非线性光子学晶格中的光传播性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子学晶格是一种折射率呈周期性分布的微光学体系,光波在其中传输时,会出现许多在连续、均匀的体介质中所没有的现象。通过对这些现象的研究,可以为更好地实现控制光、操纵光提供新的可能性,在全光信号处理、光通讯系统、光互联网络等方面具有潜在的应用价值。
     近些年来,人们将非线性作用和光子学晶格结合在一起,发展并形成了非线性光子学晶格体系,进一步增强了人们调控光、操控光的能力,将改变以往人们主要通过设计光子学晶格的几何结构来控制光束传输行为的历史。本论文就是基于以上的背景,研究探索了光波在不同几何结构的非线性光子学晶格中的传输行为,发现了一些新的光传输和光调控规律,并给出了相应的物理解释。主要内容如下
     我们在第一章中首先简单介绍了一些和本论文工作相关的光学非线性效应的基本知识和概念,着重讲解了光折变非线性效应的产生机制;然后介绍了非线性光子学晶格的结构特性以及其对光波调控的基本原理和思路;最后利用以上原理分析了一些非线性光子学晶格中的基本现象,如分立衍射和分立孤子等。
     在第二章中,我们从理论和实验两个方面研究了含有表面缺陷的一维弯曲波导阵列光子学晶格中的表面波。研究结果表明,在表面负缺陷和晶格的弯曲作用下,只有当弯曲振幅最接近动态局域点A0时,晶格体系才同时支持三种线性模式的存在。随着非线性作用的增强,不同线性模式之间会发生相互作用,光束也将被整形,同时其输出光束的位置将发生位移。当非线性作用非常强时,分立表面孤子将形成。
     在第三章中,我们从理论和实验两方面研究了一维直波导阵列光子学晶格和一维弯曲波导阵列光子学晶格中的超连续光的线性和非线性频谱规律。结果表明,在线性情况下,超连续光在直波导阵列和弯曲波导阵列输出面上的光强频谱分布是关于入射波导中心对称的;然而,随着非线性作用的增强,超连续光在弯曲波导阵列中的光强频谱分布将发生对称性破裂现象。当非线性作用足够强时,不论是在一维直波导阵列还是在一维弯曲波导阵列中,不同频率成分的光波都将发生集体自陷现象,形成复色光的带隙孤子
     我们在第四章中通过光感应傅里叶变换法制作了二维四方脊背型波导阵列光子学晶格,并实验观察了探测光在这种光子学晶格中的线性分立衍射和非线性时域动态过程及其相对应的频谱分布。研究结果表明,非格点入射条件下的线性分立衍射程度大于格点入射的情况;非格点入射条件下形成带隙孤子所需要的非线性强度低于格点入射的情况;在k空间中,非格点入射条件下带隙孤子的能量主要分布在第一布里渊区的带隙边缘;而格点入射条件下带隙孤子的能量主要分布在第一布里渊区的四个高对称点M上
     在第五章中,我们首先通过光感应振幅掩膜法制作了大面积弱调制二维四方光子学晶格芯片,然后用实验方法表征了该晶格芯片的横向和纵向离散性。最后,我们研究了光波在该晶格芯片中的线性和非线性传输规律,并进行了相应的数值模拟。结果表明:二维大面积弱调制光子学晶格芯片具有布拉格衍射、分立衍射以及阵列导波等线性光学性质。在非线性作用足够强时,该光子学晶格芯片支持带隙孤子的传输。
In recent years, the combination of optical nonlinearity and micro-periodical struc-tures gives rise to the system of nonlinear photonic lattices. Quite a number of novel physical phenomena of the light propagation in the nonlinear photonic lattices are found. All of these imply not only the possibilities for better light controlling and ma-nipulation but also the prosperous applications in all-optical signal and data processing, optical communication and optical networks.
     By designing and fabricating the structures of nonlinear photonic lattices, one can get the expected band structure to control the light propagating within the lattices. On the other hand, the introduction of the nonlinearity provides one more degree of free-dom. Based on such ideas, the thesis focuses on the exploration of the dynamics of light propagation in nonlinear photonic lattices. Through detailed experimental studies and numerical simulations, we show a number of new physical phenomena and their underlying physics of light propagation in such novel nonlinear photonic lattices. The main contents are as follows:
     In Chapter 1, we give a brief introduction to the fundamental knowledge about the optical nonlinear effects related to our thesis, especially the photorefractive effect. We show the structure property of the nonlinear photonic lattices and the fundamental principles of light control, and then analyze some of the fundamental phenomena in photonic lattices, such as discrete diffraction and discrete solitons.
     In Chapter 2, we study both theoretically and experimentally the linear surface waves and their nonlinear switching in a curved waveguide array with a negative re-fractive defect at the edge of the lattices. The results show that the modulated pho-tonic lattices can support three linear surface modes simultaneously only if the bending amplitude is very close to the dynamic localization point A0. As the nonlinearity is increased, interplay of different surface modes enables beam reshaping and switching between different output waveguides. And when the strength of nonlinearity is high enough, light can be trapped at the first waveguide and forms a discrete surface soliton.
     In Chapter 3, we study both theoretically and experimentally the linear spectrum and their corresponding nonlinear transformation processes in one dimensional straight and curved waveguide arrays. The results show that the output diffraction patterns in both of the straight and curved waveguide arrays are symmetric with respect to the input position in the linear cases. However, the output intensity spectrum will be symmetry-breaking as the nonlinearity is increased. And almost all the spectral components will be trapped back to the input waveguide when the nonlinearity is high enough.
     In Chapter 4, we fabricate a two-dimensional square backbone lattices by the photo-induced Fourier transformation method based on photorefractive nonlinearity. We observe the linear and nonlinear light propagation dynamics and their correspond-ing power spectrum in the two-dimensional lattices under four different input condi-tions. The result shows that the nonlinearity strength to form four types of gap solitons is different and dependent on the input conditions. The light energy of the gap soli-ton in the power spectrum is localized at the four high-symmetric M points of the first Brillouin zone in the case of on-site excitation, whereas it distributes on the edge of the Bragg band gap in the off-site excitation case.
     In Chapter 5, we first fabricate a weakly modulated large-area two-dimensional square photonic lattice slab by means of photo-induction method using amplitude mask in LiNbO3:Fe crystal. And then we prove experimentally the discreteness of the lattices slab in transverse and longitudinal dimensions. We study experimentally the linear and nonlinear light propagation dynamics and simulate the process numerically. The results show that the photonic lattice slab is of Bragg-diffraction, discrete diffraction and effective waveguide array in the linear case, while it also support the formation and propagation of discrete soliton in the nonlinear case.
引文
[1]A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau. Optically-induced Refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett.,1966,9:72-74
    [2]N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii. Holographic storage in electrooptic crystals.Ⅰ. steady state. Ferroelectrics,1979, 22:949-960
    [3]G. C. Valley, M. Segev. B. Crosignani, A. Yariv. M. Fejer, and M. Bashaw. Bright and dark photovoltaic spatial solitons. Phys. Rev. A,1994,50:R4457
    [4]M. Segev, M. C. Bashaw, G. C. Valley, M. M. Fejer, and M. Taya. Photovoltaic spatial solitons. J. Opt. Soc. Am. B.1997,14:1772
    [5]C. Anastassiou. M. Shih, M. Mitchell,Z. Chen, and M. Segev. Optically-induced photovoltaic self-defocusing to self-focusing transition. Opt. Lett.,1998.23:924
    [6]沈元壤著,顾世杰译,非线性光学原理(第一版).北京:科学出版社,1987
    [7]Yu. S. Kivshar and G. P. Agrawal. Optical Solitons:From Fibers to Photonic Crystals. (Academic Press, San Diego,2003)
    [8]B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics (Wiley, New York, 1991)
    [9]G. P. Agrawal. Nonlinear Fiber Optics,3rd ed (Academic Press, New York,2001)
    [10]A. S. Davydov. Solitons in Molecular Systems,2nd ed (Reidel, Dordrecht,1991)
    [11]A. J. Sievers and S. Takeno. Intrinsic Localized Modes in Anharmonic Crystals. Phys. Rev. Lett.,1988,61:970-973
    [12]D. N. Christodoulides, and R. I. Joseph. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett.,1988,13:794-796
    [13]F. Lederer and Y. Silberberg. Discrete solitons. Optics & Photonics News,2002, 13(2):48
    [14]F. Lederera, G. I. Stegemanb, D. N. Christodoulidesb, G. Assantoc, M. Segev, and Y. Silberberge. Discrete solitons in optics, Physics Reports.2009,1-126
    [15]Y. S. Kivshar. Self-localization in arrays of defocusing wave-guides. Opt. Lett. 1993,18:1147-1149
    [16]J. W. Fleischer, N. K. Efremidis, T. Carmon, D. N. Christodoulides, and Mordechai Segev. Solitons in optically induced nonlinear photonic lattices. Optics & Photonics News,2002,13(2):49
    [17]N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and Mordechai Segev. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E,2002,66:046602
    [18]J. Xavier. P.Rose, B. Terhalle, J. Joseph, and C. Denz. Three-dimensional opti-cally induceefractive nonlinear photonic latticesd reconfigurable photorefractive nonlinear photonic lattices. Opt. Lett.,2009.17:2625-2627
    [19]P. Zhang. R. Egger, and Z. Chen. Optical induction of three-dimensional photonic lattices and enhancement of discrete diffraction. Opt. Express.2009. 17:13151-1256
    [20]J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett.,2003,90:023902
    [21]A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and Mirek A. Karpierz. Discrete propagation and spatial solitons in nematic liquid crystals. Opt. Lett.,2004,29: 1530
    [22]赵凯华,钟锡华.光学上册.北京::北京大学出版社,2000,177
    [23]O. Matoba, K. Kuroda, and K. Itoh. Fabrication of a two-dimensional array of photorefractive waveguides in LiNbO3:Fe using non-diffracting checkered pattern. Opt. Commun.,1998,145:150-154
    [24]H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett.,2004,92:123902
    [25]A. L. Jones. Coupling of Optical Fibers and Scattering in Fibers. J. Opt. Soc. Am.1965.55:261-269
    [26]S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, and R.G. Hunsperger. Channel optical waveguide directional couplers. Appl. Phys. Lett.,1973,22:46
    [27]H Haus and L. Molter-Orr. Coupled multiple waveguide systems. IEEE J. Quant. Electron. QE,1983,19:840
    [28]H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. Diffraction Management. Phys. Rev. Lett.,2000,85:1863-1866
    [29]T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, and F. Lederer. Anomalous Refraction and Diffraction in Discrete Optical Systems. Phys. Rev. Lett.,2002, 88:093901
    [30]N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College, Philadelphia, PA,1976
    [31]P. St. J. Russell, T. A. Birks, and F. D. Llyold-Lucas. Photonic Bloch waves and photonic band gaps in Confined Electron and Photon:New Physics and Applications,E. Burstein and C. Weisbuch,eds. Plenum,1995, pp.585-633
    [32]D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison. Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons. Phys. Rev. Lett.,2003,90:053902
    [33]P. Yeh, A. Yariv, and C. S. Hong. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am.1977,67:423-438
    [34]H. Trompeter, W. Krolikowski, D. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer. Bloch oscillations and Zener tunneling in two-dimensional photonic lattices. Phys.Rev.Lett.,2006,96: 53903-53906
    [35]C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Yu. S. Kivshar. Observation of surface gap solitons in semi-infinite waveguide arrays. Phys.Rev.Lett.,2006,97:083901-083904
    [36]E. Smirnov, M. Stepic, C. E. Ruter, D. Kip, and V. Shandarov. Observation of staggered surface solitary waves in one-dimensional waveguide arrays. Opt.Lett., 2006,31:2338-2340
    [37]K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip. Optical transitions and Rabi oscillations in waveguide arrays. Opt. Express,2008,16: 10309-10314
    [38]T. Schwartz, G. Bartal, S. Fishman, and M. Segev. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature,2007,446: 52-55
    [39]G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev. Brillouin Zone spectroscopy of nonlinear photonic lattices, Phys. Rev. Lett., 2005,94:163902
    [40]H. Perets, Y. Lahini, F. Pozzi, Sore M., R. Morandotti, and Y. Silberberg. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett.,2008,100:170506-171100
    [41]H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison. Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett.,1998,81: 3383-3386
    [42]J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides. Observa-tion of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices, Nature,2003,422:147-150
    [43]H. Martin, E. Eugenieva, Z. Chen, and D. N. Christodoulides. Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices. Phys. Rev. Lett.,2004,92:123902-1-123902-4
    [44]C. Lou, X. Wang, J. Xu, Z. Chen, and J. Yang. Nonlinear Spectrum Reshaping and Gap-Soliton-Train Trapping in Optically Induced Photonic Structures, Phys. Rev. Lett.,2007,98:213903-213906
    [45]X. Qi, S. Liu, G. Zhang, R. Guo, Z. Liu, L. hou, and Y. Li. Gap solitons in optically induced two-dimensional square photonic lattices in LiNbO3:Fe crystals, Appl. Phys. Lett.,2007,91:131111-1-131111-3
    [46]J. Feng. Alternatice scheme for studying gap solitons in infinite periodic Kerr media, Opt. Lett.,1993,18,1302
    [47]D. N. Christodoulides, F. Lederer, and Y. Silberberg. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature,2003,424:817-823
    [48]I. E. Tamm. A possible kind of electron binding on crystal surfaces. Z. Phys., 1932,76:849
    [49]W. Shockley. On the Surface States Associated with a Periodic Potential. Phys. Rev.,1939,56:317-323
    [50]H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agullo-Rueda, L. L. Chang, and L. Esaki. Observation of "Tamm states" in superlattices. Phys. Rev. Lett., 1990,64:2555
    [51]W. J. Tomlinson. surface wave at a nonlinear interface. Opt. Lett.,1980,5: 323-325
    [52]K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache. Discrete surface solitons. Opt. Lett.,2005,30:2466
    [53]S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, and M. Sorel. Observation of Discrete Surface Solitons. Phys. Rev. Lett.,2006,96:063901
    [54]Y. V. Kartashov, V. A. Vysloukh, and L. Torner. Surface Gap Solitons. Phys.Rev. Lett.,2006,96:073901
    [55]C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Yu. S. Kivshar. Observation of Surface Gap Solitons in Semi-Infinite Waveguide Arrays. Phys. Rev. Lett.,2006,97:083901
    [56]A. A. Maradudin. Nonlinear surface electromagnetic waves, in:Optical and Acoustic Waves in Solids-Modern Topics, World Scientific, Singapore,1983, pp. 72-142
    [57]N. N.Akhmediev, V. I. Korneev, and Y. V. Kuzmenko. Excitation of nonlinear surface waves by Gaussian light beams. Sov. Phys. JETP.,1985,61:62
    [58]U. Langbein, F. Lederer, and H. E. Ponath. A new type of nonlinear slab-guided waves. Opt. Commun.,1983,46:167
    [59]C. T. Seaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and S. D. Smith. Calculations of nonlinear TE waves guides by thin dielectric films bounded by nonlinear media. IEEE J. Quant. Electron.,1985,21:774
    [60]A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache. Third-order nonlinear electromagnetic TE and TM guided waves, in:H.E. Ponath, G.I. Stegeman (Eds.), Nonlinear Surface Electromagnetic Phenomena, North-Holland, Amsterdam,1991, pp.73-287
    [61]P. Yeh, A. Yariv, and C. Hong. Electromagnetic propagation in periodic stratified media. I. General theory. JOSA,1977,67:423-438
    [62]P. Yeh, A. Yariv, and A. Y. Cho. Optical surface waves in periodic layered media. Appl. Phys. Lett.,1978,32:104
    [63]N. Malkova, I. Hromada, X. S. Wang, G. Bryant, and Z. Chen. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett.,2009, 34:1633
    [64]G. A. Siviloglou, K. G. Makris, R. Iwanow, R. Schiek, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler. Observation of discrete quadratic surface solitons. Opt. Express,2006,14:5508
    [65]E. Smirnov, M. Stepic, C. E. Ruter, D. Kip, and V. Shandarov. Observation of staggered surface solitary waves in one-dimensional waveguide arrays. Opt. Lett.,2006,31:2338
    [66]W. H. Chen, Y. J. He and H. Z. Wang. Surface defect gap solitons. Opt. Express, 2006,14:11271
    [67]S. Longhi. Self-imaging and modulational instability in an array of periodically curved waveguides. Opt. Lett.,2005,30:2137
    [68]S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti. Observation of Dynamic Localization in Periodically Curved Waveguide Arrays. Phys. Rev. Lett.,2006,96:243901
    [69]I. L. Garanovich, A. A. Sukhorukov, and Yu. S. Kivshar. Defect-free surface states in modulated photonic lattices. Phys. Rev. Lett.,2008,100:203904
    [70]A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, and Yu. S. Kivshar. Observation of Defect-Free Surface Modes in Optical Waveguide Arrays. Phys. Rev. Lett.,2008, 101:203902
    [71]M. Matuszewski, C. R. Rosberg, D. N. Neshev, A. A. Sukhorukov, A. Mitchell, M. Trippenbach, M. W. Austin, W. Krolikowski, and Yu. S. Kivshar. Crossover from self-defocusing to discrete trapping in nonlinear waveguide arrays. Opt. Express.,2006,14:254
    [72]I. L. Garanovich, A. A. Sukhorukov, and Y. S. Kivshar. Nonlinear diffusion and beam self-trapping in diffraction-managed waveguide arrays. Opt. Express, 2007,15:9547
    [73]A. Szameit, I. L. Garanovich, M. Heinrich, A. Minovich, F. Dreisow, A. A. Sukhorukov, T. Pertsch, D. N. Neshev, S. Nolte, W. Krolikowski, A. Tunnermann, A. Mitchell, and Yu. S. Kivshar. Observation of diffraction-managed discrete solitons in curved waveguide arrays. Phys. Rev. A,2008,78: 031801
    [74]M. Mitchell, M. Segev. Self-trapping of incoherent white light, Nature,1997, 387:880-883
    [75]H. Buljan, M. Segev, M. Soljacic, N. K. Efremidis and D. N. Christodoulides. White-light solitons, Opt. Lett.,2003,28 (14):1239-1241
    [76]R. Pezer, H. Buljan, G. Bartal, M. Segev, J. W. Fleischer. Incoherent white-light solitons in nonlinear periodic lattices, Phys. Rev. E,2006,73:056608-1-056608-9
    [77]X. Y. Qi, S. M. Liu, R. Guo, Y. Lu, Y. M. Gao, Z. H. Liu.C. F. Huang, X. H. Zhang, N. Zhu,J. J. Xu. The linear and nonlinear optical effects of white light, Science in China Series G-Physics Mechanics & Astronomy,2009,52:649-664
    [78]A. A.Sukhorukov, D. N. Neshev, A. Dreischuh, R. Fischer, S. Ha, W. Kro-likowski, J. Bolger, A. Mitchell, B. J. Eggleton, and Y. S. Kivshar. Polychromatic nonlinear surface modes generated by supercontinuum light, Opt. Express,2006, 14:11265-11270
    [79]A. A. Sukhorukov, D. N. Neshev, A. Dreischuh, W. Krolikowski, J. Bolger, B. J. Eggleton, L. Bui, A. Mitchell, and Y. S. Kivshar. Observation of polychromatic gap solitons, Opt. Express,2008,16:5991-5996
    [80]A. Szameit, I. L. Garanovich, M. Heinrichl, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, and Y. S. Kivshar. Polychromatic dy-namic localization in curved photonic lattices, Nature Physics,2009,5:271-275
    [81]W. J. Jones and B. P. Stoicheff. Inverse Raman spectra:Induced absorption at optical frequencies, Phys. Rev. Lett.1964,13,657-659
    [82]J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett.,1996,21 (19): 1547-1549
    [83]T. A. Birks, J. C. Knight, and P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett.,1997,22(13):961-963
    [84]J. C. Knight, G. J. Broen, T. A. Birks, and P. St. J. Russell. Photonic band gap guidance in optical fibers. Science,1998,282(5393):1476-1478
    [85]C. Li and Q. Sheng. The Relation between the nonlinear coefficient of PCF and its geometry parameters and the optical wavelength[J]. Acta Photonica Sinica, 2006,35(5):734-737
    [86]J. K. Randa, R. S. Windeler, and A. J. Stente. Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800nm[J]. Opt. Lett.,2000,25(1):25-27
    [87]S. Coen, L. Rainer, Y. J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell. White-light supercontinuum generation with 60ps pump pulses in a photonic crystal fiber[J]. Opt Lett.,2001,26(17):1356-1358
    [88]L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton. Compact broadband continuum source based on microchip laser pumped microstructured fiber [J]. Electron. Lett.,2001,37(9):558-560
    [89]G. P. Agrawal贾东方,余震虹,谈斌等译,非线性光纤光学原理及应用,北京:电子工业出版社,2002,13-37
    [90]J. Dudley, G. Genty, and S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys.2006,78:1135
    [91]A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum, Opt. Express,2006,14:9854-9863
    [92]G. Genty, M. Lehtonen, and H. Ludvigsen. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses, Opt. Express,2004,12:4614-4624
    [93]P. Beaud, W. Hodel, B. Zysset, and H. Weber. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quant. Elect.1987,23:1938-1946
    [94]G. Gent, M. Lehtonen, and H. Ludvigsenete. SPectral broadening of femtoseeond Pulses into continuum radiation in microstructure fibers. Opt. Express,2002, 10(20):1083-1098
    [95]E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov. Enhanced soliton self-frequeney shift of ultrashort light Pulses, JETP Lett.,2005,81(10),487-490
    [96]W. J. Wadsworth, J. C. Knight, and A.O. Blanehete. Soliton effects in Photonic crystal fiber at 850nm. Electron Lett.,2000,36(1),53-55
    [97]D. H. Dunlap and V. M. Kenkre. Dynamic localization of a charged particle moving under the influence of an electric field. Phys. Rev. B,1986,34:3625
    [98]S. Longhi. Quantum-optical analogies using photonic structures. Laser Photon. Rev.,2009,3:243
    [99]R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke. Exact dynamic localization in curved AlGaAs optical waveguide arrays. Opt. Express, 2007,15:3212
    [100]A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tuennermann, and Yu. S. Kivshar. Polychromatic dynamic localization in curved photonic lattices. Nature Physics,2009,5:271
    [101]V. V. Konotop, O. A. Chubykalo, and L. Vazquez. Dynamics and interaction of solitons on an integrable inhomogeneous lattice. Phys. Rev. E,1993,48:563
    [102]D. Cai, A. R. Bishop, N. Gronbechjensen, and M. Salerno. Electric-Field-Induced Nonlinear Bloch Oscillations and Dynamical Localization. Phys. Rev. Lett.,1995,74:1186
    [103]K. Staliunas, R. Herrero, and G. J. Valcarcel, de. Arresting soliton collapse in two-dimensional nonlinear Schrodinger systems via spatiotemporal modulation of the external potential. Phys. Rev. A,2007,75:011604
    [104]A. Szameit, Y. V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tunnermann, V. A. Vysloukh, F. Lederer, and L. Torner. Inhibition of Light Tunneling in Waveguide Arrays. Phys. Rev. Lett.,2009,102:153901
    [105]M. J. Ablowitz and Z. H. Musslimani. Discrete Diffraction Managed Spatial Solitons. Phys. Rev. Lett.,2001,87:254102
    [106]T. Pertsch, U. Peschel, and F. Lederer. Discrete solitons in inhomogeneous waveguide arrays. Chaos,2003,13:744
    [107]A. A. Sukhorukov, D. N. Neshev, and Yu. S. Kivshar. Shaping and control of polychromatic light in nonlinear photonic lattices. Opt. Express,2007,15:13058
    [108]U. Peschel, T. Pertsch, and F. Lederer. Optical Bloch oscillations in waveguide arrays. Opt. Lett.,1998,23:1701
    [109]R. Pezer, H. Buljan, G. Bartal, M. Segev and J. W. Fleischer. Incoherent white-light solitons in nonlinear periodic lattices. Phys. Rev. E,2006,73: 056608-1-056608-9
    [110]刘思敏,郭儒,许京军.光折变非线性光学及其应用.北京:科学出版社,2004年,第一版,1-86
    [111]E. H. Turner. High-Frequency electro-optic coefficients of lithium Niobate, Appl. Phys. Lett.,1966,8:303
    [112]V. M. Shandrov, K. V. Shandarova, and D. Kip. Discrete Diffraction and Spatial Self-Action of Light Beams in One-Dimensional Photonic Lattices in Lithium Niobate, Tech. Phys. Lett.,2005,31:897-899
    [113]X. Qi, S. Liu, R. Guo, Y. Lu, Z. Liua, L. Zhou, and Y. Li. Defect solitons in optically induced one-dimensional photonic lattices in LiNbO3:Fe crystal. Opt. Commun.,2007,272:387-390
    [114]J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides. Observation of vortex-ring discrete solitons in 2D photonic lattices. Phys. Rev. Lett.,2004,92:123904-123907
    [115]D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Yu. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen. Observation of discrete vortex solitons in optically-induced photonic lattices, Phys. Rev. Lett.,2004,92:123903-123906
    [116]D. Song, C. Lou, L. Tang, X. Wang, W. Li. X. Chen, K. J. Law, H. Susanto, P. G. Kevrekidis, J. Xu, and Z. Chen. Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity. Opt. Express,2008,16: 10110-10116
    [117]B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale. Microstructured optical fiber devices. Opt. Express,2001,9:1094-4087
    [118]T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express,2003,11:2589-2596
    [119]F. M. Cox, A. Argyros, and M. C. J.Large. Liquid-filled hollow core microstruc- tured polymer optical fiber. Opt. Express,2006,14:4135-4140
    [120]A. Szameit, D. Blomer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tunnermann, and F. Lederer. Discrete Nonlinear Localization in Femtosec-ond Laser Written Waveguides in Fused Silica. Opt. Express,2005,13: 10552-10557
    [121]A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tuennermann, and F. Lederer. Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica. Opt. Express,2006,14:6055-6062
    [122]C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Kro-likowski, A. Bjarklev, and Y. S. Kivshar. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. Opt. Express,2007,15:12145-12150
    [123]O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev. and D. N. Christodoulides. Observation of random-phase lattice solitons. Nature (London), 2005,433:500
    [124]G. Bartal, O. Cohen, O. Manela, and M. Segev. Observation of random-phase gap solitons in photonic lattices. Opt. Lett.,2006,31:483
    [125]H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukho-rukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer. Bloch Oscillations and Zener Tunneling in Two-Dimensional Photonic Lattices. Phys. Rev. Lett., 2006,96:053903
    [126]I. Makasyuk, Z. Chen, and J. Yang. Band-Gap Guidance in Optically Induced Photonic Lattices with a Negative Defect. Phys. Rev. Lett.,2006,96:223903
    [127]N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, J. W., O. Cohen, and M. Segev. Two-dimensional optical lattice solitons. Phys. Rev. E, 2003,91:213906-1-213906-4
    [128]方俊鑫,陆栋.固体物理学.上海:上海科学技术出版社,2000年,第一版,238-243
    [129]D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski. Spatial solitons in optically induced gratings. Opt. Lett.,2003,28:710-712
    [130]T. Song, S. M. Liu, R. Guo, Z. H. Liu, N. Zhu, and Y. M. Gao. Observation of composite gap solitons in optically induced nonlinear lattices in LiNbO3:Fe crystal. Opt. Express,2006,14:1924-1932
    [131]Z. Chen, I. Makasyuk, A. Bezryadina, I. Makasyuk, and J. Yang. Observation of two-dimensional lattice vector solitons. Opt. Lett.,2004,29:1656-1658
    [132]A. Draude, H. Franke, and R. A. Lessard. Two-dimensional refractive index patterns with crystalline symmetry. J. Phys. D:Appl. Phys.,2005,38:974-980
    [133]H. Kogelnik. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J.,1969,48:2909-2947
    [134]P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nature (London),2006,5:93-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700