基于控制理论的网络拥塞控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络通讯的发展和用户数量的膨胀,网络的拥塞问题也越来越严重。拥塞导致的直接后果是整个网络的性能下降:包括分组丢失率增加、端到端延迟增大、网络吞吐量下降,甚至有可能使整个系统发生崩溃。所以有效地解决拥塞问题是改善网络系统性能,提高网络通讯服务质量的主要手段。
     设计简单而有效的拥塞控制算法成为网络管理中亟待解决的问题。网络拥塞控制可以看作是一个反馈控制系统,故从控制理论的角度研究网络拥塞控制可以得到更有效的结果。利用控制理论分析现有拥塞控制系统的稳定性,并设计新的拥塞控制算法,具有重要的理论意义和应用价值。因此进一步探索基于控制理论的网络拥塞控制方法是非常必要的。本文研究基于控制理论的网络拥塞控制算法,取得的主要研究成果与创新点如下:
     1.针对改进的网络简化模型,提出一个大时滞网络拥塞控制算法称为改进的混沌优化PID控制算法(ICPID)。改进的网络简化模型考虑了时滞的影响,利用这个模型,AQM路由器应用改进的混沌优化策略优化PID控制器参数。然后针对PID控制器不能随着变化的网络环境在线调节参数,提出了一种基于增益自适应Smith预估控制和模糊控制的大时滞网络的自适应PID主动队列管理(GAS-FPID)算法。引入增益自适应Smith预估控制器实现滞后补偿,模糊控制器来实现PID参数动态网络环境的在线调整。
     2.针对网络参数的时变性,将TCP模型描述为具有状态延时和输入延时的系统,设计了基于观测器的状态反馈控制器,利用线性矩阵不等式(Linear Matrix Inequality, LMI)和Lyapunov-Krasovskii理论得到使得网络系统不依赖于延迟的渐近稳定的控制器参数;针对网络参数的不确定性和链路带宽的时变性设计一种主动队列管理算法,将可获得的链路带宽作为标称值,而不可获得的未知的时变链路带宽作为干扰信号,以状态空间的形式描述TCP/AQM模型,用时间域H∞控制方法来解决网络拥塞问题。
     3.针对具有通信时延的无线传感器网络的拥塞问题,利用图论对无线传感器网络进行建模,借鉴领导者-跟随者的思想设计了一致拥塞控制算法(Congestion Control Based Consensus, CCBC),根据汇聚节点的负载状况,合理的调节所有传感器节点的数据发送速率,应用Lyapunov函数证明算法在变拓扑网络结构下的有效性。
     4.针对一个用于无线网络拥塞控制算法设计的具有通信时延的流体流模型进行Hopf分岔分析,以通信时延作为分岔参数,证明此模型Hopf分岔的存在性,并应用中心流形和规范型理论推导出确定Hopf分岔方向和分岔周期解稳定性的计算公式,数值仿真验证了结论的有效性。
     最后,在总结全文工作的基础上,给出了本文后续需进一步探讨的一些问题。
With the development of network communications and the expansion of the number of users, network congestion problems are becoming more and more serious. Congestion is a direct result of the performance of the entire network degradation. For example, the packet loss rate increasement, end to end delay increasement, network throughput decreasement and may even crash the whole system. Therefore, the network congestion control is the main way to improve the network performance and reform the quality of sevice.
     The design of simple and effective congestion control algorithms in network management are the problems to be solved. Network congestion can be seen as a feedback control system. From the perspective of control theory, much more effective results about research network congestion control can be achieved. Using control theory analysis of the existing congestion control system stability and the design of new congestion control algorithms show important theoretical significance and application value. Therefore, it is very necessary to explore the network congestion control method based on control theory. This paper studys on network congestion control algorithms based on control theory, to obtain the main research results and innovation are as follows:
     1. A new congestion control algorithm called PID control algorithm with improved chaos optimization based on improved model is proposed in the large delay network situations. According to the model, the PID parameters are tuned with chaos optimization in AQM routers. PID controller can not turn parameters online in dynamic network condition. A novel active queue management algorithm for large delay network based on Fuzzy PID control and Gain Adaptive Smith (GAS-FPID) is proposed, which can achieve PID parameters on-line self-adapting by fuzzy control under the dynamic delay network circumstances. And, gain adaptive Smith is successfully introduced into feedback data's advanced prediction to compensate delay.
     2. The model of TCP/AQM including the state and the input delay is presented in state variables. State feedback control based observer is introduced to estimate online output of congestion control for AQM router for variable network parameters. According to the Linear Matrix Inequality(LMI) technique and the Lyapunov-Krasovskii theorem, control laws and delay-independent stability criteria for the AQM controllers are derived. An AQM algorithm is presented for network congestion, which is based on uncertain parameters and variable link bandwidth. The available link bandwidth is modeled as a nominal constant value, which is known to the link, plus a time-variant disturbance, which is unknown. The model of TCP/AQM including the state and the input delay was presented in state variables. Then, the network congestion problem is solved by using the time-domain H∞control approach.
     3. The congestion control algorithm based on Concensus is designed for network congestion over wireless sensor network by distributed dynamic system. The congestion problem is modeled by graph theory, it can be proved that the send rate for all nodes converges to the minimal available bandwidth by the proposed CCBC. Via Lyapunov function, the validity of the proposed algorithm is shown under the varying network topology and time-delay.
     4. Study on the Hopf bifurcation analysis of a fluid-flow model with time-delay for the congestion control algorithm in the wireless networks. By choosing the communication delay as a bifurcation parameter, the model exhibits of Hopf bifurcation are proved. The formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by applying the center manifold theorem and the normal form theory. Finally, a numerical simulation is presented to verify the theoretical results.
     Finally, based on summary of full text, some problems which need to be further researched are discussed.
引文
[1]Nagle J. Congestion control in IP/TCP internet works. Computer Communication ACM Review.1984,14(4):61-65.
    [2]Jacobson V. Congestion avoidance and control. ACM Computer Communication Review.1998,18(4):314-329.
    [3]A. S. Tanenbaum, Computer Networks,3rd ed., Prentice Hall, Inc.,1996.
    [4]R. Jain, K. K. Ramakrishnan, Dah-Ming Chiu, Congestion Avoidance in Computer Networks with a Connectionless Network Layer, Technical Report, Digital Equipment Corporation DEC-TR-506,1988. http://www.cis.ohio-state.edu/-jain
    [5]罗万明,林闯,阎保平.TCP/IP拥塞控制研究.计算机学报.2001,24(1):1-18.
    [6]章森,吴建平,林闯.互联网端到端拥塞控制研究综述.软件学报.2002,13(3):354-363.
    [7]Thompson K, Miller G J, Wilder R. Wide-area Internet traffic patterns and characteristics. IEEE Network.1997,11(6):10-23.
    [8]Alexander A.,Tilley N., Reiher P. et al. Host-to-host congestion control for tcp. IEEE Communicaations Surveys & Tutorials.2010,12(3):304-342.
    [9]V. Jacobson, "Congestion avoidance and control," ACM SIGCOMM,1988: 314-329.
    [10]V. Jacobson, "Modified TCP congestion avoidance algorithm," email to the end2end list, April 1990.
    [11]S. Floyd and T. Henderson, "RFC2582—the NewReno modification toTCP's fast recovery algorithm," RFC,1999.
    [12]M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, "RFC2018—TCP selective acknowledgment options," RFC,1996.
    [13]L. Brakmo and L. Peterson, "TCP Vegas:end to end congestion avoidance on a global Internet," IEEE J. Sel. Areas Commun.,1995,13(8):1465-1480.
    [14]S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, "TCP Westwood: Bandwidth estimation for enhanced transport over wireless links," in Proc. ACM MOBICOM,2001:287-297.
    [15]L. A. Grieco and S. Mascolo, "Performance evaluation and comparison of Westwood+, New Reno and Vegas TCP congestion control," ACM Computer Communication Review.2004,342.
    [16]H. Shimonishi, M. Sanadidi, and M. Gerla, "Improving efficiency friendliness tradeoffs of TCP in wired-wireless combined networks," in Proc. IEEE ICC,. 2005,5:3548-3552.
    [17]T. Kelly, "Scalable TCP:improving performance in highspeed wide area networks," Computer Communications Review.2003,32(2).
    [18]L. Xu, K. Harfoush, and I. Rhee, "Binary increase congestion control for fast, long distance networks," in Proc. IEEE INFOCOM.2004,4:2514-2524.
    [19]R. Wang, K. Yamada, M. Sanadidi, and M. Gerla, "TCP with senderside intelligence to handle dynamic, large, leaky pipes," IEEE J. Sel. Areas Commun.. 2005,23(2):235-248.
    [20]D. Kliazovich, F. Granelli, and D. Miorandi, "Logarithmic window increase for TCP Westwood+ for improvement in high speed, long distance networks," Computer Networks.2008,52(12):2395-2410.
    [21]I. Rhee and L. Xu, "CUBIC:a new TCP-friendly high-speed TCP variant," SIGOPS Operating Systems Review.2008,42(5):64-74.
    [22]D. X. Wei, C. Jin, S. H. Low, and S. Hegde, "FAST TCP:motivation, architecture, algorithms, performance," IEEE/ACM Trans. Netw.2006,14(6):1246-1259.
    [23]K. Kaneko, T. Fujikawa, Z. Su, and J. Katto, "TCP-Fusion:a hybrid congestion control algorithm for high-speed networks," in Proc. PFLDnet,ISI, Marina Del Rey (Los Angeles), California, February 2007.
    [24]S. Liu, T. Basar, and R. Srikant, "TCP-Illinois:A loss and delay-based congestion control algorithm for high-speed networks," in Proc. First International Conference on Performance Evaluation Methodologiesand Tools (VALUETOOLS),2006.
    [25]A. Baiocchi, A. P. Castellani, and F. Vacirca, "YeAH-TCP:yet another highspeed TCP," in Proc. PFLDnet, ISI, Marina Del Rey (Los Angeles), California, February 2007.
    [26]邓晓横,陈志刚,张连明等.MP-Start:基于带宽测量的分阶段TCP慢启动机制.通信学报.2007,28(11):92-102.
    [27]程京,沈永坚,张大方等.TCP-Shape:一种改进的网络拥塞控制算法研究.电子学报.2006,34(9):1621-1625.
    [28]龙承念,杨会龙,李欣,关新平.EHSTCP:改进的高速TCP算法.计算机学报.2008,31(3):440-449.
    [29]何炎祥,熊乃学,杨燕.一种改进的TCP拥塞控制算法.计算机研究与发展.2005,42(12):2070~2076.
    [30]赖峻,叶梧,冯穗力等.基于接受方信用量调整的TCP新算法.系统工程与电子技术.2010,32(8):1789-1792.
    [31]曾彬,张大方,黎文伟等.基于Gilbert丢包机制的TCP吞吐量模型.电子学报.2009,37(8):1728-1732.
    [32]李世银,王秀娟,钱建生.TCP端到端等效噪声模型及拥塞控制方法研究.电子科技大学学报.2009,38(4):489-500.
    [33]易发胜,赵继东,利用时延特性的模糊TCP拥塞控制算法,电子科技大学学报.2010,39(2):260-265.
    [34]张顺亮,叶澄清,李方敏.一种基于速率的BLUE改进方法.计算机研究与发展.2004,41(4):660-666.
    [35]Floyd S, and Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Networking.1993,1(4):397-413.
    [36]Low SH, Paganini F, Doyle JC. Internet congestion control. IEEE Control Syst Mag 2002,22(1):28-43.
    [37]Lim D, Morris R. Dynamics of random early detection. In:Proceedings of ACM SIGCOMM; 1997. p.127-37.
    [38]Feng W, Kandlur DD, Saha D, Shin KG. A self-configuring RED gateway. In: Proceedings of IEEE INFOCOM; 1999. p.1320-8.
    [39]J. Sun, K. Ko, G. Chen, S. Chan, and M. Zukerman, "PD-RED:to improve the performance of RED," IEEE Communications Letters.2003,7(8):406-408.
    [40]S. Liu, T. Basar, and R. Srikant."Exponential-RED:a stabilizing AQM scheme for low-and high-speed TCP protocols," IEEE/ACM Transactions on Networking. 2005,13(5):1068-1081.
    [41]C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, "LRED:a robust and responsive AQM algorithm using packet loss ratio measurement," IEEE Transactions on Parallel and Distributed Systems,2007,18(1):29-43.
    [42]Abbasov B, Korukoglu S. Effective RED:An algorithm to improve RED's performance by reducing packet loss rate. J Network Comput Appl (2008), doi:10.1016/j.jnca.2008.07.001.
    [43]Chen W, Yang S H. The mechanism of adapting RED parameters to TCP traffic. Comuter Communications.2009,32(13-14):1525-1530.
    [44]江昊,晏蒲柳,吴静,周建国.动态权重调整RED.电子学报.2005,33(3): 574-577.
    [45]陈远,李乐民.一种支持区分服务的模糊公平分组丢弃算法.电子与信息学报.2006,28(6):1129-1134.
    [46]蔡文郁,张昱,金心宇等.RF-RED:一种速率公平的RED改进算法.浙江大学学报(工学版).2007,41(4):634-638.
    [47]余冠玮,邢卫,鲁东明.DF-RED:一种基于动态公平性的RED算法.制造业自动化.2010,32(9):7-13.
    [48]Feng W, Kandlur D, Saha D, et al. Blue:A New Class of Active Queue Management Algorithms. CSE-TR-387-99, University of Michigan.1999.
    [49]Wydrowski B, Zukerman M. GREEN An Active Queue Management Alogorithm for A Self Managed Internet. In:Proc. Of ICC2002, New York, 2002,4:2368-2372.
    [50]Rong P, Balaji P, Konstantinos P. CHOKE:a stateless active queue management scheme for approximating fair bandwidth allocation. IEEE INFOCOM'00.2000, 1:942-951.
    [51]Srisankar K. Analysis and design of an adaptive virtual queue algorithms for active management. ACM SIGCOMM'01.2001,1:123-134.
    [52]Athuraliya S, Li V H, Low S H, Yin Q. REM:active queue management. IEEE Network.2001,15(3):48-53.
    [53]MisraV, Gong W B, Towsley D. Fluid-based analysis of a nework of AQM routers supporting TCP flows with an application RED. ACM SIGCOMM 2000. Stockholm, Sweden:ACM Press,2000:151-160.
    [54]Kelly FP, Maulloo A, Tan D. Rate control in communication networks:Shadow prices, proportional fairness and stability. Journal of the Operational Research Society 1998;49:237-252.
    [55]Low SH. A duality model of TCP and queue management algorithms. IEEE/ACM Transactions on Networking.2003,11(4):525-536.
    [56]Hollot C. V., Misra V, Towsley D, et al. A Control Theoretic Analysis of RED. In Proceedings of IEEE INFOCOM 2001, pp.1510-1519. Anchorage, Alaska, USA.2001.
    [57]Hollot C. V., Misra V, Towsley D, et al. On Designing Improved Controllers for AQM Routers Supporting TCP Flows. In Proceedings of the IEEE INFOCOM 2001,pp.1726-1734. Anchorage,Alaska,US A.2001.
    [58]Kim KB, Low SH. Analysis and design of AQM based on state-space models for stabilizing TCP. In:Proceedings of American control conference; 2003. p.260-5.
    [59]Sun J.S., Chen G.R.,Ko K.T.,et al. PD-Controller:A New Active Queue Management Scheme. In Proceedings of IEEE GLOBECOM 2002.
    [60]S. Ryu, C. Rump, and C. Qiao. A predictive and robust active queue management for internet congestion control. In Proc. of International Symposium on Computers and Communication,2003:1346-1530.
    [61]Peng Y, Yuan G and Hitay O. A Variable Structure Control Approach to Active Queue Management for TCP with ECN. In Proceedings of ISCC 2003.Kemer-Antalya, Turkey.2003.
    [62]Gao Y and Jennifer C.H. A State Feedback Control Approach to Stabilizing Queues for ECN-Enabled TCP Connections. In Proceedings of IEEE INFOCOM 2003. San Francisco, California, USA.2003.
    [63]Subasree S, Ravichandran KS. Fuzzy based dual active queue management scheme for high performance networks, Networking, Sensing and Control,2005, Proceedings. March 2005 Page(s):461-466.
    [64]Yin Feng-jie,Jing Yuan-wei.Design of active queue management algorithm using fuzzy sliding mode controller. IEEE International Symposium on Communictions and Information Technology.2005,1 (10):324-327.
    [65]Mahdi Jalili-Kharaajoo. Application of Brain Emotional Learning Based Intelligent Controller(BELBIC) to Active Queue Management. ICCS 2004,LNCS 3037,pp.662-665,2004..
    [66]Wenyu Gao, Jianxin Wang, etc. PEED:a prediction-based fair active queue management algorithm. International Conference on Parallel Processing 2005, June 2005 Page(s):485-491.
    [67]Yi-Bin Yu, Chang-xiu Cao, etc. Design of neural model predictive controller for active queue management, Machine Learning and Cybernetics 2005, Volume 3, Aug.2005 Page(s):1412-1416.
    [68]Francis BA. A course in H control theory. Berlin:Springer-Verlag; 1987.
    [69]DeCarlo RA, Zak SH, Mattews GP. Variable structure control of nonlinear multivariable systems:a tutorial. Proc IEEE 1998;76(3):212-232.
    [70]Haykin S. Neural networks:a comprehensive foundation. Prentice Hall.1999.
    [71]Quet P-F, Ozbay H. On the design of AQM supporting TCP flows using robust control theory. IEEE Trans Autom Control 2004;49(6):1031-1036.
    [72]Cho HC, Fadali MS, Lee H. Neural network control for TCP network congestion. In:Proceedings of American control conference; 2005. p.3480-3485.
    [73]Fengyuan R, Chuang L, Xunhe Y, Xiuming S, Fubao W. A robust active queue management algorithm based on sliding mode variable structure control. In: Proceedings of IEEE INFOCOM; 2002. p.13-20.
    [74]Yan P, Gao Y, Ozbay H. A variable structure control approach to active queue management for TCP with ECN. IEEE Trans Control Syst Technol 2005;13(2):203-215.
    [75]Bigdeli N, Haeri M. Design of a robust AQM strategy for dynamic TCP/AQM networks based on CDM. In:Proc. CCA05.2005.
    [76]Zhang H, Hollot CV, Towsley D, Misra V. A self-tuning structure for adaptation in TCP/AQM networks. In:Proc. IEEE/GLOBECOM'03, vol.7.2003. p. 3641-3646.
    [77]Gao Y, He G, Chao-Ju Hou J. On leveraging traffic predictability in active queue management. In:Proc. IEEE/INFOCOM'02.2002.
    [78]Jain A, Karandikar A, Verma R. Adaptive prediction based approach for congestion estimation (APACE) in active queue management. Computer Communications 2004,27:1647-1660.
    [79]H.C. Cho et al. Adaptive neural queue management for TCP networks. Computers and Electrical Engineering.2008,34:447-469.
    [80]Patan K, Parisini T. Identification of neural dynamic models for fault detection and isolation:the case of a real sugar evaporation process. Process Control 2005,15(1):67-79.
    [81]Cho HC, Fadali SM. Adaptive online parameter learning and statistical analysis of dynamic Bayesian networks. IEEE Trans Syst Man Cybernet:Part B,submitted for publication.
    [82]N. Bigdeli, M. Haeri. Predictive functional control for active queue management in congested TCP/IP networks. ISA Transactions2009,48:107-121.
    [83]Yang Hong, Oliver W W Y. Design of Adaptive PI Rate Controller for Best-effort Traffic in the Internet Based on Phase Margin. IEEE Transactions on Parallel and Distributed Systems,2007,18(4):550-561.
    [84]徐胜,向少华,武赛等.基于时滞鲁棒分析技术的AQM拥塞控制算法.计算机工程与应用.2006,6(3):6-8.
    [85]尹凤杰,井元伟,岳承君等.不确定输入延时网络系统的鲁棒拥塞控制.控制与决策.2007,22(2):198-201.
    [86]杨歆豪,王执铨.NOFC-VRTT:一种基于变RTT的非线性AQM算法.控制与决策.2010,25(1):69-73.
    [87]刘治,倪杰,文俊朝等.基于参数不敏感设计的网络拥塞控制算法.控制理论与应用.2009,26(11):1239-1246.
    [88]李金东,马东堂,李卫等.基于RED算法的非线性拥塞控制.计算机工程.2008,34(20):91-95.
    [89]Ding D W,Zhu J, Lou X S, et al. Nonlinear dynamics in Internet congestion control model with TCP Westwood under RED. The Journal of China Universities of Posts and Telecommunications.2009,16(4):53-58.
    [90]胡为民,陈亮.基于二次型优化的神经元PID无线拥塞控制算法.苏州大学学报(自然科学版).2009,25(3):42-46.
    [91]钱艳平,李奇.时滞网络预测PI控制算法鲁棒稳定性分析.东南大学学报.2007,37(1):159-163.
    [92]余义斌,曹长修,李昌兵.基于神经模型预测控制的主动队列管理算法.控制与决策.2006,21(9):1042-1049.
    [93]张少博,周之平,吴介一等.一种基于组合型模糊控制的主动队列管理算法.信息与控制.2007,36(2):204-210.
    [94]葛龙,万春方,孙金生.基于模糊控制的主动队列管理算法.南京理工大学学报(自然科学版).2008,32(2):218-221.
    [95]尹凤杰,井元伟,杨晖.基于模糊滑模控制的主动管理算法.东北大学学报(自然科学版).2006,27(5):473-476.
    [96]王丹,于灏,井元伟等.基于感知流量算法的复杂网络拥塞问题研究.物理学报.2009,58(10):6802-6807.
    [97]钱晓龙,郑艳,任涛等.线性时变不确定系统的滑模控制及其在网络拥塞中的应用.东北大学学报(自然科学版).2008,29(6):777-781.
    [98]闫明,井元伟,沈孝钧.不确定TCP网络中的滑模主动队列管理算法.东北大学学报(自然科学版).2008,29(2):157-160.
    [99]Ren Fengyuan, Lin Chuang, Wei Bo. A Robust Active Queue Management Algorithm in Large Delay Networks. Computer Communication,2005,28(5): 485-493.
    [100]Jianxin Wang, Liang Rong, Yunhao Liu. Design of a stabilizing AQM controller for large-delay networks based on internal model control. Computer Communications 2008,31(10):1911-1918.
    [101]朱瑞军,索东海,马吉荣.ATM网络预测拥塞控制器设计.控制与决策.2004, 19(1):61-64.
    [102]尹凤杰.基于控制理论的主动队列管理算法及其稳定性研究.东北大学.2005年12月.
    [103]钱艳平,李奇,刁翔.预测PI时滞网络拥塞控制算法设计及性能分析.控制理论与应用.2006,23(2):161-168.
    [104]刘明,窦文华,张鹤颖.大延时网络中的主动队列管理机制.国防科技大学学报.2006,28(5):47-51.
    [105]王萍,陈虹,杨晓萍.动态矩阵阵主主动动队队列管理算法.控制理论与应用.2010,27(8):971-978.
    [106]王晓曦,王永吉,周津慧,等.基于改进网络模型的大时滞网络拥塞控制算法.电子学报.2005.33(5):842-846.
    [107]肖萍萍,田彦涛,安晓峰.基于预测的时滞系统拥塞控制算法.计算机工程与应用.2007,43(29):122-125.
    [108]孙雁飞,张顺颐,周雷.基于模糊免疫PID的时滞网络自适应主动队列管理.通信学报.2005,26(8):36-43.
    [109]郑博,孟相如,李欢等.基于速率和队长的大时滞网络AQM算法.计算机工程.2010.36(20):96-98.
    [110]Gobel J, Krzesinski A, Mandjes M. Incentive-based control of Ad hoc networks: A performance study. Computer Networks.2009,53(14):2427-2443.
    [111]Holland G, Vaidya N. Analysis of TCP performance over mobile Ad hoc networks. ACM Wireless Networks.2002,8(2):275-288.
    [112]冯彦君,张方舟,叶润国等.Ad Hoc网络中一种基于端节点的启发式TCP改进方法.微电子学与计算机.2005,22(1):1-5.
    [113]徐伟强,吴铁军,汪亚明等.强动态Ad Hoc网的拥塞控制:价格协作和滚动优化.软件学报.2008,19(9):2389-2402.
    [114]Chen L, Low S, Doyle J C. Cross-layer congestion control, routing and scheduling design in Ad hoc wireless networks. Proc. of the 25th Annual Joint Conf. of the IEEE Computer and Communications Societies'06.2006:1-13.
    [115]Eryilmaz A, Srikant R. Joint congestion control, routing, and MAC for stability and fairness in wireless networks. IEEE Journal on Selected Areas in Communications.2006,24(3):1514-1524.
    [116]孙国栋,廖明宏,邱硕.无线传感器网络中一种避免节点拥塞的算法.计算机研究与发展.2009,46(6):934-939.
    [117]Yaghmaee M H, Adjeroh D A. Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Networks.2009,53(11):1798-1811.
    [118]Akan O, Akyildiz I. Event-to-sink Reliable Transport in Wireless sensor Networks. IEEE/ACM Transactions on Networking.2005,13(5):1003-1016.
    [119]C. Wan, S. Eisenman, A. Compbell. Coda:Congestion Detection and Avoidance in Sensor Networks. Los Angeles, USA:ACM SenSys,2003.
    [120]C. T. Ee, R. Bajcsy. Congestion Control and Fairness for Many-to-one Routing in Sensornetworks. ACM SenSys. Baltimore, USA,2004.
    [121]S. Chen, N. Yang. Congestion Avoidance Based on Lightweight Buffer Management in Sensor Networks. IEEE Trans. on Parallel and Distributed Systems.2006,17(9):934-946.
    [122]K. Karenos, V. Kalogeraki, S. V. Krishnamurthy. Cluster-based congestion control for supporting multiple classes of traffic in Sensor Networks. In Proc. Of the 2nd IEEE Workshop on Embedded Networked Sensor Systems, pages 107-114,Sydney,Australia, May 2005.
    [123]C. Wang, K. Sohraby, V. Lawrence, et al. Priority-based Congestion Control in Wireless Sensor Networks. IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing.2006.
    [124]K. Karenos, V. Kalogeraki. Facilitating Conestion Avoidance in Sensor Networks with a Mobile Sink.28th International Real-Time System Symposium. IEEE,2007:321-330.
    [125]柳立峰,邹仕洪,张雷,等.基于定向扩散的传感器网络拥塞与速率控制.北京邮电大学学报.2006,29(2):90-94.
    [126]李姗姗,廖湘科,朱培栋,等.传感器网络中一种拥塞避免、检测与缓解策略.计算机研究与发展.2007,44(8):1348-1356.
    [127]杨歆豪,陆锦军,王执铨.无线传感器网络中基于最小速率的拥塞控制算法.信息与控制.2010,39(5):513-518.
    [128]鞠海玲,崔莉,黄长城.Easicc:一种保证带宽公平性的传感器网络拥塞控制机制.计算机研究与发展.2008,45(1):16-25.
    [129]Veres A., Boda M., The chaotic nature of TCP-AQM congestion control, Proceedings of IEEE INFOCOM,2000.
    [130]Ranjan P, Abed E H. Bifurcation analysis of TCP-RED dynamics. In:Proceedings of the 2002 American Control Conference.2002,3:2443-2448.
    [131]Junhui Fan, Xiao fan Wang. Chaos and self-similiarity in TCP-RED congestion control. In:The 2002 International Conference on Control and Automation,2002. ICCA,2002,152-152.
    [132]Zhang H., Liu M., Vukadinovic V., etc. Modeling TCP/RED:a dynamical approach, Complex Dynamics in Communications Networking, Berlin:Springer Verlag,2005,251-278.
    [133]Trajkovic L., Modeling TCP/RED:a dynamical approach, International Workshop of Complex Systems and Networks, Hong Kong,2005.
    [134]Liu M., Zhang H., Trajkovic L., Stroboscopic model and bifurcations in TCP/RED. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan,2005:2060-2063.
    [135]Low S H, Paganini F, Jiantao Wang, et al. Dynamics of TCP/RED and a scalable control. In:INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.2002,1:239-248.
    [136]Raina G., Local Bifurcation analysis of some dual congestion control algorithms, IEEE Transactions on Automatic Control.2005,50(8):1135-1146.
    [137]Li C, Chen G, Liao X, Yu J. Hopf bifurcation in an Internet congestion control mode. Chaos, Solitons and Fractals.2004,6:853-862.
    [138]Yang H.Y., Tian Y.P., Hopf bifurcation in REM algorithm with communication delay.Chaos, Solitons and Fractals,2005,25,1093-1105.
    [139]Michiels W., Niculescu S.I., Stability analysis of a fluid flow model for TCP like behavior. International Journal of Bifurcation and Chaos (IJBC).2005,15(7): 2277-2282.
    [140]Y.-P. Tian and H.-Y. Yang. Stability of the Internet congestion control with diverse delays.Automatica,2004,40:1533-1541.
    [141]Y.-P. Tian. Stability analysis and design of the second-order congestion control for networks with heterogeneous delays. IEEE/ACM Transactions on Networking. 2005,13(5):1082-1093.
    [142]Tian and G. Chen. Stability of the primal-dual algorithm for congestion control. International Journal of Control.2006,79(6):662-676.
    [143]Yu-Ping Tian. A general stability criterion for congestion control with diverse communication delays. Automatica.2005,41:1255-1262.
    [144]Xinbing Wang, Do Young Eun. Local and global stability of TCP-newReno/RED with many flows.Computer Communications,2007,30(5):1091-1105.
    [145]Ge L, Fang B, Sun J S, Wang Z Q. Novel graphical approach to analyze the stability of TCP/AQM Networks. Acta Automatica Sinica.2010,36(2):314-321.
    [146]杨洪勇,田玉平.具有反馈时延的TCP Vegas拥塞控制算法的稳定性分析.控制与决策.2004,19(4):12-16.
    [147]Tian Yu-Ping, Yang Hong-Yong. Stability of the Internet congestion control with diverse delays. Automatica,2004,40(9):1533-1541.
    [148]Songtao Guo, Xiaofeng Liao and Chuandong Li. Stability and Hopf bifurcation analysis in a novel congestion control model with communication delay. Nonlinear Analysis:Real World Application,9(4):1292-1309, September 2008.
    [149]Xiaofeng Liao, Songtao Guo, and Chuandong Li. Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dynamics.2007,49 (1-2): 319-345.
    [150]Ding Da-Wei, Zhu Jie, Luo Xiao-Shu. Hopf bifurcation analysis in a dual model of Internet congestion control algorithm with communication delay. Nonlinear Analysis:Real World Applications.2009,10:824-838.
    [151]Ding Dawei, Zhu Jie, Luo Xiaoshu. Hopf Bifurcation Analysis in a Fluid Flow Model of Internet Congestion Control Algorithm. Nonlinear Analysis:Real World Applications.2009,10(2):824-839.
    [152]B Braden, D Clark, Recommendations on Queue Management and Congestion Avoidance in the Internet. RFC2309. IETF, April 1998.
    [153]任丰原,王福豹,等.主动队列管理中的PID控制器.电子与信息学报.2003,25(1):94-99.
    [154]费春国,韩正之.一种改进的混沌优化算法.控制理论与应用.2006,23(3):471-474.
    [155]王爽心,姜妍,李亚光.基于混合混沌优化策略的汽轮机调速系统模糊免疫PID控制.中国电机工程学报,2006,26(11):70-74.
    [156]任丰原,林闯,任勇,山秀明.大时滞网络中的拥塞控制算法.软件学报.2003,14(3):503-511.
    [157]Ryu S, Rump C. Design of load-adaptive queue management for Internet congestion control. In:ICOIN 2003, Cheju Island,Korea:24-34.
    [158]Wang Chonggang, et al.. API:Adaptive Proportional-Integral algorithm for active queue management under dynamic. In:HPSR2004, Phoenix, Arizona:51-55.
    [159]Deng Xidong, et al.. A control theoretic approach for designing adaptive AQM schemes. GLOBECOM 2003, San Francisco,California. IEEE, Vol.5:2947-2951.
    [160]鲁照权,韩江洪.一种新型增益自适应Smith预估器.仪器仪表学报. 2002,23(2):195-196.
    [161]向少华,胥布工,彭达洲,武塞.基于增益自适应Smith预估器的鲁棒AQM拥赛控制算法.华南理工大学学报(自然科学版),2006,34(9):40-44.
    [162]郑大钟.线性系统理论.北京:清华大学出版社.1990,121-140.
    [163]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [164]孙雁飞等.一种时滞网络自适应主动队列管理算法研究.电子与信息学报,2006,28(10):1940-1945.
    [165]Bhat N, McAvoy T. Use of neural nets for dynamic modeling and control of chemical process systems. Computers and Chemical Engineering.1990 14(4/5):573-583.
    [166]Shu Huailin. Study on the neural PID network based cascade control system. Automation & Instrumentation.1997.5:5-7.
    [167]舒怀林.PID神经元网络及其控制系统.国防工业出版社,2006(2).
    [168]沈永俊,顾幸生.PID神经网络内模控制在湿法烟气脱硫中的应用.清华大学学报(自然科学版).2007 47(S2):1798-1802.
    [169]Altman, E., Ba3ar, T., Srikant, R. Congestion control as a stochastic control problem with action delays. Automatica.1999. (35),1937-1950.
    [170]Cavendish, D., Gerla, M., Mascolo, S.. A control theoretical approach to congestion control in packet networks. IEEE/ACM Transactions on Networking. 2004,12(4):893-906.
    [171]Yan, J., Bitmead, R. R.. Incorporating state estimation into model predictive control and its application to network traffic control. Automatica.2005,41 (4):595-604.
    [172]Mascolo, S.. Congestion control in high-speed communication networks using the Smith principle. Automatica.1999,35 (12):1921-1935.
    [173]F.Zheng J. Nelson An Hoo approach to the controller design of AQM routers supporting TCP flows. Automatica.2009,45 (3):757-763.
    [174]Chen, Q., Yang, O. W. W.. Design of AQM controller for IP routers based on H1 S/U MSP. IEEE intern, conf. on communications.2005,340-344.
    [175]Chen Changkuo, Hung Yungching, Liao T Lu, et al. Design of Roubust Active Queue Management Controllers for a Class of TCP Communication Networks. Information Science.2007,177(19):4059-4701.
    [176]Cavendish, D., Gerla, M.,& Mascolo, S.. A control theoretical approach to congestion control in packet networks. IEEE/ACM Transactions on Networking. 2004,12(5),893-906.
    [177]Fan, X., Arcak, M., & Wen, J. T.. Robustness of network flow control against disturbances and time-delay. Systems Control Letters.2004,53 (1):13-29.
    [178]Mascolo, S.. Congestion control in high-speed communication networks using the Smith principle. Automatica.1999,35 (12):1921-1935.
    [179]葛龙,杨歆豪,孙金生,王执铨.基于不确定时滞模型的鲁棒AQM控制器设计.系统工程与电子技术.2009,31(9):2172-2176.
    [180]Fridman, E.,Shaked, U.New bounded real lemma representations for timedelay systems and their applications. IEEE Transactions on Automatic Control. 2001,46(12):1973-1979.
    [181]Zheng, F., Wang, Q.-G.,& Lee, T. H.. A heuristic approach to solving a class of bilinear matrix inequality problems. Systems Control Letters.2002(47):111-119.
    [182]Quet, P.-F.,& Ozbay, H.. On the design of AQM supporting TCP flows using robust control theory. IEEE Transactions on Automatic Control.2004,49(6): 1031-1036.
    [183]Bertsekas, D.,& Gallager, R. G.. Data networks. Upper Saddle River,1992, NJ: Prentice-Hall.
    [184]Yi Y and Shakkottai S. Hop-by-Hop Congestion Control over a Wireless Multi-hop Network. Proceedings of IEEE Infocom, HK,2004.
    [185]S. Rangwala, R. Gummadi, R. Govindan, K. Psounis, Inteiference-Aware Fair Rate Control in Wireless Sensor Networks.In proceedings of ACM SIGCOMM Symposium on Network Architecture and Protocols,2006.
    [186]R. Olfati-Saber, R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control. 2004,49 (9):1520-1533.
    [187]R. Diestel. Graph Theory. Springer, New York,2000.
    [188]C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York,2001.
    [189]J. Bang-Jensen, G. Gutin, Digraphs Theory, Algorithms and Applications, New York:Springer-Verlag,2002.
    [190]Wei Ni,Daizhan Cheng. Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & Control Letters,2010,59: 209-217.
    [191]J. Hu, Y. Hong. Leader-following coordination of multi-agent systems with coupling time delays. Physica A,2007,374(2):853-863.
    [192]M. M. Monowar, M. O. Rahman, C S Hong. Multipath Congestion Control for Heterogeneous Traffic in Wireless Sensor Network. The 10th International Conference on Advanced Communication Technology, Gangwon-Do, Korea,2008: 1711-1715.
    [193]赵永辉,史浩山.基于云模型的无线传感器网络拥塞及速率控制策略.传感技术学报,2010,23(1):133-138.
    [194]Ding Dawei, Zhu Jie, Luo xiaoshu, et al., Controlling chaos in Mixed TCP and UDP Model Based on TDFC Method, Dynamics of Continuous and Impulsive Systems, Series B:Applications & Algorithms,2007,14(S7):126-130.
    [195]F. Zheng, J. Nelson An H∞ approach to congestion control design for AQM routers supporting TCP flows in wireless access networks. Computer Networks, 2007,51(6):1684-1704.
    [196]Hollot C V, Misra V, Towsley D, et al.. Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. IEEE Transactions on Automatic Control. 2002,47 (6):945-959.
    [197]K. Cooke, Z. Grossman. Discrete delay, distributed delay and stability switches, Math. Anal. Appl.,1982,86:592-627.
    [198]J. Hale. Theory of Functional Differential Equations. New York Heidelberg Berlin, Spring-Verlag,1977, chapter 11.
    [199]B. D. Hassard, N. D. Kazarinoff, Y. H. Wan. Theory and applications of Hopf bifurcation.Cambridge, Cambridge University Press,1981,Chapter 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700