影响声子晶体带隙的材料参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体(phononic crystals)是一种具有周期性人工结构并呈现弹性波(声波)带隙特征的声学功能材料。其丰富的声学特性、超强的可设计性以及广泛的应用前景,使得通过带隙调制,设计符合各种需求的声子晶体结构成为相关领域进一步研究的前沿课题。
     影响带隙的参数包括材料参数和结构参数,本文针对影响带隙的材料参数,从基本波动方程出发分析了影响固/固、流/流、固/流体系声子晶体带隙的材料参数;并进一步利用平面波展开法计算了二维固/固体系、以及二维和三维流/流体系声子晶体的带隙,利用Dirichlet-to-Neumann (DtN)映射法计算了二维固/流体系的带隙;讨论了材料参数对能带结构中可能出现的第一条带隙(也是最具有应用价值的带隙)的相对宽度、中心频率和上下边界等带隙特征参量的影响。主要结果有:
     1、影响一维固/固、流/流、固/流体系声子晶体带隙的材料参数均为该体系中波(横波或纵波)的阻抗比和波速比(或质量密度比和模量比),其中阻抗比具有决定性的影响。阻抗比为1时,没有带隙。阻抗比偏离1时产生带隙,且其相对宽度随着阻抗比偏离1的程度而增大。
     2、影响二维固/固声子晶体反平面剪切波带隙的材料参数是散射体和基体的质量密度比和剪切模量比(或波阻抗比和波速比);影响二维和三维声子晶体混合波带隙的材料参数除上述比值外,还包括散射体和基体的泊松比。利用平面波展开法对二维体系进行了详细计算,结果表明:对反平面剪切波,质量密度比对带隙起更主要的作用;对平面混合波,密度比和模量比对带隙有同等重要的影响。对任意模态的波,其带隙的相对宽度均在质量密度比和剪切模量比都较大时,有较大的值,且随这两个比值同时增大(即阻抗比增大且波速比接近1)而增大。除此之外,正方点阵和三角点阵均会在密度比较大模量比较小时出现带隙,在两比值都接近于1时均没有带隙。两种点阵不同的是,正方点阵不会在密度比较小模量比较大时出现带隙,而三角点阵不会在密度比和模量比都较小时出现带隙。无论点阵形式和材料参数如何,出现带隙时中心频率均随波速比的减小而降低。泊松比对带隙的影响很小,相对于散射体,基体的泊松比对带隙影响稍大;相对于正方点阵,三角点阵带隙受泊松比的影响稍大。
     3、影响流/流声子晶体带隙的材料参数是散射体和基体的质量密度比和体积模量比(或波阻抗比和波速比)。利用平面波展开法对二维和三维流/流声子晶体带隙进行了详细计算,结果表明:体积模量比对带隙有更重要的影响。带隙在质量密度比和体积模量比均较小时,其相对宽度较大,且随着这两个比值同时减小(即阻抗比减小波速比接近1)而增大。对二维流/流声子晶体,正方点阵和三角点阵情况均会在密度比较大模量比较小时出现带隙,在两比值都接近于1时均没有带隙。不同的是,正方点阵不会在密度比较小模量比较大时出现带隙,而三角点阵不会在密度比和模量比都较大时出现带隙;对三维流/流声子晶体,简立方、体心立方、面心立方三种点阵情况均还会在质量密度比较大体积模量比较小时出现带隙;相同填充率下三种点阵形式的带隙相对宽度依次增大。无论点阵形式和材料参数情况,出现带隙时中心频率均随波速比的减小而降低。
     4、影响二维固/流声子晶体带隙的材料参数是纵波的阻抗比和波速比(或质量密度比和模量比)、以及散射体泊松比。利用Dirichlet-to-Neumann映射法(DtN方法)以正方点阵为例进行了详细的计算,结果表明:纵波波速比大于1且模量比小于1时,随着模量比减小(即阻抗比和波速比同时减小)带隙相对宽度增大,同时带隙中心频率降低。纵波波速比大于1且质量密度比大于1时,随着纵波阻抗比增大出现了带隙,其相对宽度在很小的材料参数变化范围内迅速增大,达到一定值后即保持不变(出现“平台”)。固体泊松比对带隙的影响很小,泊松比较小时带隙相对宽度稍大。
     带隙相对宽度、中心频率和上下边界随材料参数的变化图,可以直观地表征材料参数对带隙的影响,对于根据材料参数设计带隙具有指导意义。
Phononic crystals (PCs) are a kind of acoustic functional materials which are composed of artificially periodic structures and exhibit elastic/acoustic wave band gaps (BGs). They have plenty of unique acoustic properties and designability, and thus have prospective applications in many fields. Design of phononic crystals through engineering of band gaps has been a key research field.
     Phononic band gaps are determined by many factors, including material and structural parameters. This thesis focuses on the influence of the material parameters on the band gaps. We will begin our analysis with basic wave equations and derive the material parameters directly determining band gaps for solid/solid, fluid/fluid and solid/fluid phononic crystals. Then band gaps are calculated by using the plane wave expansion (PWE) method for 2D solid/solid PCs and for 2D and 3D fluid/fluid PCs, and by using the Dirichlet-to-Neumann (DtN) map method for 2D solid/fluid PCs. For all of the above systems, the influences of the material parameters on the first band gap which is of the most practical importance are discussed by examining variation of the normalized band-gap width (i.e. gap width to mid-gap frequency ratio), mid-gap frequency and upper and lower band-gap edges. The results show:
     1. The material parameters determining the band gaps of 1D solid/solid, fluid/fluid and solid/fluid PCs are the transverse or longitudinal impedance ratio and velocity ratio. The impedance ratio predominantly determines the appearance of and width of the band gaps. There is no band gap when the impedance ratio is 1. Band gaps appear with the normalized width increasing when the value of the impedance ratio becomes more deviating from 1.
     2. The material parameters determining the band gaps of 2D solid/solid PCs are the mass density ratio and shear modulus ratio (or equivalently, the impedance ratio and velocity ratio) of the scatterers and the host for the anti-plane shear wave modes, and besides also include Poisson's ratios of the two components for the in-plane mixed wave modes or in 3D PCs. The results calculated by PWE method for 2D PCs show that the mass density ratio plays a more important role on band gaps for the anti-plane modes, and that both mass density ratio and shear modulus ratio act the same role for the in-plane modes. Band gaps for all wave modes easily appear at large density ratios and modulus ratios (or equivalently large impedance ratios with the velocity ratios close to 1), and their normalized gap widths become wider with both of these two parameters increasing. Band gaps may also appear at large density ratios and small modulus ratios, and disappear when these two ratios approach to 1 for both the square lattice and triangle lattice. However, no band gap appears in a square lattice with small density ratios and large modulus ratios, or in a triangle lattice with these two ratios being small. The mid-gap frequencies of the band gaps all become lower with velocity ratios decreasing. In addition, Poisson's ratios play a slight influence. The Poisson's ratio of the host material affects the band gaps a little more than that of the scatterers. The band gaps are a little more sensitive to Poisson's ratios for a triangle lattice than for a square lattice.
     3. The material parameters determining the band gaps of 2D and 3D fluid/fluid PCs are the mass density ratio and bulk modulus ratio (or equivalently, the impedance ratio and velocity ratio) of the scatterers and the host. The results calculated by PWE method show that the bulk modulus ratio has more influences on the band gaps than the density ratio. Band gaps easily appear at small density ratios and modulus ratios (or equivalently small impedance ratios with the values of velocity ratios close to 1), and their normalized gap widths become wider with both of these ratios decreasing. In 2D fluid/fluid PCs, band gaps may also appear at large density ratios and small modulus ratios, and disappear when these two ratios approach to 1, for both the square lattice and triangle lattice. But no band gap appears in a square lattice with small density ratios and large modulus ratios, or in a triangle lattice with these two ratios being large. Band gaps may also appear in a 3D fluid/fluid PC with large density ratios and small bulk modulus ratios in all lattices of simple cubic, body-centered cubic and face-centered cubic. In the case of the same filling friction, the normalized band gap width of a body-centered cubic system is bigger than that of a simple cubic system, but smaller than that of a face-centered cubic system. As a solid/solid system, the mid-gap frequencies of the band gaps become lower with the velocity ratios decreasing.
     4. The material parameters determining the band gaps of 2D solid/fluid PCs are the longitudinal wave impedance ratio and velocity ratio (or equivalently, the mass density ratio and modulus ratio) of the scatterers and the host, and Poisson's ratio of solid scatterers. the calculated results for a square lattice by using Dirichlet-to-Neumann map method (DtN method) show that when the velocity ratio is more than 1 and modulus ratio less than 1, the normalized gap widths increase and the mid-gap frequencies decrease as the modulus ratio becomes smaller. When the velocity ratio and density ratio are both bigger than 1, the band gaps appear with the impedance ratio increases. Their normalized gap widths are increasing rapidly to a nearly constant value with the material parameters varying in a small range. The Poisson's ratio of the solid scatterers affects the band gaps slightly. A little bigger normalized gap width can be obtained at small values of the Poisson's ratio.
     Illustrations of the normalized gap widths, mid-gap frequencies and upper and lower band gap edges varying with the material parameters demonstrate the influences of the material parameters on the band gaps of PCs and are of great help in engineering of band gaps.
引文
[1]冯端,金国钧.凝聚态物理学(上卷)[M].高等教育出版社:北京,2003.
    [2]夏建白.现代半导体物理(第一版)[M].北京:北京大学出版社,2000.
    [3]Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics [J].Physical Review Letters,1987,58:2059-2062.
    [4]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters,1987,58:2486-2489.
    [5]Yablonovitch E, Gmtter T J. Photonic band structure:the face-centered-cubic case [J]. Physical Review Letters,1989,63:1950-1953.
    [6} Yablonovitch E, Gmitter T J, Leung M L. Photonic band-structure-the face-centered-cubic case employing nonspherical atoms [J]. Physical Review Letters,1991,67:2295-2298.
    [7]付云起,袁乃昌,温熙森.微波光子晶体天线技术[M].北京:国防工业出版社,2006.
    [8]Kushwaha M S, Halevi P, Martinez G, Dobrzynski L, Djafarirouhani B. Acoustic band structure of periodic elastic composites [J]. Physical Review Letters,1993,71:2022-2025.
    [9]Lu M H, Feng L, Chen Y F. Phononic crystals and acoustic metamaterials [J]. Materials Today,2009,12,34-42.
    [10]Sigalas M M, Economou E N. Elastic and acoustic wave band structure [J]. Journal of Sound and Vibration,1992,158:377-382.
    [11]Martinez-Sala R, Sancho J, Sanchez J V, Gomez V, Llinares J, Meseguer F. Sound-attenuation by sculpture [J]. Nature,1995,378:241-241.
    [12]Brillouin L. Wave Propagation in Periodic structures. Second Edition [M]. New York: Dover,1953.
    [13]温熙森.光子/声子晶体理论与技术[M].北京:科学出版社,2006.
    [14]Grosso G, Parravicini G P. Solid State Physics [M]. Academic Press,2000.
    [15]Guz A N, Shulga N A. Dynamics of laminated and fibrous composites [J]. Applied Mechanics Reviews,1992,45:35-60.
    [16]Kuang W M, Hou Z L, Liu Y Y. The effects of shapes and symmetries of scatterers on the phononic band gap in 2d phononic crystals [J]. Physics Letters A,2004,332:481-490.
    [17]Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P. Locally resonant sonic materials [J]. Science,2000,289:1734-1736.
    [18]Liu Z Y, Chan C T, Sheng P. Three-component elastic wave band-gap material [J]. Physical Review B,2002,65:165116.
    [19]Wang G, Wen X S, Wen J H, Shao L H, Liu Y Z. Two-dimensional locally resonant phononic crystals with binary structures [J]. Physical Review Letters,2004,93:154302.
    [20]Wang G, Liu Y Z, Wen J H, Long Y D. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals [J]. Chinese Physics, 2006,15:407-411.
    [21]Gu Y W, Luo X D, Ma H R. Low frequency elastic wave propagation in two dimensional locally resonant phononic crystal with asymmetric resonator [J]. Journal of Applied Physics,2009,105:044903.
    [22]Pennec Y, Djafari-Rouhani B, Larabi H, Vasseur J O, Hladky-Hennion A C. Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate [J]. Physical Review B,2008,78:104105.
    [23]Hsu J C, Wu T T. Plate waves in locally resonant sonic materials [J]. Japanese Journal of Applied Physics,2010,49:1-5.
    [24]Miklowitz J. The Theory of Elastic Waves and Waveguides [M]. New York: North-Holland Publishing Company,1978.
    [25]Kushwaha M S, Halevi P, and Martine G. Theory of acoustic band structure of periodic elastic composites [J]. Physical Review B,1994,49:2313-2322.
    [26]阎宇胜.固体物理基础[M].北京:北京大学出版社,2003.
    [27]Vasseur J O, Deymier P A, Beaugeois M, Pennec Y, Djafari-Rouhani B, Prevost D. Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide [J]. Zeitschrift fur Kristallographie,2005,220:829-835.
    [28]Castanier M P, Pierre C. Predicting localization via Lyapunov exponent statistics [J]. Journal of Sound and Vibration,1997,203:151-157.
    [29]Li F M, Xu M Q, Wang Y S. Frequency-dependent localization length of SH-wave in randomly disordered piezoelectric phononic crystals [J]. Solid State Communications, 2007,141:296-301.
    [30]Xie W C, Ibrahim A. Buckling mode localization in rib-stiffened plates with misplaced stiffeners—a finite strip approach [J]. Chaos, Solitons and Fractals,2000,11:1543-1558.
    [31]Chen A L, Wang Y S. Study on band gaps of elastic waves propagating in one dimensional disordered phononic crystals [J]. Physica B,2007,392:369-378.
    [32]Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series[J]. Physica D,1985,16:285-317.
    [33]陈景良,陈向(?).特殊矩阵[M].北京:清华大学出版社,2000.
    [34]Cai G Q, Lin Y K. Localization of wave propagation in disordered periodic structures [J]. AIAA Journal,1991,29:450-456.
    [35]Ruzzene M, Baz A. Attenuation and localization of wave propagation in periodic rods using shape memory inserts [J]. Smart Materials and Structures,2000,9:805-816.
    [36]Baz A. Active control of periodic structures [J]. Journal of Vibration and Acoustics,2001, 123:472-479.
    [37]Chen A L, Wang Y S, and Zhang C. Localization of in-plane guided elastic waves in a two-dimensional solid waveguiding phononic crystal [J]. Applied Mechanics and Materials,2011,52:1233-1236.
    [38]Brunet T, Vasseur J, Bonello B, Djafari-Rouhani B, Hladky-Hennion A C. Lamb waves in phononic crystal slabs with square or rectangular symmetries [J]. Journal of Applied Physics,2008,104:043506.
    [39]Robillard J F, Matar O B, Vasseur J O, Deymier P A, Stippinger M, Hladky-Hennion A C, Pennec Y, Djafari-Rouhani B. Tunable magnetoelastic phononic crystals [J]. Applied Physics Letters,2009,95:124104.
    [40]Mohammadi S, Eftekhar A A, Khelif A, Adibi A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs [J]. Optics Express,2010,18: 9164-9172.
    [41]黄昆,韩汝琦改编.固体物理学[M].北京:高等教育出版社,1988.
    [42]Zhang X, Liu Z Y, Mei J, Liu Y Y. Acoustic band gaps for a two-dimensional periodic array of solid cylinders in viscous liquid [J]. Journal of Physics,2003,15:8207-8212.
    [43]Kafesaki M, Economou E N, Multiple-scattering theory for three-dimensional periodic acoustic composites [J]. Physical Review B,1999,60:11993.
    [44]Sigalas M M, Garcia N. Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps:the aluminum in mercury case [J]. Applied Physics Letters,2000,76:2307-2309.
    [45]Goffaux C, Vigneron J P, Theoretical study of a tunable phononic band gap system [J], Physical Review B,2001,64:075118.
    [46]Mallat S. A Wavelet Tour of Signal Processing [M]. New York:Academic Press,1998.
    [47]Daubechies I. Ten Lectures on Wavelets [M]. Philadelphia:SI AM Publ,1992.
    [48]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2005.
    [49]Checoury X, Lourtioz J M. Wavelet method for computing band diagrams of 2D photonic crystals [J]. Optics Communications,2006,259:360-365.
    [50]Yan Z Z, Wang Y S. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals [J]. Physical Review B,2006,74:224303.
    [51]闫志忠.基于小波理论的二维声子晶体带隙结构分析[D].北京交通大学,2007.
    [52]Sigalas M M, Soukoulis C M. Elastic-wave propagation through disordered and/or absorptive layered systems [J]. Physical Review B,1995,51:2780-2789.
    [53]Hou Z L, Kuang W M, Liu Y Y. Transmission property anslysis of two-dimensional phononic crystal [J]. Physics Letters A,2004,333:172-180.
    [54]Hou Z L, Fu X J, Liu Y Y. Calculation method to study the transmission properties of phononic crystals [J]. Physical Revew B,2004,70:014304.
    [55]Chen A L, Wang Y S, Yu G L, Guo Y F, Wang Z D. Elastic wave propagation in two-dimensional phononic crystals with one-dimensional quasi-periodicity and random disorder [J]. Acta Mechanica Solida Sinica,2008,21:517-528.
    [56]Mei J, Liu Z Y, Shi J, Tian D. Theory for elastic wave scattering by a two-dimensional periodical array of cylinders:An ideal approach for band-structure calculations [J]. Physical Review B,2003,67:245107.
    [57]Liu Z Y, Chan C T, Sheng P, Goertzen A L, Page J H. Elastic wave scattering by periodic structures of spherical objects:theory and experiment [J]. Physical Review B,2000,62: 2446-2457.
    [58]Chen H Y, Fung K H, Ma H, Chan C T. Polarization gaps and negative group velocity in chiral phononic crystals:layer multiple scattering method [J]. Physical Review B,2008, 77:224304.
    [59]Wright D W, Cobbold R. Two-dimensional phononic crystals with time-varying properties: a multiple scattering analysis [J]. Smart Materials and Structures,2010,19:045006.
    [60]Korringa J. On the calculation of the energy of a Bloch wave in a metal [J]. Physica,1947, 13:392-400.
    [61]Kohn W and Rostoker N. Solution of the Schrodinger Equation in Periodic Lattices with an Application to Metallic Lithium [J]. Physical Review,1954,94:1111-1120.
    [62]Ham F S and Segall B. Energy bands in periodic lattices-green's function method [J]. Physical Review,1961,124:1786-1796.
    [63]Segall B and Ham F S. Methods in Computational Physics [M]. London:Academic Press, 1968.
    [64]Garcia-Pablos D, Sigalas M, Montero de Espinoza F R, Torres M, Kafesaki M, Garcia N. Theory and experiments on elastic band gaps [J]. Physical Review Letters,2000,84: 4349-4352.
    [65]Tanaka, Y, Tomoyasu Y, Tamura S. Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch [J]. Physical Review B,2000, 62:7378-7392.
    [66]Vasseur J O, Deymier P A, Chenni B, Djafari-Rouhani B, Dobrzynski L, Prevost D. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals [J]. Phyiscal Review Letters,2001,86:3012.
    [67]刘丰铭.二维声子晶体中的FDTD理论计算方法及其应用实例[D].武汉大学,2005.
    [68]He Z J, Cai F Y, Liu Z Y. Guiding acoustic waves with graded phononic crystals [J]. Solid State Communications,2008,148:74-77.
    [69]Shi J J, Lin S, Huang T J. Wide-band acoustic collimating by phononic crystal composites [J]. Applied Physics Letters,2008,92:111901.
    [70]Liu Y Z, Yu D L, Zhao H G, Wen J H, Wen X S. Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models [J]. Journal of Physics D,2008,41:065503.
    [71]Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V. Complete band gaps in two-dimensional phononic crystal slabs [J]. Physical Review E,2006,74:0466104.
    [72]Langlet P, Hladkyhennion A C, Decarpigny J N. Analysis of the propagation of plane acoustic-waves in passive periodic materials using the finite-element method [J]. Journal of the Acoustical Society of America,1995,98:2792-2800.
    [73]Li J B, Wang Y S, Zhang C Z. Finite element method for analysis of band structures of three dimensonal phononic crystals [C].2008 IEEE International Ultrasonics Symposium Proceedings, Beijing,2008,1468-1471.
    [74]李建宝,汪越胜,张传增.二维声子晶体微腔能带结构的有限元分析与设计[J].人上晶体学报,2010,39:649-655.
    [75]王新华,王斌科,屈绍波,马华和徐卓.二维光子晶体功率分配与合成的仿真[J].光了学报,2009,38:1423-1426.
    [76]Cheng He, Ming-Hui Lu, Xin Heng, Liang Feng and Yan-Feng Chen. Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal [J]. Physical Review B,2011,83:075117.
    [77]Amir H. Safavi-Naeini and Oskar Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab [J]. Optics Express, 2010,18:14926.
    [78]Yeh J Y, Chen L W. Wave Propagations of a Periodic Sandwich Beam by FEM and the Transfer Matrix Method [J]. Composite Structures.2006,73:53-60.
    [79]Wang G, Wen J H, Liu Y Z, Wen X S. Lumped-mass method for the study of band structure in two-dimensional phononic crystals [J]. Physical Review B,2004,69:184302.
    [80]Li F L, Wang Y S. Band gap analysis of two-dimensional phononic crystals based on boundary element method [C].2008 IEEE International Ultrasonics Symposium Proceedings, Beijing,2008,245-248.
    [81]Goffaux C, Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method:application to lattices of locally resonant materials [J]. Physical Review B,2003,67:144301.
    [82]魏巍.层状介质中声子频带及瞬态弹性波[D].北京:北京大学,2005.
    [83]Yuan J H and Lu Y Y. Photonic bandgap calculations with Dirichlet-to-Neumann maps [J]. Journal of the Optical Society of America A,2006,23:3217-3222.
    [84]Yuan J H and Lu Y Y. Computing photonic band structures by Dirichlet-to-Neumann maps: The triangular lattice [J]. Optics Communications,2007,273:114-120.
    [85]Li S J and Lu Y Y. Computing photonic crystal defect modes by Dirichlet-to-Neumann [J]. Optics Express,2007,15:14454-14466.
    [86]Li F L, Wang Y S. Application of Dirichlet-to-Neumann map to calculation of band gaps for scalar waves in two-dimensional phononic crystals [J]. Acta Acustica united with Acustica,2011,97:284-290.
    [87]Zhen N, Wang Y S. Surface effects on bandgaps of transverse waves propagating in two dimensional phononic crystals with nanosized holes [J]. Materials Science Forum,2011, 675:611-614.
    [88]Richards D, Pines D J. Passive reduction of gear mesh vibration using a periodic drive shaft [J]. Journal of Sound and Vibration.2003,264:317-342.
    [89]Wang G, Wen X S, Wen J H, Liu Y Z. Quasi-one-dimensional periodic structure with locally resonant band gap [J]. Journal of Applied Mechanics.2006,73:167-170.
    [90]Ho K M, Cheng C K, Yang Z, Zhang X X, Sheng P. Broadband locally resonant sonic shields [J]. Applied Physics Letters,2003,83:5566-5568.
    [91]Sesion Jr P D, Albuquerque E L, Chesman C, Freire V N. Acoustic phonon transmission spectra in piezoelectric AIN/GaN fibonacci phononic crystals [J]. The European Physical Journal B.2007,58:379-387.
    [92]Marti'nez-Sala R, Rubio C, Garcia-Raffi L M, Sanchez-Perez J V, Sanchez-Perez E A, Llinares J. Control of noise by tress arranged like sonic crystals [J]. Journal of Sound and Vibration,2006,291:100-106.
    [93]万钧,张淳,王灵俊,资剑.光了晶体及其应用[J].物理,1999,28:990703.
    [94]Wu L Y, Chen L W, Liu C M. Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal [J]. Physica B,2009,404:1766-1770.
    [95]Wu L Y, Chen L W. Wave propagation in a 2D sonic crystal with a helmholtz resonant defect [J]. Journal of Physics D,2010,43:055401.
    [96]Psarobas I E, Stefanou N, Modinos A. Phononic crystals with planar defects. Physical Review B,2000,62:5536-5540.
    [97]Benchabane S, Khelif A, Choujaa A, Djafari-Rouhani B, Laude V. Interaction of waveguide and localized modes in a phononic crystal [J]. Europhysics Letters,2005,71: 570-575.
    [98]Pennec Y, Djafari-Rouhani B, Vasseur J O, Khelif A, Deymier P A. Tunable filtering and demultiplexing in phononic crystals with hollow cylinders [J]. Physical Review E,2004, 69:046608.
    [99]Pennec Y, Djafari-Rouhani B, Vasseur J O, Larabi H. Acoustic channel drop tunneling in a phononic crystal [J]. Applied Physics Letters,2005,87:261912.
    [100]Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides [J]. Applied Physics Letters,2004,84:4400-4402.
    [101]Sigalas M M. Defect states of acoustic waves in a two-dimensional lattice of solid cylinders [J]. Journal of Applied Physics,1998,84:3026-3030.
    [102]Kafesaki M, Sigalas M M, Garcia N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials [J]. Physical Review Letters,2000,85: 4044-4047.
    [103]Khelif A, Choujaa A, Djafari-Rouhani B, Wilm M, Ballandras S, Laude V. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal [J]. Physical Review B,2003,68:214301.
    [104]Khelif A, Djafari-Rouhani B, Vasseur J O, Deymier P A, Lambin P, Dobrzynski L. Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal [J]. Physical Review B,2002,65:174308.
    [105]Wu F G, Zhong H L, Zhong S, Liu Z Y, Liu Y Y. Localized states of acoustic waves in three-dimensional periodic composites with point defects [J]. European Physical Journal B, 2003,34:265-268.
    [106]Chandra H, Deymier P A, Vasseur J O. Elastic wave propagation along waveguides in three-dimensional phononic crystals [J]. Physical Review B,2004,70:054302.
    [107]Psarobas I E, Stefanou N, Modinos A. Phononic crystals with planar defects [J]. Physical Review B,2000,62:5536-5540.
    [108]Tanaka Y, Yano T, Tamura S. Surface guided waves in two-dimensional phononic crystals [J]. Wave Motion,2007,44:501-512.
    [109]赵言诚,赵芳,苑立波.同质位错缺陷二维声子晶体带隙结构及传导模的研究[J].哈尔滨工程大学学报,2006,27:617-620.
    [110]Sun J H, Wu T T. Analyses of mode coupling in joined parallel phononic crystal waveguides [J]. Physical Review B,2005,71:174303.
    [I11]Sun J H, Wu T T. Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method [J]. Physical Review B,2007, 76:104304.
    [112]Yao Z J, Yu G L, Wang Y S, Shi Z F. Propagation of bending waves in phononic crystal thin plates with a point defect [J]. International Journal of Solids and Structures,2009,46: 2571-2576.
    [113]Vasseur J O, Deymier P A, Djafari-Rouhani B, Pennec Y, Hladky-Hennion A. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates [J]. Physical Review B,2008,77:085415.
    [114]Vasseur J O, Hladky-Hennion A C, Djafari-Rouhani B, Duval F, Dubus B, Pennec Y, Deymier P A. Waveguiding in two-dimensional piezoelectric phononic crystal plates [J]. Journal of Applied Physics,2007,101:114904.
    [115]Hsiao F L, Khelif A, Moubchir H, Choujaa A, Chen C C, Laude V. Waveguiding inside the complete band gap of a phononic crystal slab [J]. Physical Review E,2007,76:056601.
    [116]Veselago V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeablility [J]. Soviet Physics USPEKI,1968,10:509-514.
    [117]Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science,2001,292:77-79.
    [118]Gralak B, Enoch S, Tayeb G. Anomalous refractive properties of photonic crystals [J]. Journal of the Optical Society of America A,2000,17:1012-1020.
    [119]Cervera F, Sanchis L, Sanchez-Perez J V, Martinez-Sala R, Rubio C, Meseguer F, Lopez C, Caballero D, Sanchez-Dehesa J. Refractive acoustic devices for airborne sound [J]. Physical Review Letters,2001,88:023902.
    [120]Gupta B C, Ye Z. Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals [J]. Physical Review E,2003,67:036603.
    [121]Zhang X D, Liu Z Y. Negative refraction of acoustic waves in two-dimensional phononic crystals [J]. Applied Physics Letters,2004,85:341-343.
    [122]Ke M Z, Liu Z Y, Qiu C Y, Wang W G, Shi J, Wen W J, Sheng P. Negative-refraction imaging with two-dimensional phononic crystals [J]. Physical Review B,2005,72: 064306.
    [123]Torres M, Montero De Espinosa F R. Ultrasonic band gaps and negative refraction [J]. Ultrasonics,2004,42:787-790.
    [124]Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X. Ultrasonic metamaterials with negative modulus [J]. Nature Materials,2006,5:452-456.
    [125]Yang S, Page J H, Liu Z, Cowan M L, Chan C T, Sheng P. Focusing of sound in a 3d phononic crystal [J]. Physical Review Letters,2004,93:024301.
    [126]Zhang X. Universal non-near-field focus of acoustic waves through high-symmetry quasicrystals [J]. Physical Review B,2007,75:024209.
    [127]Peng S S, Mei X F, Pang P, Ke M Z, Liu Z Y. Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals [J]. Solid State Communications,2009,149:667-669.
    [128]Li X C, Gao J L, Liu S E, Zhou K C, Huang B Y. Disorder effect on the focus image of phononic crystal panel with negative refraction [J]. Acta Physica Sinica,2010,59: 376-380.
    [129]Qiu C Y, Liu Z Y. Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals [J]. Applied Physics Letters,2006,89: 063106.
    [130]Ke M Z, Liu Z Y, Pang P, Qiu C Y, Zhao D G, Peng S S, Shi J, Wen W J. Experimental demonstration of directional acoustic radiation based on two-dimensional phononic crystal band edge states [J]. Applied Physics Letters,2007,90:083509.
    [131]Ke M Z, Liu Z Y, Pang P, Wang W G, Cheng Z G, Shi J, Zhao X Z. Highly directional acoustic wave radiation based on asymmetrical two-dimensional phononic crystal resonant cavity [J]. Applied Physics Letters,2006,88:263505.
    [132]Hsu F C, Wu T T, Hsu J C, Sun J H. Directional enhanced acoustic radiation caused by a point cavity in a finite-size two-dimensional phononic crystal [J]. Applied Physics Letters, 2008,93:201904.
    [133]Liu W, Su X Y. Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals [J]. Physics Letters A,2010,374:2968-2971.
    [134]Lin S S, Huang T J, Sun J H, Wu T T. Gradient-index phononic crystals [J]. Physical Review B,2009,79:094302.
    [135]Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y. Graded negative index lens with designable focal length by phononic crystal [J]. Journal of Physics D:Applied Physics, 2009,42:185505.
    [136]To A C, Lee B J. Multifunctional one-dimensional phononic crystal structures exploiting interfacial acoustic waves [C]. Materials Research Society Symposium Proceedings, San Francisco, CA, United states,2009,193-197.
    [137]Torquato S, Hyun S, Donev A. Multifunctional composites:optimizing microstructures for simultaneous transport of heat and electricity [J]. Physical Review Letters,2002,89: 266601.
    [138]Sigalas M, Economou E N, Band structure of elastic waves in two dimensional systems [J], Solid State Communications,1993,86:141-143.
    [139]Kushwaha M S, Halevi P. Band-gap engineering in periodic elastic composites [J]. Applied Physics letters,1994,64:1085-1087.
    [140]Wu F G, Hou Z L, Liu Z Y, Liu Y Y. Acoustic Band Gaps in Two-Dimensional Rectangular Arrays of Liquid cylinders [J]. Solid State Communications.2002,123:239-242.
    [141]Vasseur J O, Djafari-Rouhani B, Dobrzynski L, et al., Complete acoustic band gaps in periodic fibre reinforced composite materials:the carbon/epoxy composite and some metallic systems [J]. Journal of Physics:Condensed Matter,1994:8759-8770.
    [142]Kee C S, Kim J E, Park H Y, Chang K J, and Lim H. Essential role of impedance in the formation of acoustic band gaps [J].2000,87:1593-1596.
    [143]Ying-Hong Liu, Chien C Chang, Ruey-Lin Chern and C Chung Chang. Phononic band gaps of elastic periodic structures:A homogenization theory study [J]. Physical Review B, 2007,75:054104.
    [144]Yan Z Z, Wang Y S. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method [J]. Physical Review B,2008,78:094306.
    [145]Wu T T, Huang Z G, Lin S. Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy [J]. Physical Review B,2004,69: 094301.
    [146]Zhan Z Q, Wei P J. Influences of anisotropy on band gaps of 2D phononic crystal [J]. Acta Mechanica Solida Sinica,2010,23:181-188.
    [147]Han J C, Zhan Z Q, Wei P J. The influence of material constants on band gaps of piezoelectric phononic crystal [J]. Proceedings of the 2008 Symposium on Piezoelectric, Acoustic Wave and Device Application.2008,360-363.
    [148]Hou Z L, Wu F G, Liu Y Y. Phononic Crystals Containing Piezoelectric Material [J]. Solid State Communications.2004,130:745-749.
    [149]Zhao Y P, Wei P J. The band gap of ID viscoelastic phononic crystal [J]. Computational Materials Science,2009,46:603-606.
    [150]Wei P J, Zhao Y P. The Influence of Viscosity on Band Gaps of 2D Phononic Crystal [J]. Mechanics of Advanced Materials and Structures.2010,17:383-392.
    [151]Hsu J C, Wu T T. Bleustein-gulyaev-shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control,2006,53:1169-1176.
    [152]Laude V, Wilm M, Benchabane S, Khelif A. Full band gap for surface acoustic waves in a piezoelectric phononic crystal [J]. Physical Review E,2005,71:036607.
    [153]Benchabane S, Khelif A, Rauch J Y, Robert L, Laude V. Evidence for complete surface wave band gap in a piezoelectric phononic crystal [J]. Physical Review E,2006,73: 065601.
    [154]王毅泽.磁电弹性声带隙材料结构中的弹性波传播与局部化研究[D].哈尔滨:哈尔滨工业大学,2009.
    [155]Min R, Wu F G, Zhong L H, et al., Extreme acoustic band gaps obtained under high symmetry in 2D phononic crystals [J]. Journal of physics D.2006,39:2272.
    [156]Wu F G, Liu Z Y, and Liu Y Y. Acoustic band gaps created by rotating square rods in a two-dimensional lattice [J]. Physical Review E.2002,66:046628.
    [157]赵芳,苑立波.二维复式格子声子晶体带隙结构特性[J].物理学报,2005,54:4511-4516.
    [158]李建宝.声子晶体带隙调控的数值与实验研究[D].北京:北京交通大学,2011.
    [159]Kafesaki M, Sigalas M M, Economou E N. Elastic wave band gaps in 3-d periodic polymer matrix composites [J]. Solid State Communications,1995,96:285-289.
    [160]Kushwaha M S, DjafariRouhani B. Complete acoustic stop bands for cubic arrays of spherical liquid balloons [J]. Journal of Applied Physics,1996,80:3191-3195.
    [161]Kushwaha M S, Halevi P. Stop bands for cubic arrays of spherical balloons [J]. Journal of the Acoustical Society of America,1997,101:619-622.
    [162]Kuang W M, Hou Z L, Liu Y Y, The effect of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals [J]. Physics Letters A.2004,332:481-490.
    [163]Kuang W M, Hou Z L, Liu Y Y, et al., The band gaps of cubic phononic crystals with different shapes of scatterers [J]. Journal of Physics D.2006,39:2067.
    [164]Li F M, Wang Y Z, Fang B, Wang Y S. Propagation and localization of two-dimensional in-plane elastic waves in randomly disordered layered piezoelectric phononic crystals [J]. International Journal of Solids and Structures,2007,44:7444-7456.
    [165]Li F M, Xu M Q, Wang Y S. Frequency-dependent localization length of SH-wave in randomly disordered piezoelectric phononic crystals [J]. Solid State Communications, 2007,141:296-301.
    [166]Wang Y Z, Li F M, Huang W H, Wang Y S. The propagation and localization of rayleigh waves in disordered piezoelectric phononic crystals [J]. Journal of the Mechanics And Physics of Solids,2008,56:1578-1590.
    [167]Chen A L, Wang Y S, Li J B, Zhang C Z. Localisation of elastic waves in two-dimensional randomly disordered solid phononic crystals [J]. Waves in Random and Complex Media, 2010,20:104-121.
    [168]曹永军,胡晓颖,周培勤.一维准周期结构声子晶体带隙特性的研究[J].内蒙古师范大学学报,2008,37:53-57.
    [169]Chen A L, Wang Y S, Guo Y F, Wang Z D. Band structures of Fibonacci phononic quasicrystals [J]. Solid State Communications,2008,145:103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700