基于EOPCB的Mesh网络的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mesh网络因其结构简单、规则,可扩展性良好,并且易于实现等优点,在大型多处理器并行计算机系统中、片上网络(NoC)等领域广泛使用。在高性能计算机中,传统的电互连网络已经成为传输高速信号的瓶颈,发展光互连网络势在必行。光互连网络具有极高的时间空间带宽积,低延时,低功耗,抗干扰等特性和优点,是克服现有电互连网络电子瓶颈效应的有效手段。
     本文首先概述了Mesh网络的结构与应用和光互连的背景与应用,重点分析了光波导互连的关键技术与实现方式,并将Floyd算法应用在Mesh网络中。
     作者以2×2 Mesh网络为例,进行了基于光波导互连的Mesh网络设计。在现有技术条件下,首先进行了基于EOPCB的Mesh网络的整体架构设计,选用了VITESSE公司的VSC3312芯片作为Mesh网络的交换芯片,VSC3312的单通道带宽可达6.5Gbps,符合我们的设计需求。选用C8051F310芯片作为Mesh网络的中央控制芯片,通过I2C接口向交换芯片寄存器写入数据来控制交换芯片,从而实现Mesh网络数据上移、下移、左移、右移的逻辑功能。光收发模块采用武汉海博光技术公司生产的12路并行收发模块,每通道速率3.125Gbps。
     在现有器件的基础上,按照完成的系统设计架构,遵照高速电路设计规则,进行了硬件电路设计。将光波导层嵌入在PCB内,所有高速信号通过光发射模块转化为光信号,光信号通过耦合连接模块进入光波导层进行传输,在接收端耦合连接至光接收模块转化为电信号,从而实现高速信号的光传输。
     在硬件设计的基础上,进行了基于VB语言的上位机软件系统设计,在PC端可以自由控制Mesh网络数据的传输方向。
     测试中各个通道在3.125Gbps下得到良好的眼图,端口间并行2路传输带宽达6.25Gbps,实现了Mesh网络逻辑功能,验证了光波导互连的可行性,达到预期目标。
Mesh network is widely used in areas such as large-scale multi-processor parallel computer systems, network-on-chip (NoC) because of its advantages such as simple structure, regular, good scalability, and easy to realize.In high-performance computers, the traditional network of electrical interconnection has become a bottleneck of transmissing high-speed signals, it is imperative to develop the optical interconnection network.Optical interconnection network has a very high time and space-bandwidth product, low-latency, low power consumption, interference and so on, which is an effective means to overcome the existing bottleneck effect of the electrical interconnection network.
     The paper first outlines the structure and application of Mesh networks and optical interconnection’s application and background, focusing on analysising the key technologies and implementation of optical waveguide interconnection, and will Floyd algorithm used in the Mesh Networks.
     Author uses the 2×2 Mesh network as an example and performs the Mesh network design basing waveguide interconnection. Conditions in the existing technology, first, performs the overall framework’s design based on the Mesh network of EOPCB, selects the VSC3312 chip from the VITESSE company as the switching chip of Mesh network, VSC3312 single-channel bandwidth up to 6.5Gbps, meeting our design requirements. C8051F310 chip is selected as the Mesh network‘s central control chip, through the I2C interface, writing data in register of switching chip to control the switching chip, in order to achieve the Mesh network data’s logic function of shifting up, down, left, and right. Optical transceiver modules are from the parallel transceiver module 12 produced by the company of Wuhan Haibo, the rate per channel up to 3.125Gbps.
     Based the existing devices,according to the completed system’s framework designed, conform to the rules of high-speed circuit design, to perform the design about hardware circuit. The optical waveguide layer will be embedded in the traditional PCB, all high-speed signals will be transformed into optical signals, optical signals propagate through the waveguide layer, and the optical signals will be transformed into electrical signals at the terminal. So we achieve the goal that the high-speed signals are transmitted via optical format.
     Based on the hardware design, we carry out the design of PC software system based on the VB language. We are free to control the transmission direction of Mesh network in the PC client.
     Through the tests, each channel get the good eye diagram under 3.125Gbps, 2-way between the parallel-port bandwidth up to 6.25Gbps, achiving the logic function of Mesh Network, verifying the feasibility of the interconnection of the optical waveguide. This result achieves the desired objectives.
引文
[1]陈国良,吴俊敏,章锋等.并行计算机体系结构.北京:高等教育出版社, 2002
    [2]袁菁,罗风光,曹明翠. Mesh光互连网络集成模块研究.光电子·激光.第12卷第11期, 2001年11月
    [3] W. J. BOUKNIGHT, STEWART A. DENENBERG, DAVID E. McINTYRE, et al. The Illiac IV system. PROCEEDINGS OF THE IEEE, VOL. 60, NO. 4, APRIL 1972
    [4] Sigurd L. Lillevik, The Touchstone 30 Gigaflop DELTA Prototype. 1991 IEEE.671~677
    [5]赵宏智. 2D Mesh片上网络中交换机服务性能影响的研究及其拓扑改进.电子学报, Feb.2009,Vol.37, No.2.
    [6] Kevin DeMartino, Verizon Communications. An Architecture for a Seamless Mesh Network. Design of Reliable Communication Networks (DRCN) 2003, Banff, Alberta, Canada, October 19-22, 2003
    [7]张以谟.光互连网络技术. (第一版).北京:电子工业出版社, 2006
    [8]李之棠等.光互连与并行处理. (第一版).北京:电子工业出版社, 2001
    [9] Toshikazu Sakano, Takao Matsumoto, Kazuhiro Noguchi. A Three-Dimensional Mesh Multiprocessor System using Board-to-Board Free-Space Optical Interconnects: COSINE-III. 1993 IEEE,278~283
    [10] Sung Hwan Hwang, Mu Hee Cho, Sae-Kyoung Kang, et al. Two-Dimensional Optical Interconnection Based on Two-Layered Optical Printed Circuit Board. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 6, MARCH 15, 2007
    [11] Hyo-Hoon Park, Sae-Kyoung Kang, Do-Won Kim ,et al. Driver-receiver combined optical transceiver modules for bidirectional optical interconnection. Proc. of SPIE Vol. 6897 68970J-1
    [12] Stefan Kopetz*, Stefan Lehmacher*, Erik Rabe, et al. Coupling of optoelectronic modules to optical layer in printed circuitboards (PCBs). Proceedings of SPIE Vol. 4942 (2003)
    [13] F.Mederer, R.J?ger, J.Joos, et al. Improved VCSEL Structures for 10 Gigabit Ethernetand Next Generation Optical-Integrated PC-Boards. 2001 Electronic Components and Technology Conference.
    [14] F. Mederer, R. J?ger, H. J. Unold, et al. 3-Gb/s Data Transmission With GaAs VCSELs Over PCB Integrated Polymer Waveguides. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 13, NO. 9, SEPTEMBER 2001
    [15]张家亮.光电印制电路板的发展评述(2)——光电印制电路板用光波导材料(下).印制电路信息, 2007, No.1
    [16] Benedikt Gra?a, Andreas Neyerb, Matthias Joèhnckc,et al. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector.Sensors and Actuators B 72 (2001) 249~258
    [17] Bj?rnWittmann, Stefan Lehmacher, Stefan Kopecz, et al. Optical Interconnects on and in Printed Circuit Boards. Int. J. Electron. Commun. (AE¨U) 55 (2001) No. 5, 319?322
    [18] A.Neyer, S.Kopetz, E.Rabe, et al. Electrical-Optical Circuit Board using Polysiloxane Optical Waveguide Layer. 2005 Electronic Components and Technology Conference.
    [19]张聪慧.基于EOPCB的矩形光波导研究: [硕士学位论文].武汉:华中科技大学图书馆, 2008
    [20] Byung Sup Rho, Saekyoung Kang, Han Seo Cho, et al. PCB - Compatible Optical Interconnection using 45°- Ended Connection Rods and Via-Holed Waveguides. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.22, 2004
    [21] El-Hang Lee*, S.G.Lee1, B.H.O, et al. Fabrication of a hybrid electrical-optical printed circuit board(EOPCB)by lamination of an optical printed circuit board (O-PCB) and an electrical printed circuit board (E-PCB). Proc. of SPIE Vol. 6126 61260L-1
    [22] Zhong Li, Shen Yingzhe. Reconfigurable Computing The R-Mesh: A Primer. University of Science and Technology of China
    [23]严蔚敏,吴伟民编著.数据机构. (第一版).北京:清华大学出版社, 1997
    [24] VSC3312 6.5Gbps 12×12 Asynchronous Crosspoint Switch Datasheet. VitesseSemiconductor Corporation. www.vitesse.com
    [25] C8051F310/1/2/3/4/5/6/7 Datasheet. 2006 by Silicon Laboratories. www.silabs.com
    [26] HBT12-M32/HBR12-M32并行光发射和接收模块,技术说明书.武汉海博光技术公司, 2006.
    [27]李小平.高速PCB的信号完整性、电源完整性和电磁兼容性研究: [硕士学位论文].成都:四川大学, 2005
    [28]江思敏编著. PCB和电磁兼容设计. (第一版).北京:机械工业出版社, 2006.
    [29]贾烨境.高速数字设计中的串扰研究: [硕士学位论文].武汉:武汉理工大学, 2007
    [30] Douglas Brools. Printed Circuit Design. 2001 CMP Media. http://www. ultracad.com
    [31]中国电子技术论坛. Protel DXP完整教学. http://bbs.elecfans.com
    [32]何延民.电源滤波电路快速识图技巧.家电检修技术,第3期, 2007
    [33]贾深.高速数字电路中无源器件建模和电源完整性分析: [硕士学位论文].西安:西安电子科技大学, 2006
    [34]袁子建,吴志敏,高举.高速PCB的过孔设计.电子工艺技术.第23卷第4期. 2002
    [35] I2C总线概要.广州周立功单片机发展有限公司.
    [36]求是科技编著. Visual Basic 6.0程序设计与开发技术大全,北京:人民邮电出版社, 2003. 5-301
    [37] ANRITSU CORPORATION. MP1632C Digital Data Analyzer Operation Manual. www.anritsu.com.cn
    [38] Tektronix, Inc. CSA7404B Communications Signal Analyzers User Manual. www.tektronix.com
    [39]张会生,陈树新编.现代通信系统原理.北京:高等教育出版社, 2004.
    [40]樊昌信,曹丽娜.通信原理. (第六版).北京:国防工业出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700