用多重尺度方法研究布拉格光栅中光声耦合方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光声相互作用成为人们关注的热点问题,其中布拉格光栅中光波和声波耦合形成光声孤立子是典型代表。我们知道,布拉格光栅具有周期性变化的中心折射率,及较大的群速度色散和非线性效应,光波在其中传播时,可以形成光孤子。此外,在布拉格光栅中,电致伸缩效应表现为:光强的变化可以改变介质的密度,从而对声波产生影响,相反,声波也能够通过介质折射率的变化作用于光波,因此,在考虑电致伸缩的情况下,光孤子可以与声波耦合形成光声孤立子。
     Tasgal[1]首先提出了光声孤立子的概念,并给出了光声在布拉格光栅中传播所遵循的祸合方程组。然而,其只给出了单光声孤立子解析解,用数值方法分析了孤子的稳定性。为了进一步研究光声相互作用,找到更多的解析解,同时由于光声耦合方程组是不可积的,直接寻找方程组的解析解有很大的困难,而多重尺度方法是寻找这些不可积方程的近似解析解行之有效的方法。因此,本论文研究工作主要集中于运用多重尺度方法约化光声耦合方程组。
     本文中我们用多重尺度方法来研究光声耦合方程组,发现该方程可以约化为一些简单的模型:如非线性薛定谔方程等。并且由于这些简单模型的孤子解已经有很好的研究,我们得到该耦合方程组的一系列孤子解:单光声孤子解、二光声孤子解等。在约化过程中我们分别在忽略声波粘滞系数和考虑声波粘滞系数的情况下,研究了该耦合方程组的性质。
The interaction of acoustic and optical signals are under intensive studies these years, One of the typical examples is the coupling of optical wave and acoustic wave in the the Bragg gratings. As we know, Bragg gratings have periodic variation of the refractive index, a very large group velocity dispersion and nonlinear effects. optical waves propagating in the Bragg gratings may form optical solitons. Moreover, light may drive sound through compressing the medium due to variations of the intensity of light, conversely, acoustic waves react into the optical wave through the dependence of the refractive index on the material density. So, considering the electrostriction, optical gap solitons may couple to acoustic waves, generate the optoacoustic solitons.
     Optoacoustic solitons were first found by Richard S. Tasgal in the Bragg gratings. And the optoacoustic coupled mode equations were given. But, Richard S. Tasgal only gave out the single-soliton solutions and tested solitons stability by numerical simulation. For the sake of completely investigating the properties of optoacoustic solitons, meanwhile because the coupled mode equations are non-integrable, and the multiple-scales method is effective to find the approximate solutions of non-integrable equations. So, In this paper, we use the multiple-scales method to discuss the optoacoustic coupled mode equations in the Bragg gratings.
     In this paper, using the multiple-scales method, we find that the optoacoustic coupled mode equations can be reduced to some simple models, such as the nonlinear Schrodinger equation. Then, from the solutions of the simple models, we obtain the approximate solutions of the optoacoustic coupled mode equations, such as the single-soliton solutions and two-soliton solutions. And that, we discuss the properties of the optoacoustic coupled mode equations in two aspects, such as neglecting phonon viscosity and considering phonon viscosity.
引文
[1]Richard S Tasgal, Y B Band. Optoacoustic Solitons in Bragg Gratings[J]. Phys Rev Lett,98(24):2439021-2439024.
    [2]黄景宁,徐济仲,熊吟涛.孤子:概念、原理和应用[M].北京:高等教育出版社,2004.
    [3]Korteweg D J, De Vires G. Phil. Mag.1895,39,422.
    [4]E. Fermi, J. Pasta, S. Ulam. Studies in Nonlinear Problems. Los Alamos report LA 1940,1955. Reproduced in Nonlinear Wave Motion (Ed. A. C. Newell). Providence, RI:Amer. Math. Soc.,1974.
    [5]Norman J. Zabusky, Martin D. Kruskal. Interaction of solitons in a collision-less plasma and the recurrence of initial states[J]. Phys. Rev. Lett.1965,15, 240-243.
    [6]Y.S.Kivshar and G.P.Agrawal, Optics Solitons[M].Academic Press,San Diego,CA,2001.
    [7]Askaryan, G. A. Effects of the Gradient of Strong Electromagnetic Beam on Electrons and Atoms[J]. Soviet Phys. JETP.1962,15,1088.
    [8]Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Phys. Rev. Lett.1964,13,479.
    [9]Kelley, P. L. Self-focusing of optical beams[J]. Phys.Rev.Lett.1965,15,1005.
    [10]G.P.Agrawal.Nonlinear Fiber Optics[M].Academic Press,3rd edition,San Diego,CA,2001.
    [11]A. Barthelemy.S. Maneuf, C. Froehly. Propagation soliton et auto-confinement de faisceaux laser par non lineariteoptique de kerr[J].Opt.Commun.1985,55,201
    [12]S.L.McCall, E. L. Hahn. Self-Induced Transparency by Pulsed Coherent Light[J].Phys.Rev.Lett.1967,18,908.
    [13]A.Hasegawa,F.Tappert. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Ⅱ.Normal disper-sion[J].App.Phys.Lett.1973,23,171.
    [14]L.F.Mollenauer,R.H.Stolen, and J.P.Gordon. Experimental Obser-vation of Picosecond Pulse Narrowing and Solitons in Optical Fibers[J].Phys.Rev.Lett.1980,45,1905.
    [15]A. Hasegawa, Y. Kodama. Solitons in Optical Communications[M]. (Oxford University Press, New York).1995.
    [16]H. A. Haus, W. S. Wong. Solitons in optical communications[J]. Rev. Mod. Phys.199668:423-444.
    [17]L. F. Mollenauer, J. P. Gordon, P.V. Mamyshev. Solitons in high bit-rate, long-distance transmission[M]. Optical Fiber Telecommunications ⅢA, IP Kaminov, TL Koch, eds. (Academic, San Diego, Calif.,1997), Chap.12.
    [18]H. G. Winful, J. H. Marburger, E. Garmire. Theory of bistability in nonlinear distributed feedback structures [J]. Appl. Phys. Lett,1979,35:379-381.
    [19]W Chen, D L Mills. Gap Soliton and the Nonlinear Optical Response of Super lattices [J]. Phys Rev Lett,1987,58(2):160-163.
    [20]D. L. Mills, S. E. Trullinger. Gap solitons in nonlinear periodic structures [J]. Rev. Mod. Phys.1996,68:423-444.
    [21]A. B. Aceves, S. Wabnitz. Self-induced transparency solitons in nonlinear refractive periodic media[J]. Phys. Lett. A 141,37-42 (1989).
    [22]W.Thirring, Ann.Phys.(Leipzig)3,91(1958
    [23]C Martijn de Sterke, J E Sipe. Gap Solitons[M]. In Progress in Optics, Elsevier, Amsterdam,1994.
    [24]H. G. Winful, V Perlin. Raman Gap Solitons[J]. Phys Rev Lett,2000, 84(16):3586-3589.
    [25]William C K Mak, Boris A Malomed, Pak L Chu. Formation of a standing-light pulse through collision of gap solitons[J]. Phys Rev E,2003, 68(2):0266091-0266099.
    [26]Joe T Mok, C Martijn de Sterke, Ian C M Littler, et al. Dispersionless slow light using gap solitons[J]. Nature Phys,2:775-780.
    [27]Tian J F, Wu Z M, Xia G Q 2006 Acta. Phys.Sin.55 6419 (in Chinese)[田剑锋、吴正茂、夏光琼2006物理学报55 6419]
    [28]Tian J F, Wu Z M, Xia G Q 2007 Acta. Phys.Sin.56 2256 (in Chinese)[田剑锋、吴正茂、夏光琼2007物理学报56 2256]
    [29]Elena V Kazantseva, Andrei I Maimistov. Polaritonic gap-soliton propaga-tion through a wide defect in a resonantly absorbing Bragg grating [J]. Phys Rev A,2009,79(3):0338121-0338127.
    [30]B Kalithasan, K Porsezian, K Senthilnathan, et al. Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings [J]. Phys Rev A,2010,81(5):0538021-0538029.
    [31]C Zhao, L Ju, Y Fan, et al. Observation of three-mode parametric interac-tions in long optical cavities [J]. Phys Rev A,2008,78(2):0238071-0238076.
    [32]M E Fermann, V da Silva, D A Smith et al. Shaping of ultrashort optical pulses by using an integrated acousto-optic tunable filter [J]. Opt Lett,1993, 18(18):1505-1507.
    [33]F Verluise, V Laude. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter:pulse compression and shaping[J]. Opt Lett,2000,25(8):575-577.
    [34]EricL Buckland, Robert W Boyd. Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers[J]. Opt Lett,1997, 22(10):676-678.
    [35]EricL Buckland, Robert W Boyd. Electrostrictive contribution to the intensity-dependent refractive index of optical fibers[J]. Opt Lett,1996, 21(15):1117-1119.
    [36]P J Hardman, Paul D Townsend, Alistair J Poustie, et al. Experimental investigation of resonant enhancement of the acoustic interaction of optical pulses in an optical fiber [J]. Opt Lett,1996,21(6):393-395.
    [37]G P Agrawal. Nonlinear Fiber Optics[M]. Academic, Boston, Mass,1995.
    [38]H. Bell System Tech. J.48,2909-2947 (1969).
    [39]J. E. Sipe, G. I. Stegeman. Comparison of normal mode and total field analysis techniques in planar integrated optics [J]. J. Opt. Soc. Am.1979, 69,1676-1683.
    [40]HG Winful, GD Cooperman, Appl. Phys. Lett.1982,40:298
    [41]D. N. Christodoulides, R. I. Joseph. Slow Bragg solitons in nonlinear periodic structures [J]. Phys. Rev. Lett.1989,62:1746-1749.
    [42]JE Sipe and HG Winful, Opt. Lett.1988,13,132
    [43]C. Martijn de Sterke, J. E. Sipe. Envelope-function approach for the elec-trodynamics of nonlinear periodic structures [J]. Phys. Rev. A,1988,42: 5149-5165.
    [44]C. Martijn de Sterke, J. E. Sipe. Coupled modes and the nonlinear Schr?dinger equation[J]. Phys. Rev. A,1990,42:550-555.
    [45]C. M. de Sterke, J. E. Sipe. Comment on "Slow Bragg solitons in nonlinear periodic structures". Phys. Rev. Lett.1989,63:811-811
    [46]Guoxiang Huang, Manuel G. Velarde. Dark solitons and their head-on col-lisions in Bose-Einstein condensates[J]. Phys. Rev. A,2001,64:013617
    [47]C. M. de Sterke, J. E. Sipe. Two-dimensional solitons in Bose-Einstein con-densates with a disk-shaped trap[J].Phys. Rev. A,2003,67:023604
    [48]Hui-jun Li, Chao Hang, and Guoxiang Huang High-order nonlinear Schrodinger equation and superluminal optical solitons in room-temperature active-Raman-gain media [J]. Phys. Rev. A,2008,78:023822
    [49]G. P. Agrawal. Nonlinear Fiber Optics[M]. San Diego:Academic Press,1995.
    [50]Kogelnik,1969, Bell Sys. Techn.J.48,2909
    [51]G. P. Agrawal. Nonlinear Fiber Optics[M]. San Diego:Academic Press,1995.
    [52]E.M.Dianov,A.V.Luchnikov. Electrostriction mechanism of soliton interac-tion in optical fibers [J]. Opt. Lett,1990,15:314-316
    [53]V. E. Zakharov. Collapse of Langmuir waves(Plasma low density regions caused by Langmuir turbulence, discussing energy dissipation of long wave oscillations and wave collapse)[J]. Physics of Plasmas,1972,35:908-914.
    [54]A. S. Davydov. Solitons in molecular systems [J]. Phys. Scr.,1979,20:387-394.
    [55]H. Hadouaj, B. A. Malomed, G. A. Maugin. Dynamics of a soliton in a generalized Zakharov system with dissipation[J]. Phys. Rev. A,1991,44: 3925-3931.
    [56]H. Hadouaj, B. A. Malomed, G. A. Maugin. Soliton-soliton collisions in a generalized Zakharov system [J]. Phys. Rev. A,1991,44:3932-3940.
    [57]G. A. Maugin, H. Hadouaj, B. A. Malomed. Nonlinear coupling between shear horizontal surface solitons and Rayleigh modes on elastic structures [J]. Phys. Rev. B,1992,45:9688-9694.
    [58]S. A. Khrapak, G. Morfill. Waves in two component electron-dust plasma[J]. Physics of Plasmas,2001,31:2629-2634.
    [59]S. A. Khrapak, G. Morfill. Waves in two component electron-dust plasma[J]. Physics of Plasmas,2001,31:2629-2634.
    [60]N. Kamran, R. Milson, P. J. Olver. Invariant modules and the reduction of nonlinear partial differential equations to dynamical systems [J]. Adv. Math. 2000,156:286-319.
    [61]P. J. Olver. Application of Lie Group to Differential Equation[M].1986, New York:Springer.
    [62]P. A. Clarkson, M. D. Kruskal. J. Math. Phys.1989,30,2201.
    [63]S. Y. Lou, H. Y. Ruan, D. F. Chen, et al. J. Phys. A:Math. Gen.1991,24, 1455.
    [64]E. Infeld,G. Rowlands. Inverse Scattering Method[J]. Cambridge, England: Cambridge University Press.2000:173-175.
    [65]Miura, R. M.(Ed.). Backlund Transformations, the Inverse Scattering Method, Solitons, and Their Applications[M]. New York:Springer-Verlag, 1974.
    [66]N. Joshi, S. Lafortune. Integrable ultra-discrete equations and singularity analysis [J]. Nonlinearity.2006,19(6).
    [67]J. Hietarinta. Introduction to the Hirota bilinear method[M]. Berlin: Springer,1997.
    [68]J.Hietarinta. Hirota's bilinear method and its generalization[J]. Int. J. Mod. Phys. A.1997,12:43-51.
    [69]Xu-Gang. He. et al., Phys. Rev. E.2009,79,056610
    [70]Li. Hua-Mei., Li. Yi-Shen., and Lin. Ji. Chin. Phys. B.2009,18,3657
    [71]Cheng Xue-Ping, Ye Li-Jun, Lin Ji. Approximate Solutions of Perturbed Nonlinear Schr?dinger Equations[J]. Commun Theor Phys,2007.48(2):227-231.
    [72]H Y Ruan, Y X Chen, S Y Lou. General Symmetry Approach to Solve Variable-Coefficient Nonlinear Equations[J]. Commun Theor Phys,2001, 35(6):641-646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700