用户名: 密码: 验证码:
外源性多巴胺对SH-SY5Y分化细胞毒性作用机制的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病( Parkinson’s s disease , PD )是中老年人常见慢性进行性中枢神经系统退行性疾病,于1817年由英国医师James B Parkinson首先报道。PD的发病机制至今仍未完全明了,多数人认为PD是遗传因素和环境因素共同作用的结果。近来的研究发现,PD与蛋白质错误折叠与蛋白质聚集、线粒体功能障碍和氧化应激过度、泛素蛋白酶体系统功能障碍和蛋白分解障碍、兴奋性毒性和钙的细胞毒作用、免疫学异常和年龄老化、细胞凋亡、多聚ADP核糖聚合酶过度活化等诸多因素有关。这些因素相互作用形成恶性循环,最终导致多巴胺能神经细胞死亡。内源性及外源性神经毒素启动黑质多巴胺能神经元变性、死亡并最终导致PD的假说长期以来一直受到研究者的重视。外源性和内源性多巴胺作为嗜神经毒素能够特异性损害中枢多巴胺能神经元这一作用已经得到公认。
     尽管PD的病因尚不完全清楚,但是多数学者认为多巴胺能神经元内氧化应激的加重和线粒体功能障碍是导致这种疾病的中心环节。PD患者存在线粒体复合体Ι的缺陷,这可能是细胞氧化应激加重的原因或结果。研究表明,环境和遗传因素都会使多巴胺能神经元对年龄相关的氧化应激和能量缺乏的加重更加敏感。氧化应激被认为是PD患者黑质神经元死亡的主要因素。
     本研究应用维甲酸相继佛波酯诱导SH-SY5Y细胞分化为具有神经元表现型特点的细胞,并首次采用差异凝胶电泳(DIGE)和质谱(MS)技术分析了维甲酸相继佛波酯诱导SH-SY5Y细胞分化的蛋白质组改变,在蛋白质组学的水平上验证了维甲酸相继佛波酯诱导SH-SY5Y分化细胞获得类神经元的特性。进一步,在外源性多巴胺诱导SH-SY5Y分化细胞PD模型的基础上,检测了外源性多巴胺对SH-SY5Y分化细胞的毒性作用。分别提取分化对照组SH-SY5Y细胞及100μmol/L多巴胺处理24小时的分化毒性组SH-SY5Y细胞的细胞总蛋白,应用荧光差异凝胶电泳(DIGE)技术获得蛋白点的差异表达信息,运用质谱(MS)技术鉴定出差异蛋白质。结果显示在分化毒性组MTT法检测到细胞存活率降低,Hoechst33342荧光染色观察到细胞凋亡的形态学改变,表明多巴胺能够诱导SH-SY5Y分化细胞凋亡;质谱鉴定出差异蛋白点10个,分别为:(1)与蛋白质折叠和转运功能有关的分子伴侣蛋白和(或)分子伴侣样蛋白:葡萄糖调节蛋白75、葡萄糖调节蛋白78、脯氨酰-4-羟化酶β亚单位、14-3-3蛋白和蛋白质二硫键异构酶相关的蛋白质;(2)与蛋白质运输功能有关的细胞骨架蛋白:α-微管蛋白泛素链、β-肌动蛋白和角蛋白9;(3)与线粒体功能和物质代谢相关的蛋白:ATP合成酶β亚基;(4)与信号转导相关的蛋白:膜联蛋白A5。它们分别与氧化应激、线粒体损伤、内质网应激、代谢和细胞对损伤的防御反应相关。这些结果为进一步探索PD的发病机制提供了有价值的新线索,也可能有助于发现PD药物治疗的新候选靶点。
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopamine neurons in the substantia nigra,decreased striatal dopamine level, and the presence of eosinophilic inclusions called Lewy body in the cytoplasm of the spared neurons. The etiology and pathogenesis of PD have not been fully elucidated till now. Growing evidences suggest that the oxidative stress and the mitochondrial dysfunction are involved in the etiopathogenesis of PD.
     Dopamine (DA) is an essential neurotransmitter under physiological condition and is also an endogenous or exogenous neurotoxin. Reactive oxygen species (ROS) are produced in the course of normal and pathological metabolic DA oxidation, including auto-oxidation or enzyme-catalyzed reaction or both of them. Because of their high reactivity, accumulation of ROS beyond the immediate needs of the cell may affect cellular structure and functional integrity, by bringing about oxidative degradation of critical molecules, such as the DNA, proteins and lipids, resulting in oxidative stress. Recently, many evidences from experiments and postmortem of familial and sporadic PD display that the oxidative damage exists in the dopaminergic neurons of the substantia nigra pars compacta. The oxidative stress and mitochondrial dysfunction result in the accumulation of abnormal proteins in affected cells, the defects of cell function and even cell death. Oxidative stress and mitochondrial dysfunction may be the unifying pathway of various types of PD.
     Up to now, the toxic effects of DA on important protein molecules in PD patients and PD models have not been fully understood. To explore the mechanisms of DA toxicity at protein level, present study had performed the followed experiments: 1. applied RA and TPA in succession to induce the differentiation of SH-SY5Y cells; 2. applied exogenous DA to differentiated SH-SY5Y cells to evaluated the toxicity of DA on morphology, viability, and apoptosis; 3. applied DIGE and MALDI-TOF MS to identify differentially expressed proteins in differentiation course of SH-SY5Y; 4. applied DIGE and MALDI-TOF MS to identify differentially expressed proteins in exogenous DA-treated differentiated SH-SY5Y cells.
     In present study, administration of RA for 72h and TPA for additional 72h successfully induced the differentiation of SH-SY5Y cells. Compared to undifferentiated SH-SY5Y cells which have not or have shorter processes, marked extension of processes was observed in differentiated SH-SY5Y cells. The differentiated SH-SY5Y cells obtained typical neuronal phenotype.
     In present study, exogenous dopamine was added to differentiated SH-SY5Y cells. The viability of the cells was assayed by MTT and the apoptotic rate of the cells was measured by Hoechst33342 staining after incubation at different-concentration of dopamine for different period. In spite of its protective effect at low does (50μmol/L), DA was toxic at higher concentration (100μmol/L~500μmol/L). The viability of differentiated SH-SY5Y cells decreased with the prolonged treatment time and the increased dose of dopamine. The apoptotic rate of differentiated SH-SY5Y cells increased with the prolonged treatment time and the increased dose of dopamine.
     In present study, DIGE and MALDI-TOF MS were applied to identify differentially expressed proteins in differentiation course of SH-SY5Y. Three significantly up-regulated proteins were confidently identified including tubulin alpha1 (α-tubulin 1), laminin-binding protein (LBP), and GTP-binding regulatory alpha2 inhibitory subunit (Galphai2). The significantly up-regulation ofα-tubulin 1, LBP, and Galphai2 may involve in the differentiation of SH-SY5Y cells characterized by marked extension of neuronal-like processes.
     In present study, DIGE and MALDI-TOF MS were applied to identify differentially expressed proteins in differentiated SH-SY5Y treated by exogenous DA. A total of ten significantly changed proteins (of which, seven was increased and three was decreased) were unequivocally identified, including glucose-regulated protein 78 (GRP78), glucose-regulated protein 75 (GRP75), 14-3-3 zeta, prolyl-4-hydroxylase beta subunit (P4HB), protein disulfide isomerase-related protein (PDI),tubulin alpha- ubiquitous chain,β-actin (ACTB), keratin9 (KRT9), ATP synthase beta subunit (Fi- ATPase) and annexinA5. The significantly changed proteins involve in molecular chaperones, cytoskeletons, energy metabolism, and apoptosis.
     For the first time, present research analyzed and identified the changes at the protein level in the PD model induced by DA in differentiated SH-SY5Y cells. Among the identified differential proteins, tubulin alpha-ubiquitous chain,β-actin and keratin9, have not be reported in previous studies in the PD model induced by DA. These findings provide new valuable clues for future PD study and these proteins may become the new candidate targets of medicine treatment.
引文
[1]Moghal S, Rajput AH, D′Arcy C, et al. Prevalence of movement disorders in elderly community residents [J]. Neuroepidemiology, 1994, 13 (4): 175-178.
    [2]Litvan I. Diagnosis and management of progressive supra nuclear palsy[J]. Semin Neurol, 2001, 21(1): 41-48.
    [3]Nishioka K, Hayashi S, Farrer MJ, et al. Clinical heterogeneity of alpha-synuelein gene duplication in Parkinson’s disease[J ]. Neuro, 2006, 59: 298-309.
    [4]张晓录,于顺,陈彪,等.帕金森病病因蛋白质:α-突触核蛋白对酪氨酸羟化酶活性的影响[J ].中国临床康复,2005, 9(13): 34– 36.
    [5]Kruger R, Kuhn W, Muller T, et al. Ala30pro mutation in the gene encodingα- synuclein in Parkinson’s disease[J ]. Nat Genet, 1998, 18(2): 106– 108.
    [6]Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the al pha-synuclein gene identified in families with Parkinson’s disease[J ]. Science, 1997, 276 (5321): 2045– 2047.
    [7]冯媛,梁直厚,王涛,等.鱼藤酮帕金森病大鼠模型建立的研究[J].卒中与神经疾病,2004,11(6): 374– 377.
    [8]Ranjita B, Todd B. Ubiquitin proteasome system and Parkinson’s disease[J] . Neurology,2005,191 (Suppl1): s17-27.
    [9]Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1[J ] . Science, 2004, 304(5674): 1158– 1160.
    [10]McNaught K S, Jackson T, Jnoaptiste R, et al.Proteasomal dysfunction in sporadic Parkinson′s disease[J]. Neurology, 2006, 66 (10 Suppl 4): S37-49.
    [11]Wojcik C, Di Napoli M. Ubiquitin-proteasome system and proteasome inhibitio -n :new strategies in stroke therapy[J]. Stroke, 2004, 35(6): 1506-1518.
    [12]McNaught K S, Belizaire R, Isacson O, et al. Altered proteasomal function in sporadic Parkinson′s disease. Exp Neurol, 2003, 179(1): 38-46.
    [13]Olanow C W, Perl D P, Demartino G N, et al. Lewy-body formation is an aggres -ome-related process:a hypothesis[J]. Lancet Neurol, 2004, 3(8): 496-503.
    [14]Bulteau A L, Lundberg K C, Humphries K M, et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion[J]. J Biol Chem, 2001, 276(32): 30057-30063.
    [15]Hoozemans J J, van Haastert E S, Eikelenboom P, et al. Activation of the unfolded protein response in Parkinson′s disease[J]. Biochem Biophys Res Commun, 2007, 354(3):707-711.
    [16]Chillarón J, Haas IG. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activety[J]. Mol Biol Cell, 2000, 11(1): 217-226.
    [17]Hung CC, Davison EJ, Robinson PA, et al. The aggravating role of the ubiquitin- proteasome system in neurodegenerative disease[J]. Biochem Soc Trans, 2006, 34(1): 743-745.
    [18]Forloni G, Bertani I, Calella AM, et al. Alpha-synuclein and Parkinson’s disease: selective neurodegenerative effect of alpha synuclein fragment on dopaminergic neurons in vitro and in vivo[J]. Ann Neurol, 2000, 47(5): 632-640.
    [19]Bence NF,Sampat RM,Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation[J]. Science, 2001, 292(5521): 1552-1555.
    [20]Tanaka Y, Engelender S, Igarashi S,et al. Inducible expression of mutantα-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis[J]. Hum Mol Genet, 2001, 10(9): 919-926.
    [21]Fujita M, Sugama S, Nakai M, et al. alpha-Synuclein stimulates differentiation of osteosarcoma cells: relevance to down-regulation of proteasome activity[J]. J Biol Chem, 2007, 282(8): 5736-5748.
    [22]Shimura H, Schlossmacher MG, Hattori N,et al. Ubiquitination of a new form ofα-synuclein by parkin from human brain:implications for Parkinson’s disease[J]. Science, 2001, 293(5528): 263-269.
    [23]Imai Y, Soda M, Inoae H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin[J]. Cell, 2001, 105(2): 891-902.
    [24]Vercammen L, Van der Perren A, Vaudano E, et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease[J]. Mol Ther, 2006,14(5): 716-723.
    [25]Liu Y, Fallon L, Lashuel HA, et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility[J]. Cell, 2002, 111(2): 209-218.
    [26]Mouradian MM. Recent advances in the genetic and pathogenesis of Parkinson’s disease[J]. Neurology , 2002 , 17(3) : 179-185.
    [27]McNaught KS, Mytilineous C, Jnobaptiste R, et al. Impairment of the ubquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures[J]. J Neurochem, 2002, 81(2): 301-306.
    [28]Hoglinger GU, Carrard G, Michel PP, et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellularmodel of Parkinson′s disease[ J ].Neurochem, 2003, 86 (5): 1297-1307.
    [29]McNaught KS, Olanow CW, Halliwell B, et al. Failure of the ubiquitin-proteasome system in Parkinson’s disease[J]. Nat Rev Neurosci, 2001, 2(8): 589-594.
    [30]McNaught KS, Belizaire R, Jenner P, et al. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease[J]. Neurosci Lett, 2002, 326(3): 155-158.
    [31]Blandini F, Sinforiani E, Pacchetti C, et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease[J]. Neurology, 2006, 66(4): 529-534.
    [32]Nakamura A, Kitami T, Mori H, et al. Nuclear localization of the 20S proteasome subunit in Parkinson's disease. Neurosci Lett, 2006, 406(1-2): 43-48.
    [33]Duke DC, Moran LB, Kalaitzakis ME, et al.Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease[J]. Neurogenetics, 2006, 7(3): 139-148.
    [34]Olanow CW, Perl DP, DeMartino GN, et al. Lewy-body formation is an aggresome- related process:a hypothesis[J]. Lancet Neurol, 2004, 3(8): 496-503.
    [35]Lee HJ, Lee SJ. Characterization of cytoplasmic alpha-synuclein aggregates.Fibril formation is tightly linked to the inclusionforming process in cells[J]. J Biol Chem, 2002, 277(50): 48976-48983.
    [36]Lee H J, Lee S J. Characterization of cytoplasmic alpha-synuclein aggregates.Fibril formation is tightly linked to the inclusionforming process in cells[J]. J Biol Chem, 2002, 277(50): 48976-48983.
    [37]Kawaguchi Y, Kovacs J J, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress[J]. Cell, 2003, 115(6): 727-738.
    [38]Johnston JA, Illing ME, Kopito RR. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes[J]. Cell Motil Cytoskeleton, 2002, 53(1): 26-38.
    [39]Fabunmi RP, Wigley WC, Thomas PJ, et al. Activity and regulation of the centrosome -associated proteasome[J]. J Biol Chem, 2000, 275(1): 409-413.
    [40]李兴安,张应玖,常明,等.散发性帕金森病蛋白酶体功能障碍及其所致的路易(小)体形成[J].生物化学与生物物理进展,2008,35(5): 502-511.
    [41]Meriin AB, Sherman MY. Role of molecular chaperone in nerodegenerative disorders[J]. Int J Hyperthermia, 2005, 21(5): 403-419.
    [42]Lee HJ, Khoshaghideh F, Patel S, et al.Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway[J]. J Neurosci, 2004, 24(8): 1888-1896.
    [43]Bussell R, Eliezer D. Residual structure and dynamics in Parkinson’s disease- associated mutants of alpha-synuclein[J]. J Biol Chem, 2001, 276(49): 45996-46003.
    [44]Beckman KB, Ames BN. The free radical theory of aging matures[J]. Physiol Rev, 1998, 78(2): 547-581.
    [45]Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurode- generation by selective alpha-synuclein nitration in synucleinopathy lesions[J]. Science, 2000, 290(5493): 985-989.
    [46]Manning-Bog AB, McCormack AL, Li J, et al. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice:paraquat and alpha-synuclein[J]. J Biol Chem, 2002, 277(3): 1641-1644.
    [47]Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases[J]. Neuron, 2001, 29(1): 15-32.
    [48]Chinopoulos C, Adam-vizi V. Mitochondria deficient in complexⅠactivity are depolarized by hydrogen peroxide in nerve teminals: relevance to Parkinson's desease[J]. J Neurochem, 2001, 76(1): 302-310.
    [49]Brenner-Lavie H, Klein E, Zuk R, et al. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complexⅠ:relevance to dopamine pathologyin schizophrenia. [J]. Biochim Biophys Acta, 2008, 1777 (2): 173-185.
    [50]Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease :dopamine , vesicles andα- synuclein[J]. Nat Rev Neurosci , 2002 , 3(12) : 932-942.
    [51]Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress[J]. Nat Rev Drug Discov, 2004, 3 (3) :205-214.
    [52]Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D.Oxidative stress induced- neurodegenerative diseases:the need for antioxidants that penetrate the blood brain barrier[J].Neuropharmacology,2001,40(8):959-975.
    [53]Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease[J]. Annu Rev Neurosci, 1999, 22(6) : 123-144.
    [54]Jenner P. Oxidative stress in Parkinson′s disease[J]. Ann Neurol, 2003, 53 (suppl 3) :26.
    [55]Yokota T, Sugawara K, Ito K, et al. Down regulation of DJ - 1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition[J] . Biochem Biophys Res Commun, 2003, 312(4): 1342-1348.
    [56]Rogaev E, Johnson J, Lang AE, et al. Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease[J] . Arch Neuro, 2004, 61 (12) : 1898-1904.
    [57]Nicklas WJ, Yougster SK, Kindt MV, et al. MPTP, MPP+ and mitochondrial function. Life Sci, 1987, 40(6): 721-729.
    [58]Greenamyre JT, Sherer TB, Betarbet R, et al. ComplexⅠand Parkinson’s disease. IUBMB Life, 2001, 52(1): 135-141.
    [59]Valente EM,Abou-Sleiman PM,Caputo V,et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1 [J ]. Science,2004,(3): 304: 1158-1166
    [60]Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994, 36(3): 348-355.
    [61]Jin J, Meredith GE, Chen L, et al. Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease[J]. Mol Brain Res, 2005, 134(1): 119-138.
    [62]Merad-Boudia M, Nicole A, Santiard B, et al.Mitochondrial impairment as an early event in the process ofapoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease[J]. Biochem Pharmacol, 1998, 56 (5): 645- 655.
    [63]Zhou Y, Gu G, Goodlett DR, et al. Analysis ofα-Synuclein-associated proteins by quantitative proteomics[J]. J Biol Chem, 2004, 279(37): 39155-39164.
    [64]Yokota T, Ito K. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress,and proteasome inhibition [J]. Biochem Biophys Res Commun, 2003, 312 (10):1342-134 8.
    [65]Valente E, Bentivoglio AR, Dixon PH, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35 - p36 [J ] . Am J Hum Genet, 2001, 68(5) :895– 900.
    [66]Swerdlow RH, Parks JK, Millier SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease[J]. Ann Neurol, 1996, 40(4): 663- 671.
    [67]Garl JM, Rudinc C. Cytochrome C induces caspase-dependent apoptosis in intact hematopoietic cells and overrides apoptosis suppress mediated by bcl-2, growth factorsignaling MAP-ki-nase-kinase and malignant hange [J]. Blood, 1998, 92(3): 1235-1246.
    [68]Offen D, Ziv I, Barzilai A, et al. Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson's disease [J]. Neurochem Int, 1997, 31(2): 207- 216.
    [69]Takai N,Nakanishi H, Tanabe K, et al. Involvement of caspase-like pin apoptosis of neural PC12 cells and primary cultures microglia induced by 6-hydroxydopamine[J]. J Neurosci Res, 1998, 54(2): 214- 222 .
    [70]Yang E, Korsmeyer SJ . Molecular thanatopsis : a discourse on the Bcl- 2 family and cell death[J]. Blood, 1996, 88(2): 386- 401.
    [71]Laederach A , Shcherbakova I, Jonikas MA, et al. Distinct contribution of electrostatics , initial conformational ensemble ,and macromolecular stability in RNA folding [J]. Proc Natl Acad Sci USA , 2007 , 104 (17) : 7045 -7050.
    [72]Grunblatt E, Mandel S, Maor G, et al. Gene expression analysis in N-methyl- 4- phenyl-1,2,3,6–tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray : effect of R-apomorphine[J]. J Neurochem, 2001, 78 (1) : 1-12.
    [73]Babior BM,Take-chi C,Ruedi J,et a1.Investigating antibodycatalyzed ozone generation by human neutrophils[J].Proe Nail Acad Sci USA, 2003, 100(6):3031-3034.
    [74]Ali S,Man DA.Signal transduction via the NF- kappaB pathway:a targeted treatment modality for infection,inflammation and repair[J].Cell Biochem Funct, 2004, 22(2): 67-79.
    [75]Chun HS,Cibson GE,Degiorgio LA,et a1.Dopaminine cell death induced by MPP+ ,oxidant and specific neurotoxicants shares the common molecular mechanism[J].J Neurochem, 2001, 76(4): 1010-1021.
    [76]Yang Y, Song Y, Loscalzo J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells[J]. Proc Natl Acad Sci U S A, 2007, 104(26) : 10813 -10817.
    [77]Reiter RJ. Oxidative processes and antioxidative defense mechanisms in the aging brain[J]. FASEB J, 1995, 9(7): 526-530.
    [78]Opara EC.Role of oxidative stress in the etiology of type 2 diabetes and the effect of antioxidant supplementation on glycemic control[J]. J Investing Med, 2004, 52(1):19-23.
    [79]Sin J,Dexter DT,Lees AJ,et a1.Alteraliom in gtutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994, 36(3):348-358.
    [80]姜宏,谢俊霞.脑内高铁在帕金森病病因中的作用[J].中国神经科学杂志,2001, 17(2):201.
    [81]Pastorin G, Marchesan S, Hoebeke J, et al. Design and activity of cationic fullerene derivatives as inhibitors of acetylcho-linesterase[J]. Org Biomol Chem, 2006, 4 (13): 2556 -2562.
    [82]Jung TW , Lee JY, Shim WS, et al. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS p roduction[J]. J Neurol Sci, 2007, 253 (1-2): 53 -60.
    [83]Gilgun-Sherki Y,Milamed E, Offen D.Oxidative stress induced-neurodegenerative diseases:the need for antioxidants that penetrate the blood brain barrier [J]. Neurop- harmacologY, 2001, 40(8):959-975.
    [84]Gsell W, Burke M, Wiedermann D, et al. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat[J]. J Neurosci , 2006, 26 (3): 8409 -8416.
    [85]Kaur C, Sivakumar V, Ang LS, et al. Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity[J]. J Neurochem, 2006, 98 (4): 1200-1216.
    [86]Dauer W, Przedborski S . Parkins on′s disease: mechanisms and Models[ J ]. Neur on, 2003, 39 (6) : 889-909.
    [87]Eriksen JL, Daws on T M, Dicks on DW, et al . Caught in the act :α-synuclein is the culp rit in Parkins on′s disease [ J ]. Neuron, 2003, 40 (3): 453-456.
    [88]Lee MH,Hyun DH,Jenner P, et a1.Effect of proteasome inhibition on cellular oxidative damage,antioxidant defences and nitric oxide production[J]. J Neurochem,2001, 78(1):32-41.
    [89]Lee HJ,Shin SY, Choi C, et a1. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondria inhibitors[J]. J Bid Chem, 2002, 277(7):5411-5417.
    [90]Mcnaught KS, Olanow CW. Proteolytic stress: A unifying concept for the etiopathogenesis of Parkinson's desease[J]. Ann Neurol, 2003, 53(Suppl 3):S73-78.
    [91]Mouradian MM. Recent advances in the genetic and pathogenesis of Parkinson’s disease[J]. Neurology , 2002 , 58 (2) : 179-185.
    [92]张晓录,于顺,陈彪,等.帕金森病病因蛋白质:α-突触核蛋白对酪氨酸羟化酶活性的影响[J ].中国临床康复,2005, 9(13): 34-36.
    [93]Kruger R, Kuhn W, Muller T, et al. Ala30 promutation in the gene encodingα- synuclein in Parkinson’s disease[J ] . Nat Genet , 1998, 18(1): 106– 108.
    [94]Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the al-pha2synuclein gene identified in families with Parkinson’s disease[J] . Science, 1997, 276 (5321): 2045- 2047.
    [95]Evans AE. Staging and treatment of neuroblastoma[J]. Cancer, 1980, 45(7 Suppl): 1799-1802.
    [96]Maguire-Zeiss KA, Short DW, Federoff HJ. Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease[J]? Brain Res Mol Brain Res, 2005, 134 (1): 18–23.
    [97]Zhao DL, Zou LB, Lin S, et al. 6,7-di-o-glucopyranosyl-esculetin protects SH-SY5Y cells from dopamine-induced cytotoxicity[J]. Eur J Pharmacol, 2008, 580(3): 329-338.
    [98]Zhao DL, Zou LB, Lin S, et al. Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line[J]. Neuropharmacology, 2007, 53(6):724-732.
    [99]Moore DJ, West AB, Dawson VL, et al. Molecular Pathophysioligy of Parkingson's Disease[J]. Annu Rev Neurosci, 2005, 28(6): 57-87.
    [100]Mastroeni D, Grover A, Leonard B, et al. Microglial responses to dopamine in a cell culture model of Parkinson's disease. Neurobiol Aging,2009, 30(11): 1805-1817.
    [101]Hsuan SL, Klintworth HM, Xia Z. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. J Neurosci, 2006, 26(17): 4481 -4491.
    [102]Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem, 2002 , 277(34): 30574-30580.
    [103]Seidenfaden R, Hildebrandt H. Retinoic acid-induced changes in polysialyl transferase mRNA expression and NCAM polysialylation in human neuroblastoma cells[J]. J Neurobiol, 2001, 46(1): 11-28.
    [104]Brown A M, Riddoch FC, Robson A, et al. Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells[J]. Biochem J, 2005, 388(3): 941 -948.
    [105]Pan J, Kao YL, Joshi S, et al. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo:role in activation of mitogen-activated protein kinase (MAPK) pathway and retinoic acid -induced neuronal differentiation of SH-SY5Y cells[J]. J Neurochem, 2005, 93(3): 571-583.
    [106]P?hlman S, Ruusala AI, Abrahamsson L, et al. Kinetics and concentration effects of TPA-induced differentiation of cultured human neuroblastoma cells[J]. Cell Differ, 1983, 12(3): 165-170.
    [107]Rebhan M, Vacun G, Bayreuther K, et al. Altered ganglioside expression by SH-SY5Y cells upon retinoic acid-induced neuronal differentiation. Neuroreport, 1994, 5(8): 941-944.
    [108]Perez-Juste G, Aranda A. Differentiation of neuroblastoma cells by phorbol esters and insulin-like growth factor 1 is associated with induction of retinoic acid receptor beta gene expression. Oncogene, 1999, 18(39): 5393-5402.
    [109]Goh EL, Pircher TJ, Lobie PE. Growth hormone promotion of tubulin polyme- rization stabilizes the microtubule network and protects against colchicine-induced apoptosis[J]. Endocrinology, 1998, 39(10): 4364-4372.
    [110]Bjelmfan C, MeyersonqG, Cartwright CA, et al. Early activation of endogenous pp60src kinase activity during neuronal differentiation of cultured human neuroblastoma cells[J]. Mol Cell Biol, 1990, 10(l): 361-370.
    [111]Magni P,Beretta E,Scaccianoce E,et al.Retinoic acid negatively regulates neuropepide Y exPression in human neuroblastoma cells[J]. Neuropharmaeology,2000, 39(9): 1628-1636.
    [112]大东肇,他.植物致癌促进因子和抗促进因子.国外医学肿瘤学分册,1990,17(l): 25-27.
    [113]Maruyama W, Benedetti MS, Takahashi T, et al. A neurotoxin N-methyl(R)sals -olinol induces apoptotic cell death in differentiated human dopaminergic neuroblastoma SH-SY5Y cells[J]. Neurosci Lett, 1997, 232(3): 147-150.
    [114]Sarkanen JR, Nykky J, Siikanen J, et al. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells[J]. J Neurochem, 2007, 102(6): 1941-1952.
    [115]Colapinto M, Mila S, Giraudo S, et al. a-Synuclein protects SH-SY5Y cells from dopamine toxicity[J]. Biochem Biophys Res Commun, 2006, 349 (4): 1294–1300.
    [116]Ben-shachar D, Zuk R, Gazawi P, et al. Dopamine toxicity involves mitochondrial complexⅠinhibition:implications to dopamine-related neuropsychiatric disorders [J].Biochemical Pharmacol, 2004, 67(10): 1965-1974.
    [117]Offen D, Gorodin S, Melanmed E, et al. Dopamine-melanin is actively ph- agocytized by PC12 cells and cerebellar granular cells:Possible implications for the etiology of Parkinsons disease [J]. Neurosci Letters, 1999, 260(2): 101-104.
    [118]Emdadul M, Asanuma M, Higashi Y, et al. Apoptosis-inducing neurotoxicity of dopamine and its metabolits via reactive quinine generation in Neuroblastoma cells [J]. Biochim Biophys Acta, 2003, 1619(1): 39-52.
    [119]Rathinam ML , Watts LT, Stark AA , et al. Astrocyte control of fetal cortical neuron glut -athione homeostasis: up-regulation by ethanol[J]. J Neurochem, 2006, 96 (5): 1289-1300.
    [120]Dongre AR, Opiteck G, Cosand WL, et al. Proteomics in the post-genome age[J]. Biopolymers, 2001, 60(3): 206-211.
    [121]Hu Y, Malone JP, Fagan AM, et al. Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid[J]. Mol Cell Proteomics, 2005, 4(12): 2000-2009.
    [122]Freeman WM, Hemby SE. Proteomics for protein expression profiling in neuroscience. Neurochem Res, 2004, 29(6): 1065-1081.
    [123]Mailliot C, Podevin-Dimster V, Rosenthal RE, et al. Rapid tau protein dephosphorylation and differential rephosphorylation during cardiac arrest-induced cerebral ischemia and reperfusion[J]. J Cereb Blood Flow Metab, 2000, 20(3):543-549.
    [124]Boyd-Kimball D, Sultana R, Poon HF, et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer's disease[J]. Neuroscience, 2005, 132(2): 313-324.
    [125]Khatoon S, Grundke-Iqbal I, Iqbal K. Guanosine triphosphate binding to beta-subunit of tubulin in Alzheimer’s disease brain: role of microtubule-associated protein tau[J]. J Neurochem, 1995, 64(2): 777-787.
    [126]Banerjee A, Roach MC, Trcka P, et al. Preparation of a monoclonal antibody specific for the class IV isotype ofβ-tubulin. Purification and assembly ofαβII,αβIII, andαβIV tubulin dimers from bovine brain[J]. J Biol Chem, 1992, 267(8): 5625-5630.
    [127]Ginzburg I. Neuronal polarity: targeting of microtubule components into axons and dendrites[J]. Trends Biochem Sci, 1991, 16(7): 257-261.
    [128]Zisapel N, Levi M, Gozes I. Tubulin: an integral protein of mammalian synaptic vesicle membranes[J]. J Neurochem, 1980, 34(1): 26-32.
    [129]Battaglia C, Mayer U, Aumailley N, et al. Basementmembrane heparan sulfate proteoglycan bindsto laminin by its hepararn sulfate chains and to nidogen by sites in theprotein core[J ]. Eur J Biochem, 1992, 208(2): 359-366.
    [130]Kleinman HK, Weeks BS, Schnoper HW, et al. The laminins: a family of basementme -mbrane glycoproteins important in cell differenciation and tumormetastases[J]. Vitam Horm, 1993,47: 161 -186.
    [131]Rivas RJ, Burmeister DW, Goldberg DJ. Rapid effectsof laminin on the growth cone[J]. Neuron, 1992, 8(1): 107 - 115.
    [132]Liang S, Crutcher KA. Movement of embryonic chick sympathetic neuronson laminin in vitro ispreceded by neurite extensio n[J]. J Neurosci Res, 1993, 36 (6): 607 - 620.
    [133]Grimpe B, Dong S, Doller C, et al. The critical role of basement membrane- independent laminin gamma 1 chain during axon regeneration in the CNS[J]. J Neurosci, 2002, 22(8): 3144-3160.
    [134]Guan J, Miller OT. Transforming growth factor betal and neurologyical function after hypoxia ischemia in adult rats[J]. Neuroreport, 2004, 15(6): 961-964.
    [135]Flanagan LA, Rebaza LM, Derzic S, et al. Regulation of human neural precursor cells by laminin and integrins[J]. J Neurosci Res, 2006, 83(5): 845-856.
    [136]Akama K, Tatsuno R, Otsu M, et al. Proteomic identification of differentially expressed genes in mouse neural stem cells and neurons differentiated from embryonic stem cells in vitro[J]. Biochim Biophys Acta, 2008, 1784(5): 773-782.
    [137]聂剑初. G蛋白.生物学通报,1995, 6: 16-17.
    [138]Chen X, Zhu H, Fu J, et al. G-protein-couple receptors kinase5 phosphorylates p53 and inhibits DNA damage-induced apoptosis[J]. J Biol Chem,2010,[Epub ahead of print] .
    [139]Leone AM, Ward YS. The GemGTP-binding protein promotes moprhologi- cal differentiation in neuroblastoma[J]. Oneogene, 2001, 20(25): 3217 -3222 .
    [140]Swatton JE, Prabakaran S, Karp NA, et al. Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE)[J]. Mol Psychiatry, 2004, 9(2): 128-143.
    [141]Hu Y, Wang G, Chen GY, et al. Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis[J]. Electrophoresis, 2003, 24(9): 1458-1470.
    [142]杨学森.热休克蛋白对中枢神经的保护作用[J].国外医学神经病学神经外科学分册, 2003, 30: 327-329.
    [143]Li Z, Zhao X, Wei Y. Regulation of apoptotic signal transduction pathways by the heat shock proteins [J]. Sci China C Life Sci, 2004, 47(2): 107-114.
    [144]Wu JC, Liang ZQ, Qin ZH. Quality control system of the endoplasmic reticulum and related diseases[J]. Acta Biochim Biophys Sin, 2006, 38(4): 219-226.
    [145]Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration[J]. Curr Opin Cell Biol, 2004, 16(6): 653-662.
    [146]Paschen W. Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain[J]. Cell Calcium, 2003, 34(4-5): 365-383.
    [147]Ustundag Y, Bronk SF, Gores GJ. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World J Gastro- enterol, 2007, 13(6): 851-857.
    [148]Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells[J]. Mol Cell Biol, 2004, 24(22): 9695- 9704.
    [149]Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases[J]. Cell Death Differ, 2006, 13(3): 385–392.
    [150]Chen G, Bower KA, Ma C, et al. Glycogen synthase kinase 3β(GSK3β) mediates 6-hydroxydopamine-induced neuronal death[J]. FASEB J, 2004, 18(10): 1162-1164.
    [151]Yamamuro A, Yoshioka Y, Ogita K, et al. Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells[J]. Neurochem Res, 2006, 31(5): 657-664.
    [152]Smith WW, Jiang H, Pei Z, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity[J]. Hum Mol Genet, 2005, 14(24): 3801-3811.
    [153]Kitao Y, Matsuyama T, Takano K, et al. Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity?[J]. Antioxid Redox Signal, 2007, 9(5): 589-595.
    [154]于洋,俞丽华.钙结合蛋白D28K与脑缺血/再灌注损伤[J].脑与神经疾病杂志, 2004, 12(2): 465-466.
    [155]Kaul SC, Taira K, Pereira-Smith OM, et al. Mortalin: present and prospective [J]. Exp Gerontol, 2002, 37(10-11): 1157-1164.
    [156]Yoo BC, Kim SH, Cairns N, et al. Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease [J]. Biochem Biophys Res Commun, 2001, 280(1): 249-258.
    [157]Mosser DD, Caron AW, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis [J]. Mol Cell Biol, 2000, 20(19): 7146-7159.
    [158]Kroemer G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death [J]. FASEB J, 1995, 9(13): 1277-1287.
    [159]Li HM, Niki T, Taira T, et al. Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress [J]. Free Radic Res, 2005, 39(10): 1091-1099.
    [160]Chaudhri M, Scarabel M, Aitken A. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo[J]. Biochem Biophys Res Commun, 2003, 300(3): 679-685.
    [161]Zu P, Sun Y, Xu R, et al. The interation between ADAM22 and 14-3-3 zeta:regulation of cell adhesion and spreading[J]. Biochem Biophys Res Commun, 2003, 1(4): 991-999.
    [162]Volpert KN, Rothermel A, Layer PG.. GDNF stimulates rod photoreceptors and dopaminergic amacrine cells in chicken retinal reaggregates [J]. Invest Ophthalmol Vis Sci, 2007, 48 (11): 5306-5314.
    [163]Vincenz C, Dixit VM. 14-3-3 protein associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules[J].Cell Death Differ, 2001, 8(3): 265-272.
    [164]Turano C, Coppari S, Altieri F, et al. Proteins of the PDI family: unpredicted non-ER locations and functions [J]. J Cell Physiol, 2002, 193(2): 154-163.
    [165]Ni M, Lee AS. ER chaperones in mammalian development and Human diseases [J]. FEBS Lett, 2007, 581(19): 3641-3651
    [166]Uehara T, Nakamura T, Yao D, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration[J]. Nature, 2006, 441(7092): 513-517.
    [167]Parkkonen T, Kivirikko KI, Pihlajaniemi T. Molecular cloning of a multi- functional chicken protein acting as the prolyl 4-hydroxylase beta-subunit, protein disulphide- isomerase and a cellular thyroid-hormone-binding protein. Comparison of cDNA-deduced amine acid sequences with those in other species [J]. Biochem J, 1988, 256(3): 1005-1011.
    [168]Tasanen K, Parkkonen T, Louise T, et al. Characterization of the human gene for a polyl 4-hydroxylase and as protein disulfide isomerase [J]. J Biol Chem, 1988, 263(31): 16218-16224.
    [169]Ran Q, Wadhwa R, Kawai R, et al. Extramitochondrial localization of mortalin /mthsp 70/ PBP74/GRP75[J]. Biochem Biophys Res Commun, 2000, 275(1): 174–179.
    [170]Massa SM, Longo FM, Zuo J, et al. Cloning of rat grp75, an hsp70 family member, and its expression in normal and ischemic brain[J]. J Neurosci Res, 1995, 40(6): 807-819.
    [171]Sarkanen JR, Nykky J, Siikanen J, et al. Cholesterol supports the retinoic acid-inducedsynaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells[J]. J Neurochem, 2007, 102(6): 1941-1952.
    [172]Laferrière NB, Brown DL. Expression and posttranslational modification of class III beta-tubulin during neuronal differentiation of P19 embryonal carcinoma cells[J]. Cell Motil Cytoskeleton, 1996, 35(3): 188-199.
    [173]Dieplinger B, Schiefermeier N, Juchum-Pasquazzo M, et al. The transcriptional corepressor TPA-inducible sequence 7 regulates adult axon growth through cellular retinoic acid binding protein II expression[J]. Eur J Neurosci, 2007, 26(12): 3358-336.
    [174]Segura-Aguilar J, Lind C. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase[J]. Chem Biol Interact, 1989, 72(3): 309-324.
    [175]Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine[J]. J Neurosci Res, 1999, 55(6): 659-665.
    [176]Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease[J]. Neurotox Res, 2003, 5(3): 165-176.
    [177]Neely MD, Sidell KR, Graham DG, et al. The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin[J]. J Neurochem, 1999, 72(6): 2323-2333.
    [178]Santa-María I, Smith MA, Perry G, et al. Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer's disease[J]. Biochim Biophys Acta, 2005, 1740(3): 472-480.
    [179]Ireland CM, Pittman SM. Tubulin alterations in taxol-induced apoptosis parallel those observed with other drugs[J]. Biochem Pharmacol, 1995, 49(10): 1491-1499.
    [180]McMurray CT. Neurodegeneration: diseases of the cytoskeleton?[J]. Cell Death Differ, 2000, 7(10): 861-865.
    [181]Van Laar VS, Mishizen AJ, Cascio M, Hastings TG. Proteomic identification of dopamine conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells[J]. Neurobiol Dis, 2009, 34(3): 487-500.
    [182]Diaz-Corrales FJ, Asanuma M, Miyazaki I, et al. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration[J]. Neuroscience,2005,133 (1) : 117-135.
    [183]Jackson-Lewis V, Vila M, Djaldetti R, et al. Developmental cell death in dopaminergicneurons of the substantia nigra of mice[J]. J Comp Neurol, 2000, 424 (3): 476-488.
    [184]Huynh DP, Scoles DR, Ho TH, et al. Parkin is associated with actin filaments in neuronal and nonneural cells[J]. Ann Neurol, 2000, 48(5): 737-744.
    [185]Wang X, Bauer JH, Li Y, et al. Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model [J]. J Biol Chem, 2001, 276(36): 33812-33820.
    [186]Kasosno K, Saito T, Tamemoto H, et al. Hypertonicity regulates the aquaporin-2 promoter independently of arginine vasopressin[J]. Nephrol Dial Transplant, 2005, 20(3): 509-515.
    [187]Han QM, Xie J, Chai ST, et al. Effect of governer meridian espinal cord injured rats[J] Zhong Guo Zhong Xi Yi Jie He Za Zhi, 2005, 25(7): 673-639.
    [188]Nielsen S, Froliaer J, Marples D, et al. Aquaporins in the kidney:from molecues to medicine [J]. Physiol Rev, 2002, 82(1): 205-244.
    [189]刘美菊,孙爱刚,郭敏.水通道蛋白-2、4在小鼠集合管发生发育中的表达[J].解剖学报,2006,37(5): 588-591.
    [190]Ishibashi K, Sasaki S, Fuhmi K, et al. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts[J]. Am J Physiol, 1997, 272 (2pt2): F235-F241.
    [191]Kamsteeg EJ, Bichet DG, Konings IB, et al. Reversed polarized delivery of an aquaporin-2 mutant causes diminant nephrogenic diabetes insipidus[J]. J Cell Biol, 2003, 163 (5): 1099-1109.
    [192]Kurschus FC, Pal PP, B?umler P, et al. Gold fluorescent annexin A5 as a novel apoptosis detection tool[J]. Cytometry A, 2009, 75(7): 626-633.
    [193]Kenis H, van Genderen H, Bennaghmouch A, et al. Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry[J]. J Biol Chem, 2004, 279(50): 52623-52629.
    [194]Stove C, Vanrobaeys F, Devreese B, V et al. Melanoma cells secrete follistatin, an antagonist of activin-mediated growth inhibition[J]. Oncogene, 2004, 23(31): 5330-5339.
    [195]Cao W, Huang J, Wu J, et al. Study of 99mTc-annexin V uptake in apoptotic cell models of Parkinson's disease[J]. Nucl Med Commun, 2007, 28(12): 895-901.
    [196] Bedrood S, Jayasinghe S, Sieburth D, et al. Annexin A5 directly interacts with amyloidogenic proteins and reduces their toxicity[J]. Biochemistry, 2009, 48(44): 10568-10576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700