电子封装用AuSn20共晶焊料的制备及其相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AuSn20焊料具有良好的热导率、抗疲劳和抗蠕变性能,被广泛应用于高端电子产品的封装。但是常规熔铸法制备的AuSn20共晶焊料极脆,很难加工成为电子封装所需的箔带材。本文作者采用叠层冷轧+合金化退火法制备AuSn20箔带材焊料,利用SEM(EDS)、XRD和DSC等实验手段研究叠轧和退火过程中焊料的组织演变和性能,并制定最佳轧制和退火工艺。根据AuSn20焊料的实际应用情况,采用实验模拟的方法研究AuSn20焊料的焊接性能、焊点的可靠性、以及焊接界面失效的影响因素;结合理论计算和实验验证,探讨AuSn20/Ni(Cu)焊点界面金属间化合物(IMC)层的生长动力学,并在此基础上评估焊点的力学可靠性。本文的主要研究工作及结果如下:
     (1)采用叠层冷轧复合技术制备Au/Sn复合带,研究叠合层数和轧制工艺对复合带组织、成分和性能的影响。结果表明,当叠合层数为7层时,采用多道次、小道次压下量的轧制工艺可以制备出组织相对均匀、成分和熔点接近Au-Sn共晶合金的复合带。在叠层冷轧过程中,当道次压下量较大(最大道次压下率为47.6%)时,Au层和Sn层发生不均匀变形,Au/Sn复合带中Au含量偏高,熔点上升。当采用小道次压下量(最大道次压下率23.8%)时,Au/Sn复合带变形相对均匀。
     (2)探讨不同退火工艺下Au/Sn界面扩散机制,并在此基础上优化出实现Au/Sn复合带完全合金化的最佳退火工艺。在退火过程中,Au/Sn界面的AuSn、AuSn2和AuSn4复合IMC层随退火时间延长和退火温度升高而逐渐长大,Au、Sn单质逐渐减小,直至完全反应。理论计算和实验验证表明,AuSn20焊料完全合金化退火的最佳工艺为220℃退火12h。
     (3)采用回流焊技术制备AuSn20/Cu (Ni)焊点,研究其组织和剪切强度的随钎焊和退火工艺的演变规律,证实焊点的力学可靠性及失效断裂模式与IMC层的厚度和形貌有关。在310℃下钎焊时,AuSn20/Ni焊点界面处形成(Ni,Au)3Sn2IMC层。焊点的室温剪切强度随钎焊时间延长逐渐降低。在120、160和200℃下老化退火时,界面形成(Au,Ni)Sn和(Ni,Au)3Sn2或(Au,Ni)Sn、(Ni,Au)3Sn2和(Ni,Au)3Sn复合IMC层。随退火时间延长和退火温度升高IMC层的厚度逐渐长大,焊点的剪切强度逐渐减小。
     (4)采用扩散偶方法研究AuSn20/Ni焊接界面的IMC层的生长动力学。实验结果证实:Ni/AuSn20/Ni焊接界面的IMC层生长均符合扩散机制,其厚度l变化遵循公式:l=k(t/t0)n。在120、160和200℃下退火时,AuSn20/Ni界面复合IMC层的生长比例系数k分别为5.71×10-10m、3.24×10-9m和1.34×10-8m,时间指数n分别为0.514、0.471和0.459。在不同退火温度中焊接界面IMC层的生长均以体积扩散为主。
     (5) Cu/AuSn20/Ni焊点在钎焊和退火过程中的耦合界面反应使焊点的组织和性能发生变化。在310℃下钎焊时,在Cu/AuSn20界面形成胞状ζ-(Au,Cu)5Sn层,在AuSn20/Ni界面形成(Ni,Au,Cu)3Sn2四元IMC层。Cu/AuSn20界面的Cu原子在钎焊过程中穿过焊料到达AuSn20/Ni界面参与耦合反应。IMC层生长动力学数据表明Cu的耦合对Ni-Sn化合物的生长起抑制作用。焊点的剪切强度随钎焊时间的延长呈先增大后减小的趋势。在退火过程中Cu/AuSn20界面形成AuCu和Au(Cu,Sn)复合IMC层,以体积扩散机制随钎焊时间逐渐生长,而AuSn20/Ni界面的(Ni,Au,Cu)3Sn2层以反应扩散机制生长。剪切强度随老化退火时间的延长逐渐下降,剪切断裂随焊料/Cu界面的IMC层厚度的增大逐渐往Cu界面迁移,在Cu侧IMC层内发生脆性断裂。
AuSn20solder has been widely used in high-end electronic products packaging because of its advanced properies in good thermal conductivity, excellent resistance to fatigue and creep. However, the AuSn20alloy is brittle under the common prepared process, resulting in the difficulty to fabricating into Foil-strip products to meet the requirements for electronic packaging. The AuSn20solders were prepared by the laminated-rolling and alloyed-aging process in this study. The Micro structural evolution and the properties of the Au/Sn laminate layer during the rolling and aging process were investigated with the SEM (EDS), XRD, and DSC experimental technologies, and the best process parameters were researched. We investigated the soldering property, reliability of the AuSn20solder joints by the experiments designed according to the real usility enviroment of the AuSn20solder, and analysed the joint failure factors. The growth behavior of the intermetallic compound (IMC) layer in the interface and the mechanical property of the joints were discussed by combining the theoretical calculation with the experimental verification. The main works are summarized as follows:
     (1) The Au/Sn composite belts were prepared by laminate-rolling process, and the effects of the laminate numbers and rolling technology on the microstructure, composition and properties of the Au/Sn composite belts were investigated. The results show that the Au/Sn strip with7layers and uniform microstructure, eutectic compositeon, and melting point can be prepared by the rolling technology with multi-pass and trail time reduction. In the laminate-rolling process, the inhomogeneous deformation of Au and Sn layers occurs under a large reduction (the maximum is47.6%), the Au content in the composite belt is higher than that of the eutectic composition, and the melting point rises. Under trail time reduction (small than23.8%) condition, the Au/Sn composite deformation is relatively uniform.
     (2) The aging process of Au/Sn composite belts completely alloying by diffusion was optimized based on the diffusion mechanism of the Au/Sn interface. After aging at solid-state temperature, the thickness of AuSn, AuSn2, and AuSru conpound IMC layer in Au/Sn interface grow gradually, and the Au and Sn layer were consumed accordingly. Combining the theoretical calculation with the experimental results, the optimum technology for AuSn20solder completely alloying is aging at220℃for12h.
     (3) The AuSn20/Cu(Ni) solder joints were prepared during the reflow process.The mechanical reliability and the failure mode of the solder joints are related to the thickness and micro structure of the interfacial IMC layer according to the investigation of the microstructure and shear strength evolution of the joints after reflowing and aging. After soldering at310℃, the (Ni,Au)3Sn2layer is fabricated at AuSn20/Ni interface. With the extension of reflowing time and the decrease of cooling speed, the shear strength of solder joint at room temperature declines gradually. During the process of aging at120℃,160℃and200℃,(Au,Ni)Sn,(Ni,Au)3Sn2or (Au,Ni)Sn,(Ni,Au)3Sn2and (Ni,Au)3Sn compound IMC layers were formed at the interface.With the extension of aging time and increasing of aging temperature, the thickness of IMC layer gradually grows up, whereas the shear strength of solder joint decreases.
     (4) The growth behavior of IMC layers in AuSn20/Ni interface was investigated with diffusion couples. It shows that the thickness/grows following the formula:l=k(t/to)n. During aging at120℃,160℃, and200℃, the proportionality coefficient k for the composite IMC layer was5.71×10-10m,3.24×10-9m, and1.34×10-8m, repectively, and the exponent n was0.514、0.471and0.459, repectively. This phenomenon indicates that the volume diffusion was contributed to the growth of the IMC layer at all aging temperature.
     (5) Coupling interface reaction occurred at the Cu/AuSn20/Ni joints during the reflow and aging process, which changes the structure and property of the soldering joints. After reflow at310℃, the ζ-(Au,Cu)5Sn cell structure formed at the Cu/AuSn20interface and the (Ni,Au,Cu)3Sn2quaternary IMC layer formed at the AuSn20/Ni interface. Copper atomics at the Cu/AuSn20interface passed through the AuSn20solder and took part in coupling reaction at the AuSn20/Ni interface. The kinetics of the growth for (Ni,Au,Cu)3Sn2quaternary IMC layer indicated that the coupling reaction of copper restrained the growth of Ni-Sn compounds layer. The shear strength of the joints has a trend to increase and then decreased with prolonging of reflow time. During the aging process, the AuCu and Au(Cu,Sn) layers forme at the Cu/AuSn20interface, which is controlled by the volume diffusion. The (Ni,Au,Cu)3Sn2grows by reaction diffusion at the AuSn20/Ni interface. The shear strength gradually declines with prolonging of aging time. The brittle shear fracture position moves to the copper interface with the growth of the IMC layer at the solder/Cu interface.
引文
[1]Abtew M, Selvaduray G Lead-free solder in microelectrinics [J]. Materials Science and Engineering R,2000,27:95-141.
    [2]石素琴,董占贵,钱乙余.软焊接焊料的最新发展动态[J].电子工艺技术,2000,21(6):231-234.
    [3]Murata T, Noguchi H, Kishida S, et al. Lead-free solder alloys. 美国:US6241942[P], 2001-06-05.
    [4]田民波.电子封装技术[M].北京:清华大学出版社,2003:1-3.
    [5]孙忠贤.电子化学品[M].北京:化学土业出版社,2001:184-186.
    [6]史耀武,夏志东,陈志刚等.电子组装焊料研究的新进展[J].电子工艺技术.2001,22(4):139-143
    [7]Dongkai S著,刘建影,孙鹏译.Lead-Free solder interconnect reliability [M].北京:电子工业出版社,2008:1-23.
    [8]Bath J, Handwerker C, Bradley E. Lead-free solder alternatives [J]. Circuits Assembly, 2000,5:31-40.
    [9]Lee N C. A thorough look at lead-free solder alternatives [J]. Circuits Asembly,1998, 4:64-71.
    [10](美)霍华德,卡里-斯科特,黑尔策.现代焊接技术[M].化学工业出版社,2010:1-26.
    [1 l]Richards B P. Lead-free legislation [S]. UK:National Physical Laboratory,2002.
    [12]Tummala R R著,黄庆安,唐洁影译.微系统封装基础[M].南京:东南大学出版社,2004:175-189.
    [13]崔大田.中温共晶焊料薄带制备及其相关基础研究[D].长沙:中南大学,2008.
    [14]Shangguan D, Achari A. Evaluation of lead-Free eutectic Sn-Ag solder for automotive electronics packaging applications[C]. Institute of Electrical and Electronic Engineers: Proceeding of the International Electronics Manufacturing Technology Symposium, Michigan:Michigan State University,1994:25-37.
    [15]Shangguan D, Achari A. Lead-Free solder development for automotive electronics packaging applications [C], Proceeding of the Surface Mount International Conference, San Jose, CA,1995:423-428.
    [16]Jeong W Y, Seung B J. Investigation of interfacial reaction between Au-Sn solder and Kovar for hermetic sealing application [J]. Microelectronic Engineering,2007,84: 2634-2639.
    [17]Kim J S, Lee C C. Fluxless Sn-Ag bonding in vacuum using electroplated layers [J]. Materials Science and Engineering A,2007,448:345-350.
    [18]Chao B, Chae S H, Zhang X F, et al. Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in Pb-free solders using simulated annealing [J]. Acta Materialia,2007,55:2805-2810.
    [19]Chen C M, Chen S W. Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures [J].Acta Materialia,2002,50:2461-2469.
    [20]Tang W M, He A Q, Liu Q, et al. Fabrication and Microstructures of Sequentially Electroplated Sn-Rich Au-Sn Alloy Solders [J]. Journal of Electronic Materials,2008, 37:837-844.
    [21]Chung H M, Chen C M, Lin C P, et al. Microstructural evolution of the Au-20wt.%Sn solder on the Cu substrate during reflow[J]. Journal of Alloys and Compounds,2009, 485:219-224.
    [22]周涛,汤姆·鲍勃,马丁·奥德,等.金锡焊料及其在电子器件封装领域中的应用[J].电子与封装,2005,5(8):5-8.
    [23]刘泽光,陈登权,罗锡明,等.微电子封装用金锡合金焊料[J],贵金属,2005,26(1):62-65.
    [24]罗雁波,谢宏潮,李敏.金锡合金焊料研究现状[J].有色金属,2002,54(7):23-26.
    [25]Ciulik J, Notis M R. The Au-Sn phase diagram [J]. Journal of Alloys and Compounds. 1993,191(1):71-78.
    [26]Paul Goodman. Current and future uses of gold in electronics [J]. Gold Bull,2002, 35(1):21-28.
    [27]刘泽光,陈登权,罗锡明,等.金锡焊料性能及应用[J].电子与封装,2004,4(2):24-26.
    [28]Beranek M W, Rassaian M, Tang C H. Characterization of 63Sn37Pb and 80Au20Sn solder sealed optical fiber feedthroughs subjected to repetitive thermal cycling [J]. IEEE Transactions on Advanced Packaging,2001,24(4):576-585.
    [29]Kuang J H, Sheen M T, Chang C F H, et al. Effect of temperature cycling on joint strength of PbSn and AuSn solders in laser packages [J]. IEEE Transactions on Advanced Packaging,2001,24(4):563-568
    [30]金文哲,南宫正,李基安,等.金锡共晶合金焊料的制造方法.韩国,KR10-0593680[P],2006-4-27.
    [31]金文哲,南宫正,李基安,等.高韧性条带状金锡共晶合金焊料制造方法.韩国:KR10-0701193[P],2006-10-15.
    [32]Tokuriki H C L. Production of gold-tin type alloy brazing filler metal. Japan: JP58-100993A[P],1983-6-15.
    [33]Coad B C, Attleboro M. Low-melting point materials and method of their manufacture. United States:US3181935A[P],1965-5-4.
    [34]刘泽光,罗锡明,陈登权,等.金锡焊料制造方法.中国:CN1066411A[P],1992-4-9.
    [35]刘泽光,陈登权,许昆,等_KH法制备金锡合金的组织与结构[J].贵金属,2005,26(3):30-33.
    [36]Tanaka S. The method of manufacturing gold and tin foil by using the material we have. Japan:JP2005113245[P],2005-12-22.
    [37]Citowsky E L. Gold-tin eutectic bonding method structure [P], United States:U S 4875617[P],1989-10-24
    [38]Laurila T, Vuorinen V, Kivilahti J K. Interfacial reactions between lead-free solders and common base materials [J], Materials Science and Engineering R,2005,49:1-60.
    [39]Chuang R W, Kim D W, Park J, et al. A Fluxless process of producing tin-rich gold-tin joints in air [J].IEEE Transactions on Components and Packaging Technologies.2004, 27(1):177-181.
    [40]Liu Y Y, Premachandran C S, Yoon S W, et al. Characterization of AuSn solder in laser die attachment for photonic packaging applications [J]. Electronics Packaging Technology Conference,2007:370-373.
    [41]Matijasevic G S, Lee C C, Wang C Y. Au-Sn alloy phase diagram and properties related to its use as a bonding medium [J]. Thin Solid Films.1993,223 (2):276-287.
    [42]Thang T S, Decai S, Koay H K, et al. Characterization of Au-Sn eutectic die attach process for optoelectronics device [J]. Electronics Materials and Packaging. 2005:118-124.
    [43]Ivey D G. Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications [J]. Micron,1998,29(4):281-287.
    [44]Lee C Y, Lin K L. Interaction kinetics and compound formation between electroless Ni-P and solder [J]. Thin Solid Films,1994,249(2):201-206.
    [45]Zakel E, Teutsch T. A roadmap to low cost bumping for DCA, COF, CSP and BGA[C]. Twenty-Second IEEE/CPMT International:Electronics Manufacturing Technology (IEMT) Symposium, Berlin, Germany,1998:55-62.
    [46]Liu P L, Xu Z, Shang J K. Thermal stability of electroless-nickel/solder interface part A [J]. Interfacial Chemistry and Microstructure.2000,31(11):2857-2866.
    [47]Jang J W, Kim P G, Tu K N, et al. Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology [J]. Journal of Applied Physics,1999,85(12):8456-8463.
    [48]Yoon J W, Noh B I, Jung S B. Interfacial reaction between Au-Sn solder and Au/Ni-metallized Kovar [J]. Journal of Materials Science:Materials Electronic,2011, 22:84-90.
    [49]Yoon J W, Chun H S, Jung S B. Correlation between interfacial reactions and shear strengths of Sn-Ag-(Cu and Bi-In)/ENIG plated Cu solder joints [J]. Materials Science and Engineering A,2008,483-484:731-734.
    [50]Yoon J W, Moon W C, Jung S B. Interfacial reaction of ENIG/Sn-Ag-Cu/ENIG sandwich solder joint during isothermal aging [J]. Microelectronic Engineering,2006, 83:2329-2334.
    [5 l]Lee C H, Wong Y M, Doherty C, et al. Study of Ni as a barrier metal in AuSn soldering application for laser chip/submount assembly [J]. Journal of Applied Physics,1992, 72(8):3808-3815.
    [52]Song H G, Ahn J P, Morris J W. The microstructure of eutectic Au-Sn solder bumps on Cu/electroless Ni/Au [J]. Journal of Electronic Materials,2001,30(9):1083-1087.
    [53]Yoon J W, Chun H S, Jung S B. Liquid-state and solid-state interfacial reactions of fluxless-bonded Au-20Sn/ENIG solder joint [J]. Journal of Alloys and Compounds, 2009,469:108-115.
    [54]陈柳,SMT焊点的热疲劳可靠性研究[D].上海;中国科学院上海微系统与信息技术研究所,1999.
    [55]Lee H T, Lin H S, Lee C S, et al., Reliability of Sn-Ag-Sb lead-free solder joints [J]. Materials Science and Engineering:A,2005,407(1-2):36-44.
    [56]Shang J K, Zeng Q L, Zhang L, et al., Mechanical fatigue of Sn-rich Pb-free solder alloys [J]. Journal of Materials Science:Materials in Electronics,2007,18(1-3): 211-227.
    [57]Weinbel R C, Tien J K, Pollak R A, et al.Creep-fatigue interaction in eutectic lead-tin solder alloy [J]. Journal of Materials Science,1987,22(11):3901-3906.
    [58]Chen H T, Wang C Q, Li M Y. Numerical and experimental analysis of the Sn3.5Ag0.75Cu solder joint reliability under thermal cycling [J]. Microelectronics Reliability,2006,46(8):1348-1356.
    [59]Engelmaier W. Solder attachment reliability accelerated testing, and result evaluation. solder joint reliability [M]. Theory and Applications. NewYork:Van Nostrand Reinhold, 1991:545-587.
    [60]Zeng K, Tu K N, Six cases of reliability study of Pb-free solder joint in electronic packaging technology [J], Materials Science and Engineering R,2002,38 (2):55-105.
    [61]Gan H, Choi W J, Xu G, et al. Electromigration in solder joints and solder lines [J]. Journal of Electronic Materials,2002,54(6):34-37.
    [62]Abtew M, Selvaduray G, Lead-free solders in microelectronics [J]. Materials Scince and Engineering R,2000,27(5):95-141.
    [63]王红芳,SMT焊点振动疲劳可靠性理论与实验研究[D].上海;上海交通大学,2001.
    [64]Xia Y H, Xie X M. Endurance of lead-free assembly under board level drop test and thermal cycling [J]. Journal of Alloys and Compounds,2008,457:198-203.
    [65]Ikuo S J, Tomohiro Y, Takehiko T, et al. Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity [J]. Materials Science and Engineering A,2004, 366:50-55.
    [66]Ladani L J, Dasgupta A. The successive initiation modeling strategy for modeling damage progression:Application to voided solder interconnects [J]. Como, Italy:The institute of Electrical and Electronics Engineers, Inc,2006:570-575.
    [67]Wang D J, Panto R L. Experimental study of void formation in eutectic and lead-free solder bumps of flip-chip assemblies [J]. Journal of Electronic Packaging,2006, 128:202-207.
    [68]Yunus M, Primavera A, et al. Effect of voids on the reliability of BGA/CSP solder joints [J]. Microelectronics Reliability,2003,43(12):2077-2086.
    [69]Harrion M R, Vincent J H, Steen H A H. Lead free reflow soldering for electronic assemblies [J]. Soldering and Surface Mount Technology,2001,13(3):21-38.
    [70]Yang L Y, Bernstein J B, Koschmieder T. Assessment of acceleration modelsused for BGA solder joint reliability studies [J]. Microelectronics Reliability,2009, 49(12):1546-1554.
    [71]Khatibi G, Wroczewski W, Weiss B, et al. A novel accelerated test technique for assessment of mechanical reliability of solder interconnects [J]. Microelectronics Reliability,2009,49(9-11):1283-1287.
    [72]Tummala R R. Fundamentals of microsystems packaging [M]. New York:McGraw-Hill,2001:735-740.
    [73]Lau J H, Dauksher W, Vianco P. Acceleration models, constitutive equations, and reliability of lead-free solders and joints [C]. Proceedings of Electronic Components and Technology Conference.New Orleans:IEEE,2003:229-236.
    [74]Deplanque S, Nuchter W, Spraul M, et al. Relevance of primary creep in thermo-mechanical cycling for life-time prediction in Sn-based solders [C].6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems. Berlin:IEEE,2005:71-78.
    [75]Jadhav S G, Bieler T R, Subramanian K N, et al., Stress relaxation behavior of composite and eutectic Sn-Ag solder joints [J]. Journal of Electronic Materials,2001, 30(9):1197-1205.
    [76]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社,2006.18-40.
    [77]Wu M L. Vibration-induced fatigue life estimation of ball grid array packaging [J]. Journal of Micromechanics and Microengineering,2009,19(6):1-12.
    [78]Kanchanomai C, Miyashita Y, Mutoh Y. Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb [J]. International Journal of Fatigue,2002,24(6): 671-683.
    [79]Tummala R R, Rymaszewski E J, Klopfenstein A G. Microelectronics packaging handbook:Part III [M]. New York:Chapman & Hall,1997:221-223.
    [80]张国尚.80Au/20Sn钎料合金力学性能研究[D],天津: 天津大学,2010.
    [81]Chromik R R, Wang D N, Shugar A, et al.. Mechanical properties of intermetallic compounds in the Au-Sn system [J]. Journal of Materials Research,2005, 20(8):2161-2172.
    [82]Kuang J H, Sheen M T, Chang C F H, et al. Effect of temperature cycling on joint strength of PbSn and AuSn solders in laser packages [J]. IEEE Transactions onAdvanced Packaging,2001,24(2):563-568=
    [83]Dudek R, Wittler O, Faust W, et al. Design for reliability with AuSn interconnects [J]. Proceedings of the 8th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems. London:IEEE.2007:378-384.
    [84]金丝伯格V B著,马东清,陈荣清译.板带轧制工艺学[M].北京:冶金工业出版社,1998:13-17,41-54.
    [85]任学平,王先进,李贺军.材料的热膨胀性质与屈服应力[J].科学通报,1991,10:788-790.
    [86]陈松,刘泽光,陈登权,等.Au/Sn界面互扩散特征[J].稀有金属,2005,4(29):413-417.
    [87]贾连成.冷轧薄板的变形抗力[J].武钢技术,1988,2:28-31.
    [88]Simi c V, Marinkovi c z. Thin film interdiffusion of Au and Sn at room temperature [J]. Journal of Less-Common Metals,1977,51:177-179.
    [89]Buene L, Falkenberg Arell H, Tafty J. A study of evaporated gold-tin films using transmission electron microscopy [J]. Thin Solid Films,1980,65(2):247-257.
    [90]Buene L, Falkenberg Arell H, Gjynnes J, et al. A study of evaporated gold-tin films using transmission electron microscopy:Ⅱ [J]. Thin Solid Films,1980,67(1):95-102.
    [91]Nakahara S, McCoy R J. Interfacial void structure of Au/Sn/Al metallization on Ga-Al-As lightemitting diodes [J]. Thin Solid Films,1980,72(3):457-461.
    [92]Gregersen D, Buene L, Finstad T, et al. A diffusion marker in Au/Sn thin films [J]. Thin Solid Films,1981,78(1):95-102.
    [93]Nakahara S, McCoy R J, Buene L, et al. Room temperature interdiffusion studies of Au/Sn thin film couples [J]. Thin Solid Films,1981,84(2):185-196.
    [94]Okamoto H, Massalski T B. The Au-Sn (gold-tin) system [J]. Bulletin of Alloy Phase Diagrams,1984,5(5):492.
    [95]Hultgren R, Desai P D, Hawkins D T, et al. Selected values of the thermodynamic properties of binary alloys [M]. USA:American Society for Metals,1973.
    [96]Hugsted B, Buene L, Finstad T, et al. Interdiffusion and phase formation in Au/Sn thin film couples with special emphasis on substrate temperature during condensation [J]. Thin Solid Films,1982,98:81-94.
    [97]Lee T K, Zhang S, Wong C C, et al. Davin Hadikusuma. Interfacial microstructures and kinetics of Au/SnAgCu [J]. Thin Solid Films,2006,504:441-445.
    [98]Yamada T, Miura K, Kajihara M, et al. Kinetics of reactive diffusion between Au and Sn during annealing at solid-state temperatures [J]. Materials Science and Engineering A,2005,390:118-126.
    [99]Laurila T, Vuorinen V, Kivilahti J K. Interfacial reactions between lead-free solders and common base materials [J]. Materials Science and Engineering R,2005,49:1-60.
    [100]张鑫,袁浩,熊毅,等.钎焊温度与时间对急冷型Sn2.5Ag0.7Cu焊料合金钎焊接头性能及界面IMC生长行为的影响[J].试验与研究,2010,11(39):9-11.
    [101]Lee K Y, Li M, Tu K N. Growth and ripening of (Au,Ni)Sn4 phase in Pb-free and Pb-containing solders on Ni/Au metallization [J]. Journal of Materials Research, 2003,18:2562-2570.
    [102]Yoon J W, Chun H S, Koo J M, et al. Microstructural evolution of Sn-rich Au-Sn/Ni flip-chip solder joints under high temperature storage testing conditions [J]. Scripta Materialia,2007,56:661-664.
    [103]Yoon J W, Kim S W, Jung S B. Effects of reflow and cooling conditions on interfacial reaction and IMC morphology of Sn-Cu/Ni solder joint [J]. Journal of Alloys and Compounds 2006,415:56-61.
    [104]Yoon J W, Jung S B. Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn-Zn solder [J]. Journal of Material Research,2006, 21:1590-1599.
    [105]Tang W M, He A Q, Liu Q, et al. Solid state interfacial reactions in electrodeposited Ni/Sn couples [J], International Journal of Minerals:Metallurgy and Materials,2010, 17:459-463.
    [106]Karlsen O B, Kjekshus A, Rost E. Ternary phases in the system Au-Cu-Sn[J]. Acta Chemica Scandinavica,1990,44(2):197-198.
    [107]Anhock S, Oppermann H, Kallmayer C, et al. Investigations of Au/Sn alloys on different end-metallizations for high temperature applications [J]. Proceedings of the 22nd IEEE/CPMT International Electronics Manufacturing Technology Symposium, New York:IEEE,1998:156-165.
    [108]Vassilev G P, Lilova K I, Gachon J C. Enthalpies of formation of Ni-Sn compounds [J]. Thermochimica Acta,2006,447:106-108.
    [109]Debski A, Gasior W, Moser Z, et al. Enthalpy of formation of intermetallic phases from the Au-Sn system [J]. Journal of Alloys and Compounds,2010,491:173-177.
    [110]Debski A, Gasior W, Moser Z, et al. Enthalpy of formation of Au-Sn intermetallic phases:Part II [J]. Journal of Alloys and Compounds,2011,509:6131-6134.
    [111]Tsai J Y, Chang C W, Shieh Y C, et al. Controlling the microstructures from the gold-tin reaction [J]. Journal of Electronic Materials,2005,34(2):182-187.
    [112]Yoon J W, Chun, H S, Jung S B. Liquid-state and solid-state interfacial reactions of fluxless-bonded Au-20Sn/ENIG solder joint [J], Journal of Alloys and Compounds, 2009,469:108-115.
    [113]Shin C K, Baik Y J, Huh J Y Effects of microstructual evolution and intermetallic layer growth on shear strength of ball-grid-array Sn-Cu solder joints [J]. Journal of Electronic Materials,2001,30(10):1323-1330.
    [114]Yoon J W, Chun H S, Jung S B. Liquid-state and solid-state interfacial reactions of fluxless-bonded Au-20Sn/ENIG solder joint [J]. Journal of Alloys and Compounds, 2009,469:108-115.
    [115]Lee K Y, Li M, Tu K N. Growth and ripening of (Au,Ni)Sn4 phase in Pb-free and Pb-containing solders on Ni/Au metallization[J], Journal of Materials Research,2003, 18:2562-2570.
    [116]Kim S S, Kim J H, Booh S W, et al. Microstructure evolution of joint interface between eutectic 80Au-20Sn solder and UBM[J]. Materials Transactions,2005, 46:240-2405.
    [117]Neumann A, Kjekshus A, Rost E. The ternary system Au-Ni-Sn [J]. Journal of Solid State Chemistry,1996,123:203-207.
    [118]Yato Y, Kajihara M. Kinetics of reactive diffusion in the (Au-Ni)/Sn system at solid-state temperature [J]. Materials Science and Engineering A,2006,428: 276-283.
    [119]Li D, Liu C Q, Conway P P. Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn-Ag-Cu flip-chip solder interconnect [J]. Materials Science and Engineering A,2005,391:95-103.
    [120]Hodulova E, Marian P, Lechovivc E, et al. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X(X=Bi,In) solders with Cu substrate [J]. Journal of Alloys and Compounds,2011,509:7052-7059.
    [121]Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging [J]. Journal of Alloys and Compounds,2012,510:38-45.
    [122]Yen Y W, Chiang Y C, Jao C C, et al. Interfacial reactions and mechanical properties between Sn-4.0Ag-0.5Cu and Sn-4.0Ag-0.5Cu-0.05Ni-0.01Ge lead-free solders with the Au/Ni/Cu substrate [J]. Journal of Alloys and Compounds,2011,509:4595-4602.
    [123]周俊.微电子封装中无铅焊料的损伤模型和失效机理研究[D].杭州:浙江工业大学,2007:8-10.
    [124]Chen H T, Li J, Li M Y. Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress [J]. Journal of Alloys and Compounds,2012,540:32-35.
    [125]Wong E H, Seah S K W, Shim V P W. A review of board level solders joints for mobile applications. Microelectronics Reliability,2008,48:1747-1758.
    [126]范建文,刘清友,侯豁然.超细晶铁素体钢的强度[J].金属热处理,2003,28(7):5-10.
    [127]Yoon J W, Chun H S, Noh B I, et al. Mechanical reliability of Sn-rich Au-Sn/Ni flip chip solder joints fabricated by sequential electroplating method [J]. Microelectronics Reliability,2008,48:1857-1863.
    [128]Xia Y H, Xie X M. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling [J]. Journal of Alloys and Compounds,2008,454: 174-179.
    [129]Li D, Liu C Q, Conway P P. Characteristics of intermetallics and micromechanical properties during thermal ageing of Sn-Ag-Cu flip-chip solder interconnects [J]. Materials Science and Engineering A,2005,391:95-103.
    [130]Tang W M, He A Q, Liu Q, et al. Solid state interfacial reactions in electrodeposited Ni/Sn couples. International Journal of Minerals [J]. Metallurgy and Materials,2010, 17(4):459-463.
    [131]Mita M, Miura K, Takenaka T, et al. Effect of Ni on reactive diffusion between Au and Sn at solid-state temperatures [J]. Materials Science and Engineering B,2006, 126:37-43.
    [132]Onishi M, Fujibuchi H. Reaction-diffusion in the Cu-Sn system [J]. Materials Transactions,1975,16:539-547.
    [133]夏阳华.无铅电子封装中的界面反应及焊点可靠性[D],沈阳:中国科学院,2006.
    [134]IPMA, The thermodynamic databank for interconnection and packaging materials [M]. Helsinki, Finland:Helsinki University of Technology,2000.
    [135]Gupta K P. An expanded Cu-Ni-Sn system (Copper-Nickel-Tin) [J]. Journal of Phase Equilibria,2000,21(5):479-484.
    [136]Song H G, Morris J W, McCormack M T. The microstructure of ultrafine eutectic Au-Sn solder joint on Cu [J]. Journal of Electronic Materials,2000,29(8): 1038-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700