含共振单元的二维多孔声子晶体带隙特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体因具有带隙特性而在减震降噪方面有潜在的应用,近年来吸引了诸多关注。基于声带隙的产生机理可知,局域共振带隙比布拉格散射带隙频率更低,且局域共振机理突破了对结构周期性的要求限制,更有利于声子晶体在实际中的应用。本文即是基于局域共振机理,设计了一种含共振单元的二维多孔声子晶体。并利用有限元方法,研究了该体系的带隙特征,主要工作如下:
     1.计算了该体系的能带结构、响应谱及能带上特殊点的振动模态,结果表明:单元的局域共振是引起带隙产生的原因。
     2.研究了结构的几何参数对能带结构的影响,分析了带隙边界随单元几何参数的变化,讨论了使带隙宽度最大、中心频率最低的几何参数取值。
     3.通过研究带隙边界点的振动模态,提出了等效弹簧-质量模型和弹簧-钟摆模型,并给出了带隙边界的近似公式。
Phononic crystals have attracted extensive attentions for noise reduction and vibration isolation due to their properties of bandgaps. It is known that the locally resonant bandgaps are lower than those of the Bragg type, and therefore are more significant in practical applications. Based on the locally resonance, we design a type of two-dimensional holey phononic crystal with unit cells of resonators in this thesis. The bandgap properties are studied by using the finite element method. The main contributions of the thesis include:
     1. Band structures and vibration modes of the proposed phononic crystal are studied. It is found that bandgaps appear in the low frequency region and that the generation is due to the local resonance of the resonant units.
     2. The influences of the geometric parameters on the bandgaps are discussed, and the variations of the bandgap edges versus the geometric parameters are studied. The optimal values of the geometric parameters for the widest and lowest bandgap are suggested.
     3. Equivalent spring-mass/pendulum models are developed to predict the frequencies of the bandgap edges by studying the vibration modes at the bandgap edges.
引文
[1]赵辉,张其锦.光子晶体研究进展[J].高分子通报,2001,10:60-73.
    [2]Huang K. Han R Q. Solid state physics [M]. Beijing: Press of Higher Education, 1988. 153-180.
    [3]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters, 1987, 58:2059-2062.
    [4]John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters,1987,58:2486-2489.
    [5]Joannopoulos J D, Meade R D, Winn J N. Photonic crystals [M]. Princeton: Princeton University Press, 1955.
    [6]Michael J H, Richard W Z, John P. A high-Q reconfigurable planar EBG cavity resonator [J]. IEEE Microwave Wireless Components Letters, 2001,6:255-257.
    [7]Tae-yeoul Y, Kai C. One-dimensional photonic bandgap resonators and varactor tuned resonators [J]. IEEE Microwave Symposium Digest, 1999, 4:1629-1632.
    [8]Radisic V, Qian Y, Itoh T. Broadband power amplifier using dielectric photonic bandgap structure [J]. IEEE Microwave Guided Wave Letters,1998,8:13-14.
    [9]Kushwaha M S, Halevi P, Dobrzynski L. Acoustic band structure of periodic/elastic composites [J]. Physical Review Letters, 1993,71:2022-2025.
    [10]塔金星.21世纪最具潜力的新型带隙材料——声子晶体[J].现代物理知识,2006,18:32-33.
    [11]Kushwaha M S, Halevi P, Martinez G. Complete acoustic bandgaps in periodic fiber-reinforced composite-materials [J]. Journal of Physics:Condensed Matter, 1994:8759-8763.
    [12]Kushwaha M S, Halevi P, Martinez G, Dobrzynski L, Djafarirouhani B. Acoustic band structure of periodic elastic composites [J]. Physical Review Letters, 1993,71:2022-2025.
    [13]周晓舟.影响声子晶体带隙的材料参数研究[D].北京:北京交通大学,2011.
    [14]Sigalas M M, Economou E N. Elastic and acoustic wave band structure [J]. Journal of Sound and Vibration,1992,158:377-382.
    [15]Martinez-Sala R, Sancho J, Sanchez J V, Gomez V, Linares J, Meseguer F. Sound-attenuation by sculpture [J]. Nature, 1995,378:241-241.
    [16]汪越胜.声带隙功能材料的科学问题及力学思考[C].//冯西桥,陈伟球,孟国庆,詹世革.固体力学若干新进展.北京:清华大学出版社,2006,323-341.
    [17]Vasseur J O, DjafariRouhani B, Dobrzynski L. Acoustic bandgaps in fibre composite materials of boron nitride structure [J]. Journal of Physical-Condensed Matter, 1997,9:7327-7341.
    [18]温激鸿,韩小云,王刚,赵宏刚,刘耀宗.声子晶体研究概述[J].功能材料,2003,34:364-367.
    [19]Kuang W M, Hou Z L, Liu Y Y. The effects of shapes and symmetries of scatters on the phononic bandgap in 2D phononic crystals [J]. Physics Letters A,2004, 332:481-490.
    [20]Sigalas M M. Elastic wave bandgaps and defect states in two-dimensional conposites [J]. Journal of the Acoustical Society of America, 1997,101:1256-3030.
    [21]Kafesaki M, Sigalas M M, Garcia N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Physical Review Letters, 2000, 85:4044-4047.
    [22]吴福根.声子晶体中的带隙及缺陷态研究[D].广州:华南理工大学,2001.
    [23]Benchabane S, Khelif A, Choujaa A, Djafari-Rouhani B, Laude V. Interaction of waveguide and localized modes in phononic crystal [J]. Europhysics Letters, 2005,71:570-575.
    [24]Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides [J]. Applied Physics Letters, 2004,84:4400-4402.
    [25]Pennec Y, Djafari-Rouhani B, Vasseur J O, Larabi H, Khelif A, Choujaa A, Benchabane S, Laude V. Acoustic channel drop tunneling in a phononic crystal [J]. Applied Physics Letters, 2005,87:261912.
    [26]Torres M, Montero de Espinosa F R. Ultrasonic bandgaps and negative refraction [J]. Ultrasonics,2004,42:787-790.
    [27]Li J, Liu Z, Qiu C. Negative refraction imaging of acoustic waves by a two-dimensional three-component [J]. Physics Review B,2006,73:054302.
    [28]Hu X, Shen Y, Liu X, Fu R, Zi J. Superlensing effect in liquid surface waves [J]. Physics Review E, 2004, 69:030201.
    [29]Qiu C Y, Liu Z Y. Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals [J]. Application Physics Letters, 2006, 89:063106.
    [30]Ivansson S. Sound absorption by viscoelastic coatings with periodically distributed cavities [J]. Journal of the Acoustical Society of America, 2006, 119: 3558-3567.
    [31]张荣英,姜根山,王璋奇,吕亚东.声子晶体的研究进展及应用前景[J].声学技术,2006,25:35-42.
    [32]Miklowitz J. The theory of elastic waves and waveguides [M]. New York:North-Holland Publishing Company, 1978.
    [33]冯端,金国钧.凝聚态物理学(上卷)M].北京:高等教育出版社,2003.
    [34]Vasseur J O, Deymier P A, Beaugeois M, Pennec Y, Djafari-Rouhani B, Prevost D. Experimental observation of resonant filtering in a two-dimensional. phononic crystal waveguide [J]. Zeitschrift Fur Kristallographie, 2005,220:829-835.
    [35]Sanchez-Perez J V, Caballero D, Martinez-Sala R, Rubio C, Sanchez-Dehesa J, Meseguer F, Llinares J, Galvez F. Sound attenuation by a two-dimensional array of rigid cylinders[J]. Physical Review Letters, 1998,80:5325-5328.
    [36]Liu Z, Zhang X, Mao Y. Locally resonant sonic materials [J]. Science, 2000,289:1734-1736.
    [37]Dowling J P. Sonic band structure in fluids exhibiting periodic density variations [J]. Journal of the Acoustical Society of America, 1992,91:2539-2543.
    [38]Esquivel-Sirvent R, Cocoletzi G H. Band structure for the propagation of elastic waves in superlatticcs [J]. Journal of the Acoustical Society of America, 1994, 95:86-90.
    [39]James R, Woodley S M, Dyer C M. Sonic bands, bandgaps and defect states in layered structures-theory and experiment [J]. Acoustical Society of America, 1995,97:2041-2047.
    [40]Sigalas M M, Soukoulis C M. Elastic-wave propagation through disordered and/or absorptive layered systems [J]. Physics Review B,1995,51:2780-2789.
    [41]Hou Z, Wu F, Liu Y. Phononic crystals containing piezoelectric material [J]. Solid State Communications,2004,130: 745-749.
    [42]Wilim M, Khelif A, Ballandras S. Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials [J]. Physics Review E, 2003,67:065602.
    [43]Zhang X, Liu Z, Mei J. Acoustic bandgaps for a two-dimensional periodic array of solid cylinders in viscous liquid [J]. Journal of Physicsl-Condensed Matter, 2003,15:8207-8212.
    [44]Platts S B, Movchan N V, McPhedran R C. Bandgaps and elastic waves in disordered stacks: normal incidence [J]. Proceeding of the Royal Society of London A, 2003,459:221-240.
    [45]Psarobas I E, Sigalas M M. Elastic bandgaps in a fee lattice of mercury spheres in aluminum [J]. Physics Review B,2002,66:052302.
    [46]温维佳,沈平局.局域共振的光子、声子功能材料[J].物理,2004,33:106-110.
    [47]Liu Z Y, Zhang X X, Mao Y W, Zhu Z Z, Yang Z Y, Chan C T, Sheng P. Locally resonant sonic materials [J]. Science,2000,289:1734-1736.
    [48]Wang G, Wen X S, Wen J H. Two-dimensional locally resonant phononic crystals with binary structures [J]. Physics Review B,2004,69:184302.
    [49]Chen J J, Bonello B, Hou Z L. Plate-mode waves in phononic crystal thin slabs:mode conversion [J]. Physical Review E, 2008, 78:036609.
    [50]Brunet T, Vasseur J, Bonello B, Djafari-Rouhani B, Hladky-Hennion A C. Lamb waves in phononic crystal slabs with square or rectangular symmetries [J]. Journal of Applied Physics, 2008,104:043506.
    [51]Zhao Y C, Wu Y B, Yuan L B. Characteristics of the localized modes in 2D phononic crystal with heterostructure crossover region defect [J]. Physica Scripta, 2009,80:065401.
    [52]Robillard J F, Matar O B, Vasscur J O, Dcymier P A, Stippinger M, Hladky-Hennion A C, Pennec Y, Djafari-Rouhani B. Tunable magnctoclastic phononic crystals [J]. Applied Physics Letters, 2009, 95:124104.
    [53]Checoury X, Lourtioz J M. Wavelet method for computing band diagrams of 2D photonic crystals [J]. Optics Communications, 2006, 259:360-365.
    [54]Yan Z Z, Wang Y S. Wavelet-based method for calculating elastic bandgaps of two-dimensional phononic crystals [J]. Physical Review B,2006,74:224303.
    [55]闫志忠.基于小波理论的二维声子晶体带隙结构分析[D].北京交通大学,2007.
    [56]Yan Z Z, Wang Y S. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method [J]. Physical Review B,2008,78:094306.
    [57]Yan Z Z, Wang Y S. Wavelet method for calculating the defect states of two-dimensional phononic crystals [J]. Acta Mechanica Solida Sinica, 2008,21:104-109.
    [58]Zhao H G, Wen J H, Yu D L, Wen X S. Low-frequency acoustic absorption of localized resonances:experiment and theory [J]. Journal of Applied Physics, 2010, 107:023519.
    [59]Sadat-Saleh S, Benchabane S, Baida F I, Bernal M P, Laude V. Tailoring simultaneous photonic and phononic bandgaps [J]. Journal of Applied Physics, 2009, 106:074912.
    [60]Liu Z Y, Chan C T, Sheng P, Goertzen A L, Page J H. Elastic wave scattering by periodic structures of spherical objects:theory and experiment [J]. Physical Review B,2000, 62: 2446-2457.
    [61]Wang G, Wen J H, Liu Y Z, Wen X S. Lumped-mass method for the study of band structure in two-dimensional phononic crystals [J]. Physical Review B,2004,69: 184302.
    [62]Gao G.Q, Ma S L, Jin F, Kim T B, Lu T J. Acoustic bandgaps in finite-sized two-dimensional solid/fluid phononic crystals [J]. Acta Physica Sinica, 2010, 59:393-400.
    [63]Liu Y, Su J Y, Xu Y L, Zhang X C. The influence of pore shapes on the band structures in phononic crystals with periodic distributed void pores [J]. Ultrasonics, 2009, 49:276-280.
    [64]Liu Y Z, Yu D L, Zhao H G, Wen J H, Wen X S. Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models [J]. Journal of Physics D, 2008,41:065503.
    [65]Khelif A, Aoubiza B, Mohammadi S, Adibi A, Laude V. Complete bandgaps in two-dimensional phononic crystal slabs[J]. Physical Review E, 2006, 74:0466104.
    [66]Li F L, Wang Y S. Bandgap analysis of two-dimensional phononic crystals based on boundary element method [J]. IEEE International Ultrasonics Symposium Proceedings, 2008,60: 245-248.
    [67]魏巍.层状介质中声子频带及瞬态弹性波[D].北京大学,2005.
    [68]Goffaux C, Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials [J]. Physics Review B,2003,67: 144301.
    [69]Li F L, Wang Y S. Application of Dirichlet-to-Neumann map to calculation of band gaps for scalar waves in two-dimensional phononic crystals [J]. Acta Acustica united with Acustica, 2011,97:284-290.
    [70]杨桂通,张善元.弹性动力学[M].中国铁道出版社,北京,1988.
    [71]Achenbach J D. Wave Propagation in Elastic Solids [M]. North-Holland Publishing Company. Amsterdam, 1973.
    [72]冯端,金国钧,凝聚态物理学(上卷)[M].化学工业出版社,北京,2005.
    [73]Li J B, Wang Y S, Zhang C Z. Dispersion relations of a periodic array of fluid-filled holes embedded in an elastic solid [J]. Journal of Computational Acoustics, DOI NO: 10. 1142/S0218396X12500142,2012.
    [74]温熙森,温激鸿,郁殿龙,王刚,刘耀宗,韩小云.声子晶体[M].国防工业出版社,北京,2009.
    [75]Geng X C, Zhang Q M. Evaluation of piezocomposites for ultrasonic tansducer applications-influence of the unit cell dimensions and the properties of constituents on the performance of 2-2 piezocomposites [J]. IEEE Trans. Ultrasonics Ferroelectronics Frequency Control,1997,44: 857.
    [76]Thomson W T. Theory of vibration with applications [M]. Prentice-Hall Inc, USA, 1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700