基于临界折射纵波和表面波的压力容器压力测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力容器广泛应用于现代工业中,为了保证其有效而安全地运行,需要测量和监控容器内的压力值。传统的压力测量方法大多需要在压力容器壁上开孔引压,这将引起所开孔区域的应力集中,给容器运行和维护带来安全隐患。因此有必要研究一种不需开孔的非侵入式压力检测方法。超声波在介质中的传播速度与介质的应力和温度有关。研究表明,基于表面波的压力容器压力测量方法是可行的。但是仅采用表面波,该种压力测量方法难以应用于球形压力容器等对象。本文提出了基于超声临界折射纵波和表面波的压力测量方法。分别建立了临界折射纵波和表面波的传播时间变化量与容器内压力、温度的关系模型。在此基础上,提出了两波参比式压力测量方法;提出了基于零相位数字滤波器的互相关时延估计方法。本文的主要研究成果和创新点如下:
     (1)推导了临界折射纵波和表面波的传播时间变化量与容器内压力、温度之间的关系模型。详细分析了应力、温度这两个主要因素对超声波波速和超声传播距离的影响,结合圆柱形压力容器与球形压力容器的应力分布特点,经过适当的简化处理,建立了这两类容器中临界折射纵波和表面波的传播时间变化量与压力、温度的关系模型。在此基础上,为了降低温度的影响,提出了两波参比式压力测量模型。
     (2)提出了基于零相位数字滤波器的广义互相关时延估计方法,提高了互相关时延估计的精度。由于超声信号中包含有相关的噪声成分,因此需要对超声信号进行预先滤波处理。针对普通数字滤波器会造成信号相位失真的问题,提出采用零相位滤波器对信号进行滤波处理。比较了基于零相位滤波器和基于希尔伯特黄变换这两种广义互相关时廷估计方法的性能,比较结果表明基于零相位滤波器的时廷估计方法具有良好的稳定性和可靠性,而且更加简单快速。
     (3)设计了一种复合探头,可用于临界折射纵波和表面波的激发与接收。比较了复合探头和普通商用超声波探头的温度稳定性,实验结果表明复合探头组的温度稳定性要优于普通临界折射纵波和表面波探头组的温度稳定性。采用复合探头组进行参比式压力测量,有利于降低温度变化不均匀给压力测量带来的误差,并且可以减少探头数量,使得测量过程更加简单。
     (4)以水压力罐和气稳压罐为实验对象,采用临界折射纵波和表面波,进行了参比式压力测量实验研究。实验结果表明,测量模型正确,采用参比式测量方法可以有效降低温度对压力测量的影响,压力测量结果具有良好的精度。
Pressure vessels are widely used in modern industry. To guarantee that they are working properly, it is essential to measure and monitor the pressure in the vessels. Conventional methods for pressure measurement commonly require drilling a hole in the wall of the vessels, which usually cause local stress concentration, and lead to potential safety problems. Therefore, a nondestructive method without drilling holes to measure the pressure is desirable. The propagation velocity of ultrasonic wave is related to the stress and the temperature of the propagation media. Research results show that nondestructive pressure measurement is feasible using surface wave. Howerve, using only surface wave, this method is difficult to apply to spherical pressure vessels. In the thesis, a new pressure measurement method using critically refracted longitudinal wave (LCR wave) and sureface wave is proposed. A model among the change of ultrasonic wave's propagation time and the temperature and the pressure of vessels is established. According to this model, a reference method by LCR wave and surface wave is proposed. A correlative time estimation method based on the zero-phase digital filter is presented. The main contents and innovations of the thesis are summarized as follows:
     (1) Models among the propagation time of ultrasonic waves and the pressure of vessels and the temperature are developed respectively for LCR wave and surface wave. The influence of stress and temperature to the velocity and the propagation distance of ultrasonic waves is analysised. According to the stress distribution of cylinder pressure vessels and spherical pressure vessels, models among the propagation time of ultrasonic waves and the pressure of vessels and the temperature are developed through appropriate simplification, respectively for LCR wave and surface wave. A reference method for inducing the influence of temperature is presented.
     (2) A general cross correlation method based on zero-phase digital filter is applied to improve the accuracy of time delay estimation. Ultrasonic signals contain the correlative noise, therefore, pre-filtering of signal is needed. Zero-phase digital filter which can effectively eliminate the phase distortion that caused by common digital filter is proposed to process the signals. Compared to Hilbert-Huang Transform, the experimental result shows that the general cross correlation method based on zero-phase digital filter is more stable and simple.
     (3) A combined transducer is designed to generate or receive the LCR wave and surface wave. Comparison tests between the combined transducers and the custom-used transducers show that the combined transducers have better repeatability. Using the combined transducers in the experiments can reduce the influence of unevenness of temperature distribution to pressure measurement, with less transducers needed, also leading to a more simple and more convenient measurement.
     (4) A water vessel and an air vessel have been chosen as specimen. The reference pressure measurement experiments are carried out. The results show that the model established in the thesis is correct. The results also show that the reference method is effective, the influence of temperature variation could be reduced and the pressure measurement could gain high accuracy.
引文
[1]张宏建,蒙建波.自动检测技术与装置[M].北京:化学工业出版社,2004.
    [2]杜维,张宏建,乐嘉华.过程检测技术及仪表[M].北京:化学工业出版社,1999.
    [3]杨启明.压力容器与管道安全评价[M].北京:机械工业出版社,2007.
    [4]郭奎建.2008年特种设备统计分析[J].中国特种设备安全,2009,25(5):42-46.
    [5]谢铁军,寿比南.《固定式压力容器安全技术监察规程》释义[M].北京:新华出版社,2009.
    [6]谢铁军,寿比南,王晓雷,et al.《固定式压力容器安全技术监察规程》修订情况综述[J].压力容器,2008,28(10):1-3,26.
    [7]王化祥.自动检测技术[M].北京:化学工业出版社,2004.
    [8]张毅,张宝芬,曹丽,et al.自动检测技术及仪表控制系统(第二版)[M].北京:化学工业出版社,2005.
    [9]李海青,黄志尧.特种检测技术及应用[M].杭州:浙江大学出版社,2000.
    [10]范钦珊.压力容器的应力分析与强度设计[M].北京:原子能出版社,1979.
    [11]邹广华,刘强.过程装备制造与检测[M].北京:化学工业出版社,2007.
    [12]潘荣宝,范宇,张保中,et al.压力容器无损检测——超声检测技术(Ⅰ)[J].无损检测,2004,26(4):188-192.
    [13]潘荣宝,范宇,杨小林.压力容器无损检测——超声检测技术(Ⅱ)[J].无损检测,2004,26(5):244-248.
    [14]DELL'ISOLA M, CANNIZZO M, DIRITTI M. Measurement of high-pressure natural gas flow using ultrasonic flowmeters [J]. Measurement,1997,20(2):75-89.
    [15]HURTHER D, LEMMIN U. A constant-beam-width transducer for 3D acoustic Doppler profile measurements in open-channel flows [J]. Measurement Science & Technology,1998,9(10): 1706-1714.
    [16]PUTTMER A, HAUPTMANN P, HENNING B. Ultrasonic density sensor for liquids [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2000,47(1):85-92.
    [17]KULCZYK W K, SMITH G W, JACKSON G A. Ultrasonic distributed temperature sensor [J]. Sensors and Actuators A:Physical,1989,22(1-3):663-669.
    [18]GREENWOOD M S, SKORPIK J R, BAMBERGER J A, et al. On-line ultrasonic density sensor for process control of liquids and slurries [J]. Ultrasonics,1999,37(2):159-171.
    [19]VARGAS E, CERES R, MARTI'N J M, et al. Ultrasonic sensor for liquid-level inspection in bottles [J]. Sensors and Actuators A:Physical,1997,61(1-3):256-259.
    [20]THIELE J A, CUNHA M P D. High temperature LGS SAW gas sensor [J]. Sensors and Actuators B:Chemical,2006,113(2):816-822.
    [21]SUN S A, AI C S, LI G P, et al. Optimized Selection of Modeling Samples in Milk Component Concentration Ultrasonic Detection; proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Vols 1-23, F,2008 [C].
    [22]吴粤燊.压力容器安全技术(第二版)[M].北京:化学工业出版社,1993.
    [23]郑津洋,吴琳琳,寿比南,et al.《固定式压力容器安全技术监察规程》压力容器分类[J].压力容器,2009,26(5):1-6.
    [24]余国琮.化工容器及设备[M].北京:化学工业出版社,1980.
    [25]王非.化工压力容器设计——方法、问题和要点[M].北京:化学工业出版社,2005.
    [26]贺庆.基于表面波的薄壁容器压力测量方法[博士学位论文][D].杭州;浙江大学,2007.
    [27]邵国华,魏兆灿.超高压容器[M].北京:化学工业出版社,2002.
    [28]李伟东,吴学忠,李圣怡.一种压阻式微压力传感器[J].仪表技术与传感器,2006,7):1-2,5.
    [29]BAUER F. PVDF shock sensors:Applications to polar materials and high explosives [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2000,47(6):1448-1454.
    [30]WANG Y C, CHEN Y W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary [J]. Experimental Thermal and Fluid Science,2007,32(2):403-414.
    [31]KARKI S, LEKKALA J, KUOKKANEN H, et al. Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements [J]. Sensors and Actuators a-Physical, 2009,154(1):57-64.
    [32]MARSILI R. Measurement of the dynamic normal pressure between tire and ground using PVDF piezoelectric films [J]. Ieee Transactions on Instrumentation and Measurement,2000,49(4): 736-740.
    [33]NEWNHAM R E, SKINNER D P, CROSS L E. Connectivity and Piezoelectric-Pyroelectric Composites [J]. Materials Research Bulletin,1978,13(5):525-536.
    [34]PARK S E, SHROUT T R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1997,44(5):1140-1147.
    [35]王树彬,徐廷献,韩杰才,et al. PZT/PVDF压电复合材料的制备及其性能研究[J].复合材料学报,2000,17(4):1-5.
    [36]MARIN-FRANCH P, PETTIGREW I, PARKER M, et al. Piezocrystal-polymer composites:new materials for transducers for ultrasonic NDT [J]. Insight,2004,46(11):653-657.
    [37]SHUNG K K, CANNATA J M, ZHOU Q F. Piezoelectric materials for high frequency medical imaging applications:A review [J]. Journal of Electroceramics,2007,19(1):139-145.
    [38]戴雷,胡珊,郑辉,et al.0-3型PZN-PZT/PVDF压电复合材料的制备工艺条件优化[J].材料科学与工程学报,2008,26(2):294-297.
    [39]LEE B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology,2003, 9(2):57-79.
    [40]URBANCZYK W, CHMIELEWSKA E, BOCK W J. Measurements of temperature and strain sensitivities of a two-mode Bragg grating imprinted in a bow-tie fibre [J]. Measurement Science & Technology,2001,12(7):800-804.
    [41]PENG B J, ZHAO Y, YANG H, et al. Pressure sensor based on a free elastic cylinder and birefringence effect on an FBG with temperature-compensation [J]. Measurement,2005,38(2): 176-180.
    [42]ZHU Y Z, WANG A B. Miniature fiber-optic pressure sensor [J]. leee Photonics Technology Letters,2005,17(2):447-449.
    [43]GANDER M J, MACPHERSON W N, BARTON J S, et al. Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications [J]. leee Sensors Journal,2003,3(1): 102-107.
    [44]YIN K, ZHANG M, DING T H, et al. An investigation of a fiber-optic air-backed mandrel hydrophone [J]. Optics Communications,2008,281(1):94-101.
    [45]刘小会,王昌,刘统玉,et al.矿井下用光纤光栅水压传感器及系统[J].光子学报,2009,38(1):112-114.
    [46]CIBULA E, PEVEC S, LENARDIC B, et al. Miniature all-glass robust pressure sensor [J]. Optics Express,2009,17(7):5098-5106.
    [47]靳伟,廖延彪,张志鹏.导波光学传感器:原理与技术[M].北京:科学出版社,1998.
    [48]SCHIMETTA G, DOLLINGER F, WEIGEL R. A wireless pressure-measurement system using a SAW hybrid sensor [J]. Ieee Transactions on Microwave Theory and Techniques,2000,48(12): 2730-2735.
    [49]JIANG Q, YANG X M, ZHOU H G, et al. Analysis of surface acoustic wave pressure sensors [J]. Sensors and Actuators a-Physical,2005,118(1):1-5.
    [50]NICOLAY P, ELMAZRIA O, SARRY F, et al. Innovative surface acoustic wave sensor for accurate measurement of subatmospheric pressure [J]. Applied Physics Letters,2008,92(14):
    [51]范东远,陈明.新型声表面波谐振式压力传感器的研制[J].仪表技术与传感器,1998,1):7-10,22.
    [52]DIODATI P. Ultrasonic Method for Static Pressure Measurement [J]. Review of Scientific Instruments,1986,57(2):293-295.
    [53]TITTMANN B R. Sonic pressure vessel sensor [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2005,127(3):226-229.
    [54]ROSENKRANTZ E, FERRANDIS J Y, LEVEQUE G, et al. Ultrasonic measurement of gas pressure and composition for nuclear fuel rods [J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment,2009, 603(3):504-509.
    [55]吴守正,胡庆超.超声波管外压力测量[J].液压与气动,1989,3):36-38.
    [56]李芳,王爱明,吴朝军,et al.液压超声波小管径压力测量研究[J].液压与气动,2004,7):38-40.
    [57]王爱明,李艾华.超声波压力检测中回波搜索算法[J].机床与液压,2003,5):280-281,114.
    [58]方志强,林伟国,莫得举,et al.基于CPLD超声波管外压力检测仪[J].仪表技术与传感器,2008,5):19-20,23.
    [59]罗伯特·博世有限公司.利用超声波传播时间测量同步确定高压容器中压力和温度的方法与装置:中国,200580025877.5[P/OL].2007-07-04].
    [60]宋寿鹏,阙沛文,刘清坤.非介入式超声管道压力测量方法研究[J].传感技术学报,2004,17(4):565-568.
    [61]谢建,刘俊,田桂.压力和温度对两种液压油的超声波速度的影响[J].声学技术,2007,26(6):1155-1160.
    [62]YU F, GUPTA N, HOY J. Non-intrusive pressure measurement based on ultrasonic waves [J]. Insight,2005,47(5):285-288.
    [63]GUERS M J, FONTANA C J, ZILINSKIS D R, et al. Investigation of noninvasive approaches for pressure measurement [M]//THOMPSON D O, CHIMENTI D E. Review of Progress in Quantitative Nondestructive Evaluation, Vols 26A and 26B.2007:1653-1659.
    [64]GUERS M J, FONTANA C J, TITTMANN B R. A noninvasive pressure measurement technique and the potential for integrated calibration [M]//THOMPSON D O, CHIMENTI D E. Review of Progress in Quantitative Nondestructive Evaluation, Vol 27a and 27b.2008:1500-1504.
    [65]林韶峰,张宏建.基于Rayleigh表面波的无损测压方法[J].仪器仪表学报,2005,26(9): 976-979.
    [66]LIN S F, ZHANG H J. A new method for nondestructively measuring pressure based on the Rayleigh wave; proceedings of the 21st IEEE Instrument and Measurement Technology Conference, F,2004 [C].
    [67]张宏建,林韶峰.基于瑞利表面波的无损测压方法,ZL200410066996.2[P/OL].2006-5-31[
    [68]贺庆,周洪亮,张宏建,et a1.考虑温度影响的表面波压力测量模型研究[J].仪器仪表学报,2008,29(11):2367-2372.
    [69]ZHANG H J, HE Q, YAN Y. A new nondestructive technique for measuring pressure in vessels by surface waves [J]. Applied Acoustics,2008,69(10):891-900.
    [70]应崇福.超声学[M].北京:科学出版社,1990.
    [71]朱金颖,陈龙珠,吴世明.层状板中Lamb波的频散特性研究[J].振动工程学报,1998,11(3):366-372.
    [72]应崇福,张守玉,沈建中.超声在固体中的散射[M].北京:国防工业出版社,1994.
    [73]邓明晰.一种定征固体板表面性质的兰姆波方法[J].应用声学,2006,25(2):109-115.
    [74]AKKER S, ARMAN J. Ultrasonic investigation on plane interfaces between polymers [J]. Ultrasonics,1997,35(4):287-295.
    [75]MURAYAMA R. Non-destructive evaluation of formability in cold rolled steel sheets using the SHO-mode plate wave by electromagnetic acoustic transducer [J]. Ultrasonics,2001,39(5): 335-343.
    [76]HIRAO M, OGI H, FUKUOKA H. Resonance Emat System for Acoustoelastic Stress Measurement in Sheet Metals [J]. Review of Scientific Instruments,1993,64(11):3198-3205.
    [77]HIRAO M, OGI H. Electromagnetic acoustic resonance and materials characterization [J]. Ultrasonics,1997,35(6):413-421.
    [78]OGI H, HIRAO M, MINOURA K. Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel [J]. Journal of Applied Physics,1997,81(8):3677-3684.
    [79]NA W B, KUNDU T. A combination of PZT and EMAT transducers for interface inspection [J]. Journal of the Acoustical Society of America,2002,111(5):2128-2139.
    [80]EDWARDS R S, SOPHIAN A, DIXON S, et al. Dual EMAT and PEC non-contact probe: applications to defect testing [J]. Ndt & E International,2006,39(1):45-52.
    [81]TSAI C D, WU T T, LIU Y H. Application of neural networks to laser ultrasonic NDE of bonded structures [J]. Ndt & E International,2001,34(8):537-546.
    [82]DUQUENNOY M, OUAFTOUH M, QIAN M L, et al. Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers [J]. Ndt & E International,2001,34(5):355-362.
    [83]钱梦騄.激光超声学的若干进展[J].声学技术,2002,21(2):19-24.
    [84]应崇福.关于液体内大规模声处理中空化研究的几点思考——再论声空化工程[J].应用声学,2008,27(5):333-337.
    [85]HARMAN G G, ALBERS J. Ultrasonic Welding Mechanism as Applied to Aluminum-Wire and Gold-Wire Bonding in Microelectronics [J]. Ieee Transactions on Parts Hybrids and Packaging, 1977,13(4):406-412.
    [86]TSUJINO J, UEOKA T, HASEGAWA K, et al. New methods of ultrasonic welding of metal and plastic materials [J]. Ultrasonics,1996,34(2-5):177-185.
    [87]PETRIER C, JIANG Y, LAMY M F. Ultrasound and environment:Sonochemical destruction of chloroaromatic derivatives [J]. Environmental Science & Technology,1998,32(9):1316-1318.
    [88]DHAS N A, ZABAN A, GEDANKEN A. Surface synthesis of zinc sulfide nanoparticles on silica microspheres:Sonochemical preparation, characterization, and optical properties [J]. Chemistry of Materials,1999,11(3):806-813.
    [89]MOLES M, DUBE N, LABBE S, et al. Review of ultrasonic phased arrays for pressure vessel and pipeline weld inspections [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2005,127(3):351-356.
    [90]ROTH D J, TOKARS R P, MARTIN R E, et al. Ultrasonic Phased Array Testing for an Isogrid Structural Element with Cracks [J]. Materials Evaluation,2010,68(1):76-83.
    [91]LIU H L, HSU C L, HUANG S M, et al. Focal beam distortion and treatment planning for transrib focused ultrasound thermal therapy:A feasibility study using a two-dimensional ultrasound phased array [J]. Medical Physics,2010,37(2):848-860.
    [92]BASKARAN G, BALASUBRAMANIAM K, KRISHNAMURTHY C V, et al. Ultrasonic TOFD flaw sizing and imaging in thin plates using embedded signal identification technique (ESIT) [J]. Insight,2004,46(9):537-542.
    [93]BASKARAN G, BALASUBRAMANIAM K, RAO C L. Shear-wave time of flight diffraction (S-TOFD) technique [J]. Ndt & E International,2006,39(6):458-467.
    [94]NATH S K, BALASUBRAMANIAM K, KRISHNAMURTHY C V, et al. An Ultrasonic Time of Flight Diffraction Technique for Characterization of Surface-Breaking Inclined Cracks [J]. Materials Evaluation,2009,67(2):141-148.
    [95]COCCIA S, BARTOLI I, SALAMONE S, et al. Noncontact Ultrasonic Guided Wave Detection of Rail Defects [J]. Transportation Research Record,2009,2117):77-84.
    [96]ALLEYNE D N, PAVLAKOVIC B, LOWE M J S, et al. Rapid long-range inspection of chemical plant pipework using guided waves [J]. Insight,2001,43(2):93-+.
    [97]ROSE J L. A baseline and vision of ultrasonic guided wave inspection potential [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2002,124(3):273-282.-
    [98]HAGOOD N W, MCFARLAND A J. Modeling of a Piezoelectric Rotary Ultrasonic Motor [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,1995,42(2):210-224.
    [99]UCHINO K. Piezoelectric ultrasonic motors:overview [J]. Smart Materials & Structures,1998, 7(3):273-285.
    [100]武以力,邓盛刚,王永德.声表面波原理及其在电子技术中的应用[M].北京:国防工业出版社,1983.
    [101]吴连法.声表面波器件及其应用[M].北京:人民邮电出版社,1983.
    [102]HAYES M, RIVLIN R S. Surface Waves in Deformed Elastic Materials [J]. Archive for Rational Mechanics and Analysis,1961,8(5):358-380.
    [103]MARTIN B G. Rayleigh-Wave Velocity, Stress and Preferred Grain Orientation in Aluminum [J]. Non-Destructive Testing,1974,7(4):199-203.
    [104]DUQUENNOY M, OUAFTOUH M, OURAK M. Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves [J]. Ndt & E International,1999,32(4):189-199.
    [105]LEE Y C, KUO S H. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate [J]. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,2004,51(1):114-120.
    [106]WEI Z, ZHOU X J, CHENG Y D. Acoustoelastic determination of local surface stresses in polymethylmethacrylate [J]. Applied Acoustics,2000,61(4):477-485.
    [107]HE L F, KOBAYASHI S. Acoustoelastic determination of residual stress with laser Doppler velocimetry [J]. Experimental Mechanics,2001,41(2):190-194.
    [108]DUQENNOY M, OUAFTOUH R, OURAK M. Determination of stresses in aluminium alloy using optical detection of Rayleigh waves [J]. Ultrasonics,1999,37(5):365-372.
    [109]DUQUENNOY M, OUAFTOUH M, OURAK M, et al. Theoretical determination of Rayleigh wave acoustoelastic coefficients:comparison with experimental values [J]. Ultrasonics,2002, 39(8):575-583.
    [110]罗斯J L.固体中的超声波[M].北京:科学出版社,2004.
    [111]EGLE D M, BRAY D E. Measurement of Acoustoelastic and 3rd-Order Elastic-Constants for Rail Steel [J]. Journal of the Acoustical Society of America,1976,60(3):741-744.
    [112]BRAY D E, LEONSALAMANCA T. Zero-Force Travel-Time Parameters for Ultrasonic Head-Waves in Railroad Rail [J]. Materials Evaluation,1985,43(7):854-857,863.
    [113]BRAY D E, JUNGHANS P. Application of the L(Cr) Ultrasonic Technique for Evaluation of Post-Weld Heat-Treatment in Steel Plates [J]. Ndt & E International,1995,28(4):235-242.
    [114]BRAY D E, PATHAK N, SRINIVASAN M N. Residual stress mapping in a steam turbine disk using the L(CR) ultrasonic technique [J]. Materials Evaluation,1996,54(7):832-839.
    [115]BRAY D E, TANG W. Subsurface stress evaluation in steel plates and bars using the L-CR ultrasonic wave [J]. Nuclear Engineering and Design,2001,207(2):231-240.
    [116]BRAY D E. Ultrasonic stress measurement and material characterization in pressure vessels, piping, and welds [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2002, 124(3):326-335.
    [117]CHANCE B H, BRAY D E. Nondestructive monitoring of stress relaxation in welded steel plates [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2002,124(3):343-348.
    [118]SANTOS A A, ANDRINO M H, BRAY D E, et al. Evaluation of stresses generated by welding in API 5L X65 steel using acoustoelasticity [J]. Materials Evaluation,2008,66(8):858-864.
    [119]LANGENBERG K J, FELLINGER P, MARKLEIN R. On the nature of the so called subsurface longitudinal wave and or the surface longitudinal "creeping" wave [J]. Research in Nondestructive Evaluation,1990,2(2):59-81.
    [120]TANALA E, BOURSE G, FREMIOT M, et al. Determination of near-Surface Residual-Stresses on Welded-Joints Using Ultrasonic Methods [J]. Ndt & E International,1995,28(2):83-88.
    [121]SGALLA M, VANGI D. A device for measuring the velocity of ultrasonic waves:An application to stress analysis [J]. Experimental Mechanics,2004,44(1):85-90.
    [122]VANGI D, VIRGA A. A practical application of ultrasonic thermal stress monitoring in continuous welded rails [J]. Experimental Mechanics,2007,47(5):617-623.
    [123]李勇攀,王寅观,陈振宇,et al.临界折射纵波(LCR波)传播机理的研究[J].声学技术,2004,23(3):141-145.
    [124]刘蕊,王寅观,陈振宇,et al.利用临界折射纵波检测钢轨应力[J].声学技术,2004,23(4):246-249.
    [125]丁杰雄,刘凡.LCR波切向应力检测系统的声时测量研究[J].电子科技大学学报,2008,37(1):141-144.
    [126]彭小丹,丁杰雄.利用LCR波监测长轨温度应力方法的研究[J].电子科技大学学报,2006,35(5):844-847.
    [127]卢超,黎连修,涂占宽.临界折射纵波探头声束特性的边界元分析与测量[J].仪器仪表学 报,2008,29(12):2570-2575.
    [128]路浩,刘雪松,杨建国,et al.低碳钢双丝焊平板横向残余应力超声波法测量[J].焊接学报,2008,29(5):30-32.
    [129]BASATSKAYA L V, ERMOLOV I N. Theoretical-Study of Ultrasonic Longitudinal Subsurface Waves in Solid Media [J]. Soviet Journal of Nondestructive Testing-Ussr,1980,16(7):524-530.
    [130]贺玲凤,刘军.声弹性技术[M].北京:科学出版社,2002.
    [131]HUGHES D S, KELLY J L.2nd-Order Elastic Deformation of Solids [J]. Physical Review,1953, 92(5):1145-1149.
    [132JSZILARD J著,陈积懋,余南廷译.超声检测新技术[M].北京:科学出版社,1991.
    [133]匡健,李文卿.弱正交异性材料的超声波斜入射应力—声关系[J].华中理工大学学报,1999,27(1):109-112.
    [134]王军,王寅观.板中正交静应力与Lamb波波速关系探讨[J].声学技术,2008,27(3):300-308.
    [135]王军,王寅观.板中正交静应力与任意方向兰姆波波速的关系[J].力学学报,2008,40(3):345-354.
    [136]BARTOSIEWICZ A等,阎锋译.超声波应力检测在铁路工业中的应用[J].国外铁道车辆1999,36(6):31-36.
    [137]SANTOS A A, DOS SANTOS G F M, DE SANTOS F C, et al. Application of L (cr) Waves to Evaluate Residual Stresses in the RIM of Railroad Forged Wheels [J]. Journal of Nondestructive Evaluation,2009,28(2):91-100.
    [138]CHAKI S, BOURSE G. Stress Level Measurement in Prestressed Steel Strands Using Acoustoelastic Effect [J]. Experimental Mechanics,2009,49(5):673-681.
    [139]魏智,曲云霞.航空透明件应力集中的声弹检测[J].河北工业大学学报,2000,29(4):1-4.
    [140]DUQUENNOY M, DEVOS D, OUAFTOUH M, et al. Ultrasonic evaluation of residual stresses in flat glass tempering:Comparing experimental investigation and numerical modeling [J]. Journal of the Acoustical Society of America,2006,119(6):3773-3781.
    [141]DEVOS D, DUQUENNOY M, ROMERO E, et al. Ultrasonic evaluation of residual stresses in flat glass tempering by an original double interferometric detection [J]. Ultrasonics,2006, 44(E923-E927.
    [142]SASAKI Y, HASEGAWA M. Effect of anisotropy on acoustoelastic birefringence in wood [J]. Ultrasonics,2007,46(2):184-190.
    [143]HU E Y, HE Y M, CHEN Y M. Experimental study on the surface stress measurement with Rayleigh wave detection technique [J]. Applied Acoustics,2009,70(2):356-360.
    [144]林韶峰,张宏建.计入构件形变影响的超声波测量应力方法[J1.浙江大学学报:工学版,2004,38(9):1132-1135.
    [145]JOSHI S G, PATHARE R G. Ultrasonic Instrument for Measuring Bolt Stress [J]. Ultrasonics, 1984,22(6):270-274.
    [146]冉启芳,费星如.超声波方法测量螺栓应力[J].固体力学学报,1982,1):64-69.
    [147]江泽涛,朱士明.微机化的多通道超声螺栓应力仪[J].仪器仪表学报,2000,21(4):367-370.
    [148]杜刚民,李东风,曹树林,et al.螺栓轴向应力超声测量技术[J].无损检测,2006,28(1):20-22,25.
    [149]CHAKI S, CORNELOUP G, LILLAMAND I, et al. Combination of longitudinal and transverse ultrasonic waves for in situ control of the tightening of bolts [J]. Journal of Pressure Vessel Technology-Transactions of the Asme,2007,129(3):383-390.
    [150]刘镇清,王路.一种以超声纵横波声时及温度为参量的螺栓轴向应力测量仪[J].仪器仪表学报,1996,17(6):662-665.
    [151]张俊,顾临恰,钱筱林,et al.钢结构工程中高强度螺栓轴向应力的超声测量技术[J].机械工程学报,2006,42(2):216-220.
    [152]KIM N, HONG M S. Measurement of axial stress using mode-converted ultrasound [J]. Ndt & E International,2009,42(3):164-169.
    [153]BRAY D E. Current directions of Ultrasonic Stress Measurement Techniques; proceedings of the 15th WCNDT, Roma, F,2000 [C].
    [154]BECKER F L. ultrasonic determination of residual stress [M]. Richland, WA:Battelle-Pacific Northwest Laboratories,1973.
    [155]HSU N N. Shear Wave Birefringence; proceedings of the a Workshop on Nondestructive Evaluation of Residual Stress, Nondestructive Testing Information and Analysis Center (NTIAC), F,1975 [C].
    [156]SRINIVASAN M N, CHUNDU S N, BRAY D E, et al. Ultrasonic Technique for Residual-Stress Measurement in Ductile Iron Continuous Cast Round Bars [J]. Journal of Testing and Evaluation, 1992,20(5):331-335.
    [157]SANTOS A A, BRAY D E. Ultrasonic stress measurement using PC based and commercial flaw detectors [J]. Review of Scientific Instruments,2000,71(9):3464-3469.
    [158]TANG W, BRAY D. Stress and Yielding Studies Using Critical refracted Longitudinal Waves; proceedings of the 1996 ASME Pressure Vessel and Piping Conference, Montreal,Quebec, F, 1996[C].
    [159]SHAIKH N. Transducer and Technique for Ultrasonic Nondestructive Evaluation of Structural Plates [M]//THOMPSON D O, CHIMENTI D E. Review in Progress in Quantitative Nondestructive Evaluation, Vol 11.1992:1831-1835.
    [160]舒熊.极限折射纵波检测无缝钢轨温度应力的理论研究及应用[硕士学位论文][D].成都;电子科技大学,2006.
    [161]林韶峰.基于超声波的非侵入式压力测量方法研究[博士学位论文][D].杭州;浙江大学,2005.
    [162]HE L F, KOBAYASHI S. Determination of stress-acoustic coefficients of Rayleigh wave by use of laser Doppler velocimetry [J]. Jsme International Journal Series a-Solid Mechanics and Material Engineering,2001,44(1):17-22.
    [163]杨桂通.弹性力学简明教程[M].北京:清华大学出版社,2006.
    [164]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994.
    [165]GARBER J A, GRANATO A V. Theory of Temperature-Dependence of Second-Order Elastic-Constants in Cubic Materials [J]. Physical Review B,1975,11(10):3990-3997.
    [166]江泽涛.温度对超声波波速及应力测量的影响[J].无损检测,1999,21(6):245-248.
    [167]刘镇清,王路.螺栓材料应力与声速,温度关系的测定[J].应用声学,1997,16(5):26-31.
    [168]梁宏宝,朱安庆,李子芳.温度对超声波在16MnR钢中传播速度的影响[J].化工机械,2007,34(3):134-138.
    [169]谢铁军,刘东学,陈钢,et al.压力容器应力分布图谱[M].北京:北京科学技术出版社,1994.
    [170]张宏建,凌张伟,贺庆.圆柱形压力容器表面温度和压力的无损测量方法及装置:中国,ZL200710069419.2[P/OL].2009-6-17[
    [171]贺庆,张宏建,周洪亮,et al.基于Rayleigh波的薄壁容器温度与压力测量方法[J].浙江大学学报:工学版,2009,43(8):1419-1423.
    [172JSCHOLTENS P C S, VERTREGT M. A 6-b 1.6-Gsample/s flash ADC in 0.18-mu m CMOS using averaging termination [J]. Ieee Journal of Solid-State Circuits,2002,37(12):1599-1609.
    [173]KNAPP C H, CARTER G C. Generalized Correlation Method for Estimation of Time-Delay [J]. Ieee Transactions on Acoustics Speech and Signal Processing,1976,24(4):320-327.
    [174]AZARIA M, HERTZ D. Time-Delay Estimation by Generalized Cross-Correlation Methods [J]. Ieee Transactions on Acoustics Speech and Signal Processing,1984,32(2):280-285.
    [175]阮建富,张宏建.一种测量超声波传播时间的装置[J].自动化仪表,2006,27(3):35-38.
    [176]凌张伟,张宏建,贺庆.基于TDC的声表面波压力测量系统[J].电子测量与仪器学报,2008,22(3):59-63.
    [177]李志勇,李长安,李良洪,et al.基于TDC-GP2的高精度时间间隔测量仪[J].山西大学学报:自然科学版,2009,32(A01):74-76.
    [178]梁鸿翔,王润田,周艳.TDC超声流量计设计中的同频噪声处理[J].声学技术2009,1):29-33.
    [179]章坚武,张数明.TDC-GP2在激光测距传感器中的应用[J].仪表技术与传感器,2009,8):74-76.
    [180]张宏建,凌张伟,贺庆.圆柱形压力容器表面温度和压力的无损测量装置:中国,ZL200720110895.X[P/OL].2008-8-6[
    [181]朱士明,刘镇清.提高测量声时精度的“过零检测数字平均法” [J].声学技术,1990,9(3):36-40.
    [182]刘镇清.用于应力测试的超声波声速仪[J].测控技术,1993,12(3):33-35.
    [183]行鸿彦,唐娟.时延估计方法的分析[J].声学技术,2008,27(1):110-114.
    [184]HE Q, ZHANG H J, ZHOU H L. Evaluation of stress using ultrasonic technique based on Hilbert-Huang transform [J]. Journal of Physics:Conference Series,2006,48(106-110.
    [185]李之雄,郭瑜,郑华文.零相位滤波器在非平稳信号分析中的应用研究[J].昆明理工大学学报:理工版,2007,32(5):18-22.
    [186]GUSTAFSSON F. Determining the initial states in forward-backward filtering [J]. Ieee Transactions on Signal Processing,1996,44(4):988-992.
    [187]纪跃波,秦树人,汤宝平.零相位数字滤波器[J].重庆大学学报(自然科学版),2000,23(6):4-7.
    [188]秦毅,王家序,汤宝平.基于迭代Hilbert变换的多分量信号解调方法研究及应用[J].机械工程学报,2009,45(8):37-44,51.
    [189]邢园丁,邹虹,杨德猛,et al.零相位滤波器在基于激光多普勒效应的动态位移信号处理中的应用[J].电子测量技术,2009,6):48-50.
    [190]LEISK G G, MILLER E S, MURPHY D J. Improving ultrasonic C-scan resolution using the Hilbert-Huang transform [M]//THOMPSON D O, CHIMENTI D E. Review of Progress in Quantitative Nondestructive Evaluation, Vols 24a and 24b.2005:889-896.
    [191]RAISUTIS R, TUMSYS O, KAZYS R, et al. A comparative study of time-frequency analysis techniques in the case of signal processing for ultrasonic NDT [J]. Insight,2008,50(11):628-+.
    [192]LU Y F, ORUKLU E, SANIIE J. Application of Hilbert-Huang Transform for Ultrasonic Nondestructive Evaluation [M].2008 Ieee Ultrasonics Symposium, Vols 1-4 and Appendix.2008: 1499-1502.
    [193]史亦伟.超声检测[M].北京:机械工业出版社,2005.
    [194]郑中兴.表面SH波探伤法的开发及其应用[J].无损探伤,2006,30(4):7-11.
    [195]LING Z W, ZHOU H L, ZHANG H J. Nondestructive pressure measurement in vessels using Rayleigh waves and LCR waves [J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(5):1578-1584.
    [196]VINCENT A. Influence of Wearplate and Coupling Layer Thickness on Ultrasonic Velocity-Measurement [J]. Ultrasonics,1987,25(4):237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700