, 50: 181~190.
    [63] Arrascue ML, Garcia HM, Horna O, et al. Gold sorption on chitosan derivatives. Hydrometallurgy , 2003, 71: 191~200.
    [64] Guibal E, Vincent T, Navarro MR. Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J Appl Polym Sci, 2000, 75: 119~134.
    [65] Jeon C, Holl WH. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res, 2003, 37: 4770~4780.
    [66] Ruiz M, Sastre A, Guibal E. Osmium and iridium sorption on chitosan derivatives. Solvent Ext Ion Exchange , 2003, 21: 307~329. [67 ] Koyama Y, Taniguchi A. Process for the preparation of activated chitosans and their use in the preparation of chiotsan derivatives. J Appl Polym Sci , 1986 ,31 (6) :1951~1954
    [68]易琼,叶菊招.壳聚糖吸附剂的制备及其性能.离子交换与吸附, 1996, 12(1): 19~23.
    [69] Hsien TY, Rorrer GL. Heterogeneous cross-linking of chitosan gel beads - kinetics, modeling, and influence on cadmium ion adsorption capacity. Ind Eng Chem Res , 1997 ,36 (9) :3631~3638.
    [70]王志华,李青燕,王书俊.新型多孔多胺化交联壳聚糖对镉(Ⅱ)吸附性能的研究.北京化工大学学报(自然科学版) , 2003 ,30(2) :93~96.
    [71]邵健,杨宇民.杨字民香草醛改性壳聚糖的错备及其吸附性能研究.中国环境科学, 2000 ,20(1) :61~64.
    [72] Guibal E , Larkin A., Vincent T. et al. Chitosan sorbents for platinum sorption
    from dilute solutions. Ind Eng Chem Res , 1999 ,38(10) :4011~4022.
    [73] Rorrer GL , Hsien T Y, Way J D. Adsorption of Metal Ions on Polyaminated Higly Porous Chitosan. Ind Eng Chem Res , 1993 ,32 (9) :2170~2172.
    [74]刘芳,董世化,徐羽梧.带希夫碱和酰肼基团的壳聚糖螯合树脂的合成及其吸附性能.环境化学, 1996 ,15(3) :207~213.
    [75] Shiftan D, Ravenelle F, Mateescu MA, et al. Change in the V/B polymorph ratio and T1 relaxation of epichlorohydrin crosslinked high amylose starch excipient. Starch, 2000, 52: 186~195.
    [76] Ohga K, Kurauchi Y, Yanase H. Adsorption of Cu2+ or Hg2+ ion on resins prepared by crosslinking metal-complexed chitosans. Bull Chem Soc Jpn , 1987 ,60: 444~446.
    [77] Inoue K, Baba Y, Yoshizuka K. Adsorption of metal ions on. chitosan and crosslinked copper-complexed chitosan. Bull Chem Soc Jpn , 1993 ,66 :2915~2921.
    [78]黄晓佳,袁光谱,王爱勤.模板交联壳聚糖对过渡金属离子的吸附性能研究.离子交换与吸附, 2000 , 16(3) : 262~266.
    [79]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京化工大学学报(自然科学版) , 2003 ,30(2) :19~22.
    [80] Lee ST, Mi FL, Shen YJ, et al. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan– tripolyphosphate chelating resin. Polymer, 2001, 42: 1879~1892.
    [81] Delval F, Crini G, Vebrel J, et al. Starch-modified filters used for the removal of dyes from waste water. Macromol Symp, 2003, 203: 165~171.
    [82] Delval F, Crini G, Morin N, et al. The sorption of several types of dye on crosslinked polysaccharides derivatives. Dyes Pigments, 2002, 53: 79~92.
    [83] Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol 2003;90:193~198.
    [84] Guibal E, Milot C, Eterradossi O, et al. Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. Int J Biol Macromolecules, 1999, 24: 49~59.
    [85] Guibal E, Milot C, Roussy J. Molybdate sorption by crosslinked chitosan beads: dynamic studies. Wat Environ Res, 1999, 71: 10~17.
    [86] Guibal E, Touraud E, Roussy J. Chitosan interactions with metal ions and dyes: dissolved-state vs. solid-state application. World Journal of Microbiology and Biotechnology, 2005, 21: 913~920.
    [87] Guibal E, Milot C, Tobin JM. Metal–anion sorption by chitosan beads:equilibrium and kinetic studies. Ind Eng Chem Res, 1998, 38: 1454~1463.
    [88] Cao Z, Ge H, Lai S. Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation. Eur Polym J, 2001, 37: 2141~2143.
    [89] Muzzarelli RAA, Tanfani F, Emanuelli M. Modified chitosan carrying phosphonic and alkyl groups. J Membrane Sci , 1983 ,16 :295~308
    [90]马全红,邹宗柏,高永红.丙酮酸改性壳聚糖对金属离子的吸附性能研究.现代化工, 2000 , 20(10) : 44~46.
    [91]杨智宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究.环境科学与技术, 2000 , 88(1) : 10~12.
    [92] Hon NS, Tang LG. Chelation of chitosan derivatives with zinc ions. I. O,N-carboxymethyl chitosan. J Appl Polym Sci , 2000 ,77(10) :2246~2253.
    [93] Inoue K, Ohto K, Yoshizuka K, et al . Silver-complexed chitosan microparticles for pesticide removal. Bull Chem Soc Jpn , 1997 ,70(10) :2443~2447.
    [94] Baba Y, Matsumara N , Shiomori K, et al . Selective adsorption of mercury (II) on chitosan derivatives from hydrochloric acid. Anal Sci, 1998 ,14 (4) :687~690.
    [95] Wan Ngah WS, Kamari A, Koay YJ, et al . Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads International Journal of Biological Macromolecules , 2004, 34: 155~161.
    [96]庄莉,杨智宽.含硫壳聚糖研究——氨基硫脲接枝壳聚糖的合成.化学试剂, 2002 ,24(5) :282~283.
    [97] Guibal E, Von OSN, Vincent T, et al. Sulfur derivatives of chitosan for palladium sorption. React Funct Polym ,2002, 50: 149~63.
    [98] Liu XD, Tokura S, Haruki M, et al. Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohydr Polym, 2002, 49: 103~108.
    [99] Wan MW, Petrisor IG, Lai HT, et al. Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination. Carbohydr Polym, 2004, 55: 249~254.
    [100] Gotoh T, Matsushima K, Kikuchi KI. Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere, 2004, 55:135~140.
    [101] Steenkamp GC, Keizer K, Neomagus HWJP, et al. Copper II removal from polluted water with alumina/chitosan composite membranes. J Membr Sci, 2002, 197: 147~156.
    [102] Martel B, Devassine M, Crini G, et al. Preparation and sorption properties of a b-cyclodextrin-linked chitosan derivative. J Appl Polym Sci, 2001, 39: 169~176.
    [103] Tojima T, Katasura H, Nishiki M, et al. Chitosan beads with a-cyclodextrin: preparation and inclusion property to nitrophenolates. Carbohydr Polym, 1999, 40: 17~22.
    [104] Yi Y, Wang Y, Liu H. Preparation of new crosslinked with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydr Polym, 2003, 53: 425~430.
    [105] Yang Z, Wang Y, Tang Y. Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers. J Appl Polym Sci, 1999, 74: 3053~3058.
    [106] Tan S, Wang Y, Peng C, et al. Synthesis and adsorption properties for metal ions of crosslinked chitosan acetate crown ethers. J Appl Polym Sci, 1999, 71: 2069~2074.
    [107] Peng C, Wang Y, Tang Y. Synthesis of crosslinked chitosancrown ethers and evaluation of these products as adsorbents for metal ions. J Appl Polym Sci, 1998, 70: 501~506.
    [108] Monser L, Adkoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif Technol, 2002,26: 137~146.
    [109] Lee SM, Davis AP. Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge. Water Res, 2001, 35: 534~540.
    [110] Chen XH, Gosset T, Thevenot DR. Batch copper ion binding and exchange properties of peat. Water Res, 1990, 24: 1463~1471.
    [111] Ajmal M, Khan AH, Ahmad S, et al. Role of sawdust in the removal of copper(II) from industrial wastes. Water Res, 1998, 32: 3085~3091.
    [112] Ouki SK, Kavanagh M. Performance of the natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Manage Res, 1997, 15: 383~394.
    [113] Panday KK, Prasad G, Singh VN. Copper II removal from aqueous solutions by fly ash. Water Res, 1985, 19: 869~873.
    [114] Panday KK, Prasad G, Singh VN. Removal of Cr(VI) from aqueous solution by adsorption on fly ash–wollastonite. Environ Technol Lett, 1986, 7: 547~554.
    [115] Leppert D. Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Mining Eng, 1990, 42: 604~608.
    [116] Low KS, Lee CK. Cadmium uptake by the moss, Calymperes delessertii. Bioresour Technol 1991;38:1~6.
    [117] Matis KA, Zouboulis AI. Flotation of cadmium-loaded biomass. Biotechnol Bioeng, 1994, 44: 354~360.
    [118] Pradas EG, Sanchez MV, Cruz FC, et al. Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J Chem Tech Biotechnol, 1994, 59: 289~295.
    [119] McLelland JK, Rock CA. Pretreating land-fill leachate with peat to remove metals. Water Air Soil Poll, 1988, 37: 203~215.
    [120] Karcher S, Kornmuller A, Jekel M. Screening of commercial sorbents for the removal of reactive dyes. Dyes Pigments, 2001, 51:111~125.
    [121] Jain AK, Gupta VK, Bhatnagar A, et al. Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazardous Mat, 2003, B101: 31~42.
    [122] Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigments, 2003, 56: 239~249.
    [123] Chu HC, Chen KM. Reuse of activated sludge biomass: I. Removal of basic dyes from wastewater by biomass. Process Biochem, 2002, 37: 595~600.
    [124] Choy KKH, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resour Conserv Recycl, 1999, 27: 57~71.
    [125] Netpradit S, Thiravetyan P, Towprayoon S. Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. J Colloid Int Sci , 2004, 270: 255~261.
    [126] Netpradit S, Thiravetyan P, Towprayoon S. Application of waste metal hydroxide sludge for adsorption of azo reactive dyes. Water Res, 2003, 37: 763~772.
    [127] Fu Y, Viraraghavan T. Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res, 2002, 7: 239~247.
    [128] Namasiwayam C, Kavitha D. Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 2002, 54: 47~58.
    [129] Banat FA, Al-Bashir B, Al-Asheh S, et al. Adsorption of phenol by bentonite. Environ Poll, 2000, 107: 391~398.
    [130] Juang RS, Tseng RL, Wu FC. Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes. Adsorption , 2001, 7: 65~72.
    [131] McKay G, Otterburn MS, Aga JA. Fuller’s Earth and fired clay as adsorbents for dyestuffs equilibrium and rate studies. Water Air Soil Poll, 1985, 24: 307~322.
    [132] McKay G, Blair HS, Gardner JR. The adsorption of dyes in chitin. III. Intraparticle diffusion processes. J Appl Polym Sci , 1983, 28: 1767~1778.
    [133] Poots VJP, McKay G, Healy JJ. The removal of acid dye from effluent using natural adsorbents—I. Peat. Water Res, 1976, 10: 1061~1066.
    [134] Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Trans Inst Chem Eng 1998, 76: 183~186.
    [135] Coughlin RW, Deshaies MR, Davis EM. Chitosan in crab shell wastes purifies electroplating wastewater. Environ Prog, 1990, 9: 35~39.
    [136] Wan Ngah WS, Isa IM. Comparison study of copper ion adsorption on chitosan, Dowex A-1, and Zerolit 225. J Appl Polym Sci, 1998, 67:1067~1070.
    [137] Reddad Z, Gerente C, Andres Y, et al. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol, 2002, 36:2067~2073.
    [138] Gotoh T, Matsushima K, Kikuchi KI. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads. Chemosphere, 2004, 55: 57~64.
    [139] Basso MC, Cerrella EG, Cukierman AL. Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II) and. nickel(II) from dilute aqueous solutions. Ind Eng Chem Res,2002, 41: 180~189.
    [140] Gomez-Salazar S, Lee JS, Heydweiller JC, et al. Analysis of cadmium adsorption on novel organo-ceramic adsorbents with a thiol functionality. Ind Eng Chem Res, 2003, 42: 3403 ~3412.
    [141] Huang CP, Chung YC, Liou MR. Adsorption of Cu(II). and Ni(II) by pelletized biopolymer. J Hazard Mater, 1996, 45: 265~277.
    [142] Evans JR, Davids WG, MacRae JD, et al. Kinetics of cadmium uptake by chitosan-based crab shells. Water Res, 2002, 36: 3219~3226.
    [143] Oliveira LC, Rios RVR, Fabris JD, et al. Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 2003, 22: 169~177.
    [144] Graves DJ. Bioseparations in the magnetically stabilized fluidized bed. Chromatogr Sci, 1993, 61:187~207.
    [145] Denizli A, Say R, Piskin E. Removal of aluminium by Alizarin Yellow-attached magnetic poly(2-hydroxyethyl methacrylate) beads. React Funct Polym, 2003, 55: 99~2107.
    [146] Safarik I, Safarikova M, Buricova V. Sorption of water soluble organic dyes onmagnetic poly (oxy-2,6-dimethyl-1,4-phenylene). Collect Czech Chem. Commun, 1995, 60 :1448~1456.
    [147] Tanyolac D, Ozdural AR. A new low cost magnetic material: magnetic polyvinylbutyral microbeads. React Funct Polym, 2000, 43 :279~286.
    [148] Chang YC, Chang SW, Chen DH. Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym, 2006 ,66 :335~341.
    [149] Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol, 2004, 38 : 43~74.
    [150] Ritchie SMC, Kissick KE, Bachas LG, et al. Polycysteine and other polyaminoacid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol, 2001, 35: 3252~3258.
    [151] Merrifield JD, Davids WG, MacRae JD, et al. Uptake of mercury by thiol-grafted chitosan gel beads. Water Res., 2004, 38: 3132~3138.
    [152] Justi KC, Fávere VT, Laranjeira MCM, et al. Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl) aminomethyl]-4-methyl-6-formylphenol. J. Colloid Interface Sci., 2005, 291: 369~374.
    [153] Atia AA. Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy, 2005, 80 :13~22.
    [154] Chassary P, Vincent T, Marcano JS, et al. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 2005, 76: 131~147.
    [155] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34: 451~465.
    [156] Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 2000, 34 :735~742.
    [157] Yurdakoc M., Scki Y, Yuedakoc SK. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Srial 80. J. Colloid Interface Sci., 2005 , 286: 440~446.
    [158] Wu FC, Tseng RL, Juang RS. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res, 2001, 35: 613~618.
    [159] Kumar RMNV. A review of chitin and chitosan applications. React Funct Polym, 2000, 46: 1~27.
    [160] Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci, 2005, 30: 38~70.
    [161] Atia AA, Donia AM, Shahin AE. Studies on the uptake behavior of a magnetic Co3O4-containing resin for Ni(II), Cu(II)and Hg(II) from their aqueous solutions. Sep Purif Technol, 2005,46 :208~213.
    [162] Sag Y, Aktay Y. Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. J Biochem Eng, 2002, 12: 145~153.
    [163] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc, 1918, 40: 1361~1403.
    [164] Freundlich HMF. Over the adsorption in solution. Z Phys Chem, 1906, 57: 385~471.
    [165] Temkin MJ, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS ,1940,12:217~222.
    [166] Denizli A, Senel S, Alsancak G, et al. Mercury removal from synthetic solutions using poly(2-hydroxyethylmethacrylate) gel beads modified with poly(ethyleneimine). React Funct Polym, 2003, 55: 121~130.
    [167]Subhashini G, Pant KK. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol, 2005, 42 (3): 265~271.
    [168] O'Brien SM, Thomas ORT, Dunnill P. Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption. J Biotechnol, 1996, 50: 13~25.
    [169] Tong XD, Sun Y. Application of magnetic agarose support in liquid magnetically stabilized fluidized bed for protein adsorption. Biotechnol Prog, 2003,19: 1721~1727.
    [170] Morel FMM, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst, 1998, 29:543~66.
    [171]杨超雄,吴锦远,杜光军.磁性树脂的研究—纤维素基聚氨肟树脂.离子交换与吸附,1994, 10(6): 523~537.
    [172] Hennig C, Reich T, Dahn R, et al. Structure of uranium sorption complexes at montmorillonite edge sites. Radiochimica Acta, 2002, 90: 653~657.
    [173] Wu FC, Tseng RL, Juang RS. Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J Hazard Mater, 2000, B 73: 63~75.
    [174] Chu KH. Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. J Hazard Mater, 2002 , B90:77~95.
    [175] Lee ST, Mi FL, Shen YJ, et al. Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer, 2001, 42: 1879~ 1892.
    [176] Rodrigues CA, Laranjeira MC, Favere VT, et al. Interaction of Cu(II) on N-(2-pyridylmethyl) and N-(4-pyridylmethyl) chitosan, Polymer, 1998, 39: 5121~ 5126.
    [177] Inoue K, Yoshizuka K, Ohto K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta, 1999, 388: 209~218.
    [178]孙胜玲,马宁,王爱勤.铜模板交联壳聚糖对金属离子的吸附性能研究.离子交换与吸附, 2004, 20(3): 193~198.
    [179]孙胜玲,王丽,吴瑾.壳聚糖及其衍生物对金属离子的吸附研究(上).高分子通报, 2005, (5): 58~ 68.
    [180]周利民,王一平,刘峙嵘.羧甲基化壳聚糖-Fe3O4纳米粒子的制备及对Zn2+的吸附行为.物理化学学报2006, 22(11): 1342~1346.
    [181] Ghiaci M, Kia R, Kalbasi RJ, et al. Investigation of thermodynamic Parameters of Cetylpyridinium bromide sorption onto ZSM-5 and natural clinoptilolite. J Chem Thermodyn, 2004, 36: 95~100
    [182] Vieira EFS, Cestari AR, Santos EB. Interaction of Ag(I), Hg(II), and Cu(II) with 1,2-ethanedithiol immobilized on chitosan: Thermochemical data from isothermal calorimetry. J Colloid Interface Sci, 2005, 289(1): 42~47.
    [183] Domard A. Chitosan: application to Cu(II) polymers interactions. Int J Biol Macromol, 1987, 9: 98~104.
    [184] Monteiro OAC, Airoldi C. Some thermodynamic data on copper–chitin and copper–chitosan biopolymer interactions. J Colloid Interf Sci, 1999, 212: 212~219.
    [185] Meena AK, Mishra GK, Rai PK,et al. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater, 2005, B 122: 161~170.
    [186] Esp?nola JGP, Arakaki LNH, Oliveir SF, et al. Some thermodynamic data of the energetics of the interaction cation-piperazine immobilized on silica gel. Colloids Surf, 2003, A 221: 101~108.
    [187] Chang YC, Chen DH. Preparation and adsorption properties of monodispersechitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interf Sci, 2005, 283: 446~–451.
    [188] Sag Y, Kutsal T. Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J, 2000, 6: 145~151.
    [189] Acemioglu B, Alma MH. Equilibrium studies on adsorption of Cu(II) from aqueous solution onto cellulose. J Colloid Interf Sci, 2001, 243 : 81~84.
    [190] Lima IS, Airoldi C. Interaction of copper with chitosan and succinic anhydride derivative—a factorial design evaluation of the chemisorption process. Thermochim Acta, 2004, 421: 133~139.
    [191] Rodda DP, Wells JD, Johnson BB. Anomalous adsorption of Copper(II) on goethite. J Colloid Interf Sci, 1996, 184: 564~569.
    [192] Lima IS, Lazarin AM, Airoldi C. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int J Biol Macromol, 2005, 36 :79~83.
    [193] Cestari AR, Vieira EFS, Matos CRS. Thermodynamics of adsorption of Cu(II) on vanillin-modified thin chitosan membranes. J Chem Thermodyn, 2006, 38: 1092~1099.
    [194] Kalavathy MH, Karthikeyan T, Rajgopal S, et al. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J Colloid Interf Sci, 2005, 292: 354~362.
    [195] Cestari A R, Vieira EFS, Oliveira IA, et al.The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan—Evaluation by the factorial design methodology. Journal of Hazardous Materials, 2007, 143: 8~16.
    [196] Airoldi C, Alcantara EFC. Chemisorption of divalent cations on N-(2-pyridyl)acetamide immobilized on silica gel—a thermodynamic study. J Chem Thermodyn, 1995, 27: 623~632.
    [197] Chiou MS, Li HY, Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 2003, 50 : 1095~1105.
    [198] Lopes ECN, Anjos FSC, Vieira EFS, et al. An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. J Colloid Interface Sci, 2003, 263 (2): 542~547.
    [199] Cestari AR, Vieira EFS, Lopes ECN, et al. Kinetics and equilibrium parameters of Hg(II) adsorption on silica-dithizone. J Colloid Interface Sci, 2004, 272(2): 271~276.
    [200] Cestari AR, Vieira EFS, Santos AGP, et al. Adsorption of anionic dyes on chitosan beads. 1. The influence of the chemical structures of dyes and temperature on the adsorption kinetics. J Colloid Interface Sci, 2004, 280 (2): 380~386.
    [201] Sun SL, Wang L, Wang AQ. Adsorption properties of crosslinked carboxymethyl- chitosan resin with Pb(II) as template ions. Journal of Hazardous Materials, 2006, B136: 930~937.
    [202] Li BQ, Jia DC, Zhou Y, et al. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. Journal of Magnetism and Magnetic Materials, 2006, 306: 223~227.
    [203] Wu Y, Guo J, Yang WL, et al. Preparation and characterization of chitosan– poly(acrylic acid) polymer magnetic microspheres. Polymer, 2006, 47: 5287~5294.
    [204] Denkbas EB, Kilicay E, Birlikseven C, et al. Magnetic chitosan microspheres: preparation and characterization. React Funct Polym, 2002, 50: 225~232.
    [205] Rojas G, Silva J, Flores JA, et al. Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 2005, 44: 31~36.
    [206] Guibal E, Von OSN, Zikan MC, et al. Sulfur-derivatives of chitosan for palladium soption. React Funct Polym, 2002,50(2): 149~163.
    [207] Chiou MS, Ho PY, Li HY. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 2004, 60: 69~84.
    [208] Zhou LM, Wang YP, Liu ZR, et al. Carboxymethyl chitosan-Fe3O4 nanoparticles: Preparation and adsorption behavior toward Zn2+ ions. Acta Phys Chim Sin, 2006, 22(11):1342~1346.
    [209] Choi JH, Kim SD, Noh SH, et al. Adsorption behaviors of nano-sized ETS-10 and Al-substituted-ETAS-10 in removing heavy metal ions, Pb2+ and Cd2+. Microporous and Mesoporous Materials, 2006, 87: 163~169.
    [210]杨玉东,梁勇.单一分散氧化铁—葡聚糖纳米粒子的制备及超顺磁性.无机化学学报, 2005, 21(1): 133~136.
    [211] Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem, 1959, 63: 1024~1026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700