关于声子晶体与高温超导体若干层状特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体和高温超导材料是两类具有代表性的层状先进材料。这两种材料在实际应用中均存在众多基础理论问题亟待解决。其中,声子晶体材料的禁带效应使其在材料隔振降噪领域有着广泛的应用前景,同时也在带隙调控,层状结构稳定性等问题上面临着众多挑战;而高温超导材料在电工领域应用中的交流损耗直接关系到高温超导装置的安全稳定运行,一直受到高度重视。本学位论文分别针对声子晶体的弹性波带隙特性和高温超导体传输交流损耗进行了理论研究。
     首先,提出了含有指数型功能梯度材料的功能梯度声子晶体,并系统研究了此类声子晶体的带隙特性和调控方法。功能梯度声子晶体是不同于经典声子晶体的材料宏观性质在空间上呈连续变化且具有弹性波禁带效应的结构“晶体”。根据功能梯度材料的制造工艺和材料性质梯度变化形式,设计了两类多种功能梯度声子晶体模型。应用平面波展开法计算能带结构,发现了功能梯度声子晶体中同样存在弹性波禁带效应。通过与经典声子晶体对比,得到了功能梯度材料对弹性波带隙结构的影响。通过对不同材料常数和几何常数下带隙结构的分析,获得了功能梯度声子晶体带隙结构调控方法,并发现了该材料在特定参数下会出现带隙消失现象。功能梯度声子晶体的提出减小了声子晶体原有的材料性质突变现象,同时为功能梯度材料和声子晶体的应用扩展了范围,为工程应用提供了理论基础。
     其次,提出了同时考虑高温超导体各向异性和临界电流密度非均匀分布条件下的传输交流损耗的计算模型。高温超导体的层状结构特性使其具有强各向异性和临界电流密度的非均匀分布特性,这使得原有的交流损耗模型并不能很好的适用。为了能够更加准确的模拟真实工况下高温超导体的交流损耗,给出了外加直流磁场下高温超导体临界电流密度分别依照阶梯型、线性和平方型非均匀分布时,考虑各向异性条件下的传输交流损耗计算公式。通过对比发现在考虑各向异性条件下,临界电流密度阶梯型非均匀分布计算结果与实验结果有最好的吻合度,线性变化次之,但平方分布不再适用。此后,计算了不同磁场和传输电流下材料临界电流密度非均匀分布参数变化对传输交流损耗的影响,为高温超导体减小传输交流损耗提供了理论指导。
     最后,提出了利用高温超导体传输交流损耗值计算临界电流密度非均匀分布形式的理论方法。将高温超导圆柱体分为多层,利用其电流饱和自外而内的特性,通过各层可承载电流幅值下的传输交流损耗值由外层至体心计算高温超导圆柱体中临界电流密度值。利用该理论方法获得了高温超导体实验中所用试件的临界电流密度依照七阶多项式形式分布的结果。该方法为高温超导体临界电流密度预测和描述提供了简单而可靠的方法。
     本学位论文从材料应用基础性能研究出发,分别就功能梯度声子晶体的弹性波带隙特性和高温超导体考虑各向异性条件下的传输交流损耗进行了研究。为这两种层状先进材料的进一步应用提供了理论基础。
Phononic crystals and high-temperature superconductors are two kinds of typical layered advanced materials, and many problems need to be solved in the practical application. Phononic crystals with elastic band gaps have a broad application prospects. AC losses related to the safe and stable operation play an important role in high temperature superconductors. This thesis mainly aims at features and basic application performance of those advanced materials.
     Firstly, the band structures of functionally graded phononic crystals containing functionally graded materials varying exponentially are systematically investigated. Functionally graded phononic crystals, which are different from traditional phononic crystals, have gradually varying material properties in one or more spatial coordinates and the band gaps of elastic waves. We have designed four model FGPCs based on different primary preparation methods and FGM applications. The four models can be divided into two categories, according to the variational form of their functionally graded materials. By using plane-wave expansion, we calculate the band structures of functionally graded phononic crystals. Compared with traditional phononic crystals, the band structures of functionally graded phononic crystals are clearly changed by functionally graded materials. We also consider the influence of material composition, material properties and geometrical parameters on band gaps. Results show that different FGM properties can change the band structures remarkably. Our work can facilitate the design of vibration filters and noise insulators and provide more design freedom in engineering.
     Secondly, we propose the analytical formula for transport AC losses in high-temperature superconductor wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The high anisotropy and the non-uniform critical current density distribution of high-temperature superconductors are caused by its layer structure characteristics. The analytical formula considered critical current density of both inhomogeneous and anisotropic field dependent for transport AC losses in high-temperature superconductor wire which usually carry AC transport current under applied magnetic field in typical application-like conditions. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. Several distributions including the linear and quadratic and stepwise of a radius dependent critical-current density along a radial direction in the cross section of a round superconducting cylinder are assumed in analytical calculations. From the numerical results, we can observe that the result of stepwise distribution is agree with the exponential data, but the quadratic distribution no longer apply. Then, the influence of material parameters on normalized transport AC losses under different magnetic field and transport current is investigated. to reduce the transfer of AC loss provides a theoretical guidance for high-temperature superconductors. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.
     Finally, the multi-layer model of high-temperature superconductor is proposed to calculate the non-uniform distribution of the critical current density. High-temperature superconductor cylinder is divided into multi-layer, the critical current density of each layer can be calculated from outside to inside. The critical current density distribution in the high-temperature superconductor cylinder follows the seven order polynomial. The method provides a simple and reliable method to calculate the critical current density distribution in high-temperature superconductor.
     This thesis studies the elastic band structures of functionally graded phononic crystals and the transport AC losses in high-temperature superconductor wire by considering critical current density of both inhomogeneous and anisotropic field dependent. After all, the results provide theoretical basis for two layered advanced material in realistic practical condition.
引文
1. M. M. Sigalas,E.N. Economou, Elastic and acoustic wave band structure. Journal of Sound and Vibration,1992.158(2):377-382.
    2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Physical Review Letters,1993.71(13):2022-2025.
    3. 温熙森,温激鸿,郁殿龙等,声子晶体.2009,湖南长沙:国防工业出版社.
    4. R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, F. Meseguer, Sound-attenuation by sculpture. Nature,1995.378(6554):241-241.
    5. 王毅泽,磁电弹性声带隙材料结构中的弹性波传播与局部化研究,2009,哈尔滨工业大学.
    6. S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, V. Laude, Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Physical Review E,2006.73(6):065601.
    7. T. T. Wu, L. C. Wu, Z. G. Huang, Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. Journal of Applied Physics,2005.97(9):094916-7.
    8. L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, Y. Y. Zhu, Negative refraction of acoustic waves in two-dimensional sonic crystals. Physical Review B,2005. 72(3):033108.
    9. L. Feng, X. P. Liu, M. H. Lu, Y. B. Chen, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, N. B. Ming, Acoustic Backward-Wave Negative Refractions in the Second Band o.f a Sonic Crystal. Physical Review Letters,2006.96(1):014301.
    10. J. Li, Z. Liu, C. Qiu, Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal. Physical Review B,2006.73(5):054302.
    11. F. Cervera, L. Sanchis, J. V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, J. Sanchez-Dehesa, Refractive Acoustic Devices for Airborne Sound. Physical Review Letters,2001.88(2):023902.
    12. B. C. Gupta,Z. Ye, Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals. Physical Review E,2003.67(3):036603.
    13. X. Hu, Y. Shen, X. Liu, R. Fu, J. Zi, Superlensing effect in liquid surface waves. Physical Review E,2004.69(3):030201.
    14. C. Qiu, X. Zhang, Z. Liu, Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Physical Review B,2005.71(5):054302.
    15. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, Y. F. Chen, Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode. Physical Review Letters,2011. 106(8):084301.
    16. F. C. Hsu, T. T. Wu, J. C. Hsu, J. H. Sun, Directional enhanced acoustic radiation caused by a point cavity in a finite-size two-dimensional phononic crystal. Applied Physics Letters,2008. 93(20):201904-3.
    17. W. Jihong, Y. Dianlong, C. Li, W. Xisen, Acoustic directional radiation operating at the pass band frequency in two-dimensional phononic crystals. Journal of Physics D:Applied Physics, 2009.42(11):115417.
    18. C. Qiu,Z. Liu, Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals. Applied Physics Letters,2006.89(6):063106-3.
    19. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites. Physical Review B,1994.49(4): 2313-2322.
    20. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally Resonant Sonic Materials. Science,2000.289(5485):1734-1736.
    21. G. Wang, X. Wen, J. Wen, L. Shao, Y. Liu, Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures. Physical Review Letters,2004.93(15):154302.
    22.方俊鑫,陆栋,固体物理学.1980,上海:上海科学技术出版社.
    23. M. Lan,P. Wei, Laminated piezoelectric phononic crystal with imperfect interfaces. Journal of Applied Physics,2012.111(1):013505.
    24. Y. Z. Wang, F. M. Li, K. Kishimoto, Y. S. Wang, W. H. Huang, Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. European Journal of Mechanics a-Solids,2010.29(2):182-189.
    25. L. F. Yang, Y. F. Wang, Y. Zhou, The transmission properties in one-dimensional piezoelectric Fibonacci-class quasi-periodical phononic crystals. Acta Physica Sinica,2012.61(10): 107702.
    26. Z. Hou, F. Wu, Y. Liu, Phononic crystals containing piezoelectric material. Solid State Communications,2004.130(11):745-749.
    27. Y. Wang, F. Li, K. Kishimoto, Y. Wang, W. Huang, Wave localization in randomly disordered periodic piezoelectric rods with initial stress. Acta Mechanica Solida Sinica,2008.21(6): 529-535.
    28. Y. Z. Wang, F. M. Li, W. H. Huang, X. Jiang, Y. S. Wang, K. Kishimoto, Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. International Journal of Solids and Structures,2008.45(14-15):4203-4210.
    29. Y. Z. Wang, F. M. Li, W. H. Huang, Y. S. Wang, Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics-Condensed Matter, 2007.19(49):496204.
    30. Y. Z. Wang, F. M. Li, K. Kishimoto, Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals. Acta Mechanica,2011.216(1-4):291-300.
    31. Y. Z. Wang, F. M. Li, K. Kishimoto, Y. S. Wang, W. H. Huang, Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion,2009.46(1):47-56.
    32. P. Yu, W. Yue Sheng, L. Jin Xi, F. Dai Ning, A study of the band structures of elastic wave propagating in piezoelectric/piezomagnetic layered periodic structures. Smart Materials and Structures,2010.19(5):055012.
    33.庞玉,层状磁电复合材料中弹性波传播若干问题的理论研究,2009,北京交通大学.
    34. J. Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material. Physica B:Condensed Matter,2007.400(1-2):137-144.
    35. B. Wu, R. Wei, C. He, H. Zhao, Research on two-dimensional phononic crystal with magnetorheological material, in 2008 Ieee Ultrasonics Symposium, Vols 1-4 and Appendix: 1484-1486.
    36. Y. P. Zhao,P. J. Wei, The band gap of 1D viscoelastic phononic crystal. Computational Materials Science,2009.46(3):603-606.
    37. P. J. Wei,Y. P. Zhao, The Influence of Viscosity on Band Gaps of 2D Phononic Crystal. Mechanics of Advanced Materials and Structures,2010.17(6):383-392.
    38. P. D. Sesion, Jr., E. L. Albuquerque, C. Chesman, V. N. Freire, Acoustic phonon transmission spectra in piezoelectric AIN/GaN Fibonacci phononic crystals. European Physical Journal B, 2007.58(4):379-387.
    39. Y. J. Cao,X. Yang, Transmission properties of the generalized Fibonacci quasi-periodical phononic crystal. Acta Physica Sinica,2008.57(6):3620-3624.
    40. Y. J. Cao, C. H. Dong, P. Q. Zhou, Transmission properties of one-dimensional qusi-periodical phononic crystal. Acta Physica Sinica,2006.55(12):6470-6475.
    41. A. L. Chen, Y. S. Wang, Y. F. Guo, Z. D. Wang, Band structures of Fibonacci phononic quasicrystals. Solid State Communications,2008.145(3):103-108.
    42. J. Chen, B. Qin, H. L. W. Chan, Engineering band gap forming using the combination of periodic and Fibonacci quasiperiodic one-dimensional composite thin plates. Solid State Communications,2008.146(11-12):491-494.
    43. G. J. Hao, X. J. Fu, Z. L. Hou, Band structure of phononic crystal constructed by Fibonacci super-cell on square lattice. Acta Physica Sinica,2009.58(12):8484-8488.
    44. E. L. Albuquerque,P. D. Sesion, Jr., Band gaps of acoustic waves propagating in a solid/liquid phononic Fibonacci structure. Physica B-Condensed Matter,2010.405(17):3704-3708.
    45.陈阿丽,汪越胜,一维准周期声子晶体中平面波的传播和局部化.应用声学,2008.27(1):69-73.
    46. M. L. Wu, L. Y. Wu, W. P. Yang, L. W. Chen, Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials. Smart Materials & Structures,2009. 18(11):115013.
    47. B. Cai,P. J. Wei, Influences of gradient profile on the band gap of two-dimensional phononic crystal. Journal of Applied Physics,2011.110(10):103514.
    48.宋卓婓,王自东,张鸿,一种减振开始频率不高于200Hz声子晶体的开发方法,CN101872612A,中国专利
    49.王绪文,孙英富,赵树磊,一种三组元声子晶体的复合成型制备方法,CN101740021A,中国专利
    50. J. H. Wen, G. Wang, D. L. Yu, H. G. Zhao, Y. Z. Liu, Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure. Journal of Applied Physics,2005.97(11): 114907.
    51. D. Yu, Y. Liu, G. Wang, H. Zhao, J. Qiu, Flexural vibration band gaps in Timoshenko beams with locally resonant structures. Journal of Applied Physics,2006.100(12):124901.
    52. D. L. Yu, Y. Z. Liu, H. G. Zhao, G. Wang, J. Qiu, Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom. Physical Review B,2006.73(6):064301.
    53.温激鸿,声子晶体振动带隙及减震特性研究,2005,国防科技大学.
    54.郁殿龙,基于声子晶体理论的梁板类周期结构振动特性研究,2006,国防科技大学.
    55.李荻,二维周期板结构隔振性能研究,20009,北京交通大学.
    56.刘伟,倪志强,韩林,张研,张子明,弹性地基上的二维声子晶体薄板振动特性研究.科学技术与工程,2012.12(13):3033-3036.
    57.王海峰,基于LM法的声子晶体带隙研究和隔声性能分析,2008,哈尔滨工业大学(深圳).
    58.左曙光,魏欢,何宇漾,文歧华,声子晶体在车身顶棚减振中的应用研究.材料导报B:研究篇,2011.25(12):124-127.
    59.左曙光,孟姝,魏欢,何吕昌,马琮淦,声子晶体特性研究及在车身板件中减振降噪的应用.材料导报B:研究篇,2012.26(9):123-126.
    60.沈礼,吴九汇,陈华玲,声子晶体结构在汽车制动降噪中的理论研究及应用.应用力学学报,2010.27(2):293-297.
    61.张裕恒,超导物理.2009,合肥:中国科学技术大学出版社.
    62.王家素,王素玉,超导技术应用.1995,成都:电子科技大学出版社.
    63.刘在海,超导磁体交流损耗和稳定性.1992,北京:国防工业出版社.
    64. H. K. Onnes, On the sundden change in the rate at the resistance of mercury disappears. Commun. Phys. Lab. Univ. Leiden,1911.120b:122b.
    65. H. K. Onnes, Report on the researches made in the Leiden cryogenics laboratory between the second and third. International Congress of Refrigeration,1913.133-144:34.
    66. R. Btattacharya,M. P. Paranthaman, High Temperature Superconductors.2011, John Wiley & Sons.
    67. W. Meissner,R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfahigkeit Naturwissenschaften,1933.21(44):787-788.
    68. F. London,H. London, The electromagnetic equations of the superconductor. Proc. Roy. Soc., 1935.149(866):18.
    69. A. B. Pippard, Field Variation of the Superconducting Penetration Depth. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1950.203(1073): 210-223.
    70. A. B. Pippard, An Experimental and Theoretical Study of the Relation between Magnetic Field and Current in a Superconductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1953.216(1127):547-568.
    71. A. B. Pippard, The coherence concept in superconductivity. Physica,1953.19(1-12): 765-774.
    72. V. L. Ginzburg, L. Landau, On the theory of superconductivity. Zh. Eksper. Teoret. Fiz.,1950. 20:1064-1082.
    73. J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of Superconductivity. Physical Review, 1957.108(5):1175-1204.
    74. B. D. Josephson, Possible new effects in superconductive tunnelling. Physics Letters,1962. 1(7):251-253.
    75. B. D. Josephson, Coupled Superconductors. Reviews of Modern Physics,1964.36(1): 216-220.
    76. B. D. Josephson, Supercurrents through barriers. Advances in Physics,1965.14(56): 419-451.
    77. J. G. Bednorz,K. A. Miiller, Possible highT c superconductivity in the Ba-La-Cu-O system. Zeitschrift fur Physik B Condensed Matter,1986.64(2):189-193.
    78. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters,1987.58(9):908-910.
    79.赵忠贤,陈立泉,杨乾声等,Ba-Y-Cu氧化物液氮温区的超导电性.科学通报,1987.32:412-414.
    80. C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Superconductivity in the Bi-Sr-Cu-O system. Zeitschrift fur Physik B Condensed Matter, 1987.68(4):421-423.
    81. Z. Z. Sheng,A. M. Hermann, Bulk superconductivity at 120-K in the TL-CA BA-CU-O system. Nature,1988.332(6160):138-139.
    82. A. Schilling, M. Cantoni, J. D. Guo, H. R. Ott, Superconductivity above 130-K in the HG-BA-CA-CU-0 system. Nature,1993.363(6424):56-58.
    83. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature,2001.410(6824):63-64.
    84. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, Superconductivity in two-dimensional Co02 layers. Nature,2003.422(6927):53-55.
    85. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K. Journal of the American Chemical Society, 2008.130(11):3296-3297.
    86. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, D. F. Fang, Superconductivity at 43 K in SmFeAsO(l-x)F(x). Nature,2008.453(7196):761-762.
    87. R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Ying, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, X. H. Chen, A large iron isotope effect in SmFeAsO1-xFx and Bal-xKxFe2As2. Nature,2009.459(7243):64-67.
    88. Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, C. Zheng, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, Z. X. Zhao, Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O 1-x F x] FeAs. Chinese Physics Letters,2008.25(6):2215.
    89. A. Mann, Still in suspense. Nature,2011.475(7356):280-282.
    90.孙林煜,李鹏远,第二代高温超导体研究与在聚变领域应用前景.超导技术,2012.40(9):44-47.
    91.赵玉峰,考虑非均匀临界电流密度效应的高温超导体磁通跳跃与交流损耗的理论研究,2009,兰州大学
    92.张裕恒,超导物理,2009,北京:科学出版社
    93.王秋良,高磁场超导磁体科学.2008,北京:科学出版社.
    94. W. T. Norris, Calculation of hysteresis losses in hard superconductors carrying ac:isolated conductors and edges of thin sheets. Journal of Physics D:Applied Physics,1970.3(4):489.
    95. W. N. Wilson, Superconducting magnets.1983, Oxford:Clarendon Press.
    96. M. C. Ohmer,J. P. Heinrich, Magnetization of hysteretic superconductors for complete field penetration and a critical-state model with J(H)=alpha/H. Journal of Applied Physics,1973. 44(4):1804-1809.
    97. T. H. Johansen,H. Bratsberg, Critical-state magnetization of type-Ⅱ superconductors in rectangular slab and cylinder geometries. Journal of Applied Physics,1995.77(8): 3945-3952.
    98. P. O. Hetland, T. H. Johansen, H. Bratsberg, Magnetization in a generalized critical-state model for type-Ⅱ superconductors. Cryogenics,1996.36(1):41-46.
    99.王银顺,林良真,4.5K下Bi2223/Ag多芯带材的磁化和磁滞损耗.低温物理学报,1997.19:453-59.
    100. E. H. Brandt, Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves. Physical Review B,1998.58(10):6506-6522.
    101. V. Sokolovsky, V. Meerovich, S. Goren, G. Jung, Analytical approach to AC loss calculation in high-Tc superconductors. Physica C:Superconductivity,1998.306(1-2):154-162.
    102. K. Kajikawa, M. Iwakuma, K. Funaki, A heuristic description of AC losses in superconducting slab with smooth voltage-current characteristics represented by power law. Physica C:Superconductivity,2002.378-381, Part 2:1097-1101.
    103. S. Zannella, J. Tenbrink, K. Heine, V. Ottoboni, A. Ricca, G. Ripamonti,50 Hz current-dependent losses of Bi2Sr2Ca1Cu2O(8+x)/Ag wires. Applied Physics Letters,1990. 57(2):192-194.
    104. J. Orehotsky, K. M. Reilly, M. Suenaga, T. Hikata, M. Ueyama, K. Sato, ac losses in powder-in-tube Bi2Ca2Sr2Cu3O10 tapes at power frequencies. Applied Physics Letters,1992. 60(2):252-254.
    105. Y. Yang, T. Hughes, Z. Yi, C. Beduz, R. G. Scurlock, L. Jansak, Studies of self-field AC losses in PbBi-2223 Ag-sheathed tapes. Cryogenics,1994.34(s1):789-792.
    106. Y. Yifeng, T. J. Hughes, E. Martinez, C. Beduz, F. Darmann, Reduction of AC loss in Ag sheathed PbBi2223 tapes with twisted filaments in external and self-fields. IEEE Transactions on Applied Superconductivity,1999.9(2):1177-1180.
    107.张国民,高温超导带材及线圈的交流损耗.2003,中国科学院电工研究所.
    108.王银顺,Bi系高温超导体交流损耗的研究.1998,中国科学院研究生院.
    109.张兴义,周军,周又和,蔺山高,赵沛,一种医用降温设备,CN202342280U,中国专利.
    110. M. M. Sigalas, Elastic wave band gaps and defect states in two-dimensional composites. Journal of the Acoustical Society of America,1997.101(3):1256-1261.
    111. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, N. Garcia, Sonic Band Gaps in Finite Elastic Media:Surface States and Localization Phenomena in Linear and Point Defects. Physical Review Letters,1999.82(15):3054-3057.
    112. M. Kafesaki, M. M. Sigalas, N. Garcia, Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials. Physical Review Letters,2000.85(19): 4044-4047.
    113. I. E. Psarobas, N. Stefanou, A. Modinos, Phononic crystals with planar defects. Physical Review B,2000.62(9):5536-5540.
    114. J. V. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Llinares, F. Galvez, Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters,1998.80(24):5325-5328.
    115.仲政,吴林志,陈伟球,功能梯度材料与结构的若干力学问题研究进展.力学进展,2010.40(5):528-541.
    116. A. Kawasaki,R. Watanabe, Concept and P/M fabrication of functionally gradient materials. Ceramics International,1997.23(1):73-83.
    117. C. Li, G. J. Weng, Z. Duan, Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. International Journal of Solids and Structures,2001. 38(42-43):7473-7485.
    118. Z. H. Jin,R. C. Batra, Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids,1996.44(8):1221-1235.
    119. N. Noda,J. Zhi-He, Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures,1993.30(8):1039-1056.
    120. M. Ozturk,F. Erdogan, Antiplane shear crack problem in bonded materials with a graded interfacial zone. International Journal of Engineering Science,1993.31(12):1641-1657.
    121. J. W. Eischen, Fracture of nonhomogeneous materials. International Journal of Fracture,1987. 34(1):3-22.
    122. B. L. Wang, Y. W. Mai, N. Noda, Fracture mechanics analysis models for functionally graded materials with arbitrarily distributed properties (Modes Ⅱ and Ⅲ problems). International Journal of Fracture,2004.126(4):307-320.
    123. M. Koizumi, FGM activities in Japan. Composites Part B:Engineering,1997.28(1-2):1-4.
    124. M. Koizumi,M. Niino, Overview of FGM research in JAPAN. Mrs Bulletin,1995.20(1): 19-21.
    125.刘睫,王子昆,张陵,梯度材料层状结构中的Love波.固体力学学报,2004.25(2):165-170.
    126.张立刚,盖秉政,朱虹,覆盖层为功能梯度材料弹性半空间中的Love波.工程力学,2008.25(1):76-81.
    127.张立刚,盖秉政,朱虹,袁林,梯度半空间梯度覆层中的Love波.力学学报,2007.39(5):678-684.
    128.X. Y. Li, Z. K. Wang, S. H. Huang, Love waves in functionally graded piezoelectric materials. International Journal of Solids and Structures,2004.41(26):7309-7328.
    129. Z. Qian, F. Jin, Z. Wang, K. Kishimoto, Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. International Journal of Engineering Science,2007.45(2-8):455-466.
    130. X. Han, G. R. Liu, K. Y. Lam, T. Ohyoshi, A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization. Journal of Sound and Vibration,2000.236(2):307-321.
    131. G. R. Liu, X. Han, K. Y. Lam, An integration technique for evaluating confluent hypergeometric functions and its application to functionally graded materials. Computers & Structures,2001.79(10):1039-1047.
    132. G. R. Liu, J. Tani, T. Ohyoshi, K. Watanabe, Transient waves in anisotropic laminated plates.l. theory. Journal of Vibration and Acoustics-Transactions of the Asme,1991.113(2): 230-234.
    133. G. R. Liu, J. Tani, T. Ohyoshi, K. Watanabe, Transient waves in anisotropic laminated plates.2. application. Journal of Vibration and Acoustics-Transactions of the Asme,1991. 113(2):235-239.
    134.曹小彬,金峰,王子昆,功能梯度材料板中Lamb波传播特性研究.固体力学学报,2009.30(1):35-41.
    135.杜建科,叶定友,功能梯度压电材料层状结构中的SH波.固体火箭技术,2005.28(2):133-136.
    136. N. Liu, J. Yang, Z. H. Qian, S. Hirose, Interface waves in functionally graded piezoelectric materials. International Journal of Engineering Science,2010.48(2):151-159.
    137. Y. Liu,L. T. Gao, Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Communications,2007.144(3-4):89-93.
    138. A. Cicek, O. A. Kaya, M. Yilmaz, B. Ulug, Slow sound propagation in a sonic crystal linear waveguide. Journal of Applied Physics,2012.111(1):013522.
    139. A. C. Hladky-Hennion, J. Vasseur, B. Dubus, B. Djafari-Rouhani, D. Ekeom, B. Morvan, Numerical analysis of negative refraction of transverse waves in an elastic material. Journal of Applied Physics,2008.104(6):064906.
    140. J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, A. C. Hladky-Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B,2008.77(8):085415.
    141. M. Asghari, M. T. Ahmadian, M. H. Kahrobaiyan, M. Rahaeifard, On the size-dependent behavior of functionally graded micro-beams. Materials & Design,2010.31(5):2324-2329.
    142. G. N. Praveen,J. N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures,1998.35(33): 4457-4476.
    143. J. Woo,S. A. Meguid, Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures,2001.38(42-43):7409-7421.
    144.周晓舟,影响声子晶体带隙的材料参数研究.2011,北京交通大学.
    145. Z. Jiang, N. Amemiya, O. Maruyama, Y. Shiohara, Critical current density distribution and magnetization loss in YBCO coated conductors. Physica C:Superconductivity,2007.463-465:790-794.
    146. G. Grasso, B. Hensel, A. Jeremie, R. Flukiger, Distribution of the transport critical current density in Ag sheathed (Bi, Pb)2Sr2Ca2Cu3Ox tapes produced by rolling. Physica C: Superconductivity,1995.241(1-2):45-52.
    147. F. Gomory,L. Gherardi, Transport AC losses in round superconducting wire consisting of two concentric shells with different critical current density. Physica C:Superconductivity,1997. 280(3):151-157.
    148. K. Kazuhiro, M. Yasunori, H. Toshihiro, F. Kazuo, AC loss evaluation of thin superconducting wires with critical current distribution along width. Superconductor Science and Technology,2004.17(3):555.
    149. T. Osami, AC losses in a type Ⅱ superconductor strip with inhomogeneous critical current distribution. Superconductor Science and Technology,2005.18(5):596.
    150. Y. F. Zhao,T. H. He, Kim Model of Transport ac Loss with Position Dependent Critical Current Density in a Superconducting Cylinder. Journal of Low Temperature Physics,2010. 159(3-4):515-523.
    151. J. Lehtonen, M. Ahoranta, R. Mikkonen, AC losses in non-homogeneous HTS conductors. Physica C:Superconductivity,2002.372-376, Part 3:1743-1745.
    152. T. Schuster, H. Kuhn, A. Weisshardt, H. Kronmuller, B. Roas, O. Eibl, M. Leghissa, H. W. Neumuller, Current capability of filaments depending on their position in (Bi,Pb)(2)Sr2Ca2Cu3O10+δ multifilament tapes. Applied Physics Letters,1996.69(13): 1954-1956.
    153. M. Lelovic, P. Krishnaraj, N. G. Eror, U. Balachandran, Minimum critical-current density of 10(5)-A/CM(2) at 77-K in the thin-layer of Bi(1.8)Pb(0.4)Sr(2.0)Ca(2.2)Cu(3.o)0(Y) superconductor near the Ag in Ag-sheathed tapes. Physica C:Superconductivity,1995.242(3-4):246-250.
    154. M. Lelovic, P. Krishnaraj, N. G. Eror, A. N. Iyer, U. Balachandran, Transport critical current density above 10(5) A cm(-2) at 77 K in Bi1.8Pb0.4Sr2.0Ca2.2Cu30Oy superconducting tapes made by the Ag wire-in-tube method. Superconductor Science & Technology,1996.9(3): 201-204.
    155. Y. F. Zhao,Y. H. Zhou, Transport AC Losses in Superconducting Cylinder with Critical Current Density Distribution Along Radius. Journal of Low Temperature Physics,2009. 156(1-2):30-37.
    156. C. G. Huang, H. D. Yong, Y. H. Zhou, Influence of Critical Current Density Distribution on Transport AC Losses for Round Superconducting Wire. Journal of Low Temperature Physics, 2013,DOI:10.1007/s10909-012-0843-9.
    157. Y. Ichiki,H. Ohsaki, Numerical analysis of AC losses in YBCO coated conductor in external magnetic field. Physica C:Superconductivity,2004.412-414, Part 2:1015-1020.
    158. S. Svetlomir, G. Francesco, D. Bertrand, P. A. Stephen, Comparison of the AC losses of BSCCO and YBCO conductors by means of numerical analysis. Superconductor Science and Technology,2005.18(10):1300.
    159. P. Enric,G. Francesco, Numerical simulations of the angular dependence of magnetization AC losses:coated conductors, roebel cables and double pancake coils. Superconductor Science and Technology,2012.25(1):014008.
    160. D. Miyagi,O. Tsukamoto, Characteristics of AC transport current losses in YBCO coated conductors and their dependence on distributions of critical current density in the conductors. Ieee Transactions on Applied Superconductivity,2002.12(1):1628-1631.
    161.王金星,超导磁体.1985,北京:原子能出版社.
    162. E. H. Brandt,M. Indenbom, Type-Ⅱ-superconductor strip with current in a perpendicular magnetic field. Physical Review B,1993.48(17):12893-12906.
    163. E. Zeldov, J. R. Clem, M. McElfresh, M. Darwin, Magnetization and transport currents in thin superconducting films. Physical Review B,1994.49(14):9802-9822.
    164. M. Ciszek, O. Tsukamoto, N. Amemiya, J. Ogawa, O. Kasuu, H. Ii, K. Takeda, M. Shibuya, Angular dependence of AC transport current losses in biaxially aligned Ag/YBCO-123/YSZ/Hastelloy coated conductor. EEEE Transactions on Applied Superconductivity,2000.10(1):1138-1141.
    165. J. J. Rabbers, D. C. van der Laan, B. Ten Haken, H. H. J. Ten Kate, Magnetisation and transport current loss of a BSCCO/Ag tape in an external AC magnetic field carrying an AC transport current IEEE Transactions on Applied Superconductivity,1999.9(2):1185-1188.
    166. D. Miyagi,O. Tsukamoto, Characteristics of AC transport current losses in YBCO coated conductors and their dependence on distributions of critical current density in the conductors. IEEE Transactions on Applied Superconductivity,,2002.12(1):1628-1631.
    167. Z. Guo Min, L. Liang Zhen, X. Li Ye, Q. Ming, Y. Yun Jia, The angular dependence of AC transport losses for a BSCCO/Ag tapes in DC applied field. IEEE Transactions on Applied Superconductivity,,2003.13(2):2972-2975.
    168. G. Min Zhang, L. Zhen Lin, L. Ye Xiao, Y. Jia Yu, A theoretical model for the angular dependence of the critical current of BSCCO/Ag tapes. Physica C:Superconductivity,2003. 390(4):321-324.
    169.C. P. Bean, Magnetization of High-Field Superconductors. Reviews of Modern Physics,1964. 36(1):31-39.
    170.曹效文,王智河,Bi系带材的临界电流密度性质.低温与超导,1997.25:46-55.
    171. M. Lelovic, P. Krishnaraj, N. G. Eror, A. N. Iyer, U. Balachandran, Transport critical current density above at 77 K in superconducting tapes made by the Ag wire-in-tube method Superconductor Science and Technology,1996.9(3):201.
    172. N. Murayama,J. B. Vander Sande, Hot forging with heat treatment of Bi-Pb-Sr-Ca-Cu-O. Physica C:Superconductivity,1995.241(3-4):235-246.
    173. S. Mollah, Critical temperatures and critical currents of PbBiSCCO-metal/alloy composites. Materials Letters,2002.52(3):159-165.
    174. R. G. Wang, B. Seifi, Y. L. Liu, M. Eriksen, P. Skov-Hansen, J. C. Grivel, P. Vase, Engineering critical current density improvement in Ag-Bi-2223 tapes. leee Transactions on Applied Superconductivity,2001.11 (1):2983-2986.
    175. J. Ogawa, Y. Sawai, H. Nakayama, O. Tsukamoto, D. Miyagi, n value and Jc distribution dependence of AC transport current losses in HTS conductors. Physica C:Superconductivity, 2004.401(1-4):171-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700