H.264/AVC高效编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字化进程的发展,人们对视频图像的质量提出了更高的要求,高清清晰度和高帧频视频图像广泛的应用在数字电视,视频监控和网络广播等领域。近年来,随着移动通信技术和多媒体新业务的发展,人们越来越希望在移动终端上也能进行高质量的实时视频通信。视频编码技术的发展解决了高清视频图像网络传输带宽受限的问题。但是,高清视频编码需要处理非常庞大的数据量,这给系统资源,尤其是电池资源非常有限的移动终端系统带来了严峻的挑战。并且由于市场竞争的加剧,即使对于数字电视和安防监控这样的产品,各设计公司也在不断的推出新的解决方案,以降低其产品的实现代价,增强竞争能力。
     H.264/AVC编码标准是目前网络视频的主要压缩技术之一,具有较高的压缩效率和编码质量,同时其编码计算量也非常巨大。本文以现有编码技术为基础,研究面向H.264/AVC的高效编码技术,以期能够进一步降低编码过程的计算复杂度,论文主要的工作包括:
     对帧内编码加速技术进行了研究。提高帧内编码效率的方法主要有编码模式选择算法和预测模式选择算法。编码模式选择算法将像素作为基本单位计算宏块的平坦度特性,但是逐一统计宏块内各像素的分布情况计算量较大。针对于此本文提出了一种基于子块均值分布的编码模式选择算法,该算法将44子块均值作为基本单位来统计宏块的平坦度特征。编码结果表明,和其它算法相比较,本文算法在取得较高编码性能的前提下,有效的减少了平坦度统计过程中的计算量。使用SAD作为预测模式预判标准时,具有结构规整,易于硬件实现的特点。但是SAD需要计算子块内的全部像素,并且需要提前计算出各模式对应的预测像素值,增加了SAD计算过程的计算量。本文提出了一种基于PSAD的快速预测模式选择算法。该算法定义了各预测模式的重要像素,利用各模式间重要像素的差异将其分组进行比较,简化了SAD的计算过程,避免了预测像素的计算。编码结果和硬件实现结果表明,相比于其它算法,本文算法具有更少的预测模式使用数量和更低的硬件实现代价。
     研究了帧间编码加速技术。帧间编码模式和宏块运动特性之间具有一定的对应关系,利用编码块运动特性的时空相关性能够获得较好的编码速度提升。但是,对于复杂运动的视频序列,时空相邻宏块间的相关性较低,进而导致算法的性能下降。为了提高宏块运动特性的预测准确度,本文提出了一种基于参考区域运动复杂度的快速帧间模式选择算法。该算法通过定义的参考区域来表示宏块的运动特性,建立参考区域运动复杂度和各预测模式的对应关系。编码测试结果表明,和H.264/AVC标准算法相比较,本文算法在PSNR和码率基本保持不变的情况下,能够平均节约70%的编码时间。和其它算法相比较,尤其是对于运动复杂的视频序列,本文算法能够获得更高的编码速度提升增益。且硬件实现结果表明,本文算法过程简单易于实现。
     对运动估计中的搜索范围调整技术进行了研究。目前的搜索范围调整算法多按照一定的准则从预先设定的几种固定范围内进行选取,因此算法的自适应性能不高。由于搜索范围的大小主要是由预测运动向量PMV所决定的,因此基于运动向量差值概率密度函数的算法取得了较高的运动估计性能提升,但概率密度函数计算过程复杂。针对于此,本文提出了一种基于PMV准确度的搜索范围调整算法。该算法定义了一种简单的PMV准确度衡量方法,利用PMV准确度和搜索范围间的关系动态调整搜索范围。本文还对编码区域内的运动向量进行了分析,利用编码区域运动方向一致的特性进一步减小了搜索区域的大小。从搜索点数量上看,本文算法平均搜索点数量仅为全搜索算法的2.15%;从节约运动估计时间上看,本文能够较UMHexagonS算法平均节约15%左右的编码时间;且相比于其它同类算法,本文算法具有更少的搜索点数量。
     研究了多参考帧运动估计中参考帧选择技术。自顶向下相关性的参考帧预测算法能够具体给出各分割模式的候选参考帧数量,因此具有较高的编码效率。但对于运动复杂的测试序列,其预测准确度不高,且预测出的参考帧数量也较多。本文对不同分割模式间的参考帧相关性进行了分析,得出基于底层分割块的参考帧选择算法具有更高的准确度和更少的参考帧使用数量。进而提出了一种基于底层分割块的参考帧选择算法,该算法使用底层8×8编码块作为基本单元,根据各分割模式之间的关系生成各模式的候选参考帧集合。编码结果表明,本文算法具有较高的预测准确度,当参考帧设置为5时,平均参考帧使用数量仅为1.25个,相比于其它典型算法,本文算法具有更少的参考帧使用数量。
With the development of digitalization process, people put forward higher requirements on the quality of video. The HD resolution and high frame rate videos are widely used in digital TV, video monitoring and network broadcasting. In recent years, with the development of new multimedia business and mobile communication technology, people are eager to realize the real-time HD video communication on the mobile terminal. The video coding technology has solved the problem of limited transmission bandwidth. However, the processing data increases dramatically when coding the HD video, and also presenting a great challenge for the system with limited source, especially the mobile terminal with limited battery. And, because keen competition in the industry, even for the digital TV and security monitoring, the design companies are constantly introducing new solutions to reduce the implementation cost, and enhance competitiveness.
     H.264/AVC is the main coding format standard used in Blu-ray DVD and IPTV, which has higher compression efficiency and huge computation complexity. Based on the existing coding technology, we focus on the efficient coding technology to further reduce the computational complexity of the encoding process. The main works and achievements are as follows:
     (1) Research on the intra coding process. The coding mode selection algorithm and prediction mode selection algorithm are two ways to improve intra coding efficiency. In coding mode selection algorithm, the pixels are used as basic unit to compute the flatness characteristic of coding block, but large amount of calculations are needed in this process. Accordingly, a fats intra-coding mode decision algorithm is proposed, which is based on the distribution of the mean value on44sub-blocks. When compared with other algorithms, this algorithm can effectively reduce the amount of computation of the flatness characteristic process. The SAD has a regular structure and can be easily implement by hardware. But all pixels in the block and predicted pixels of each mode are needed to calculate, which result in excess calculation. Accordingly, a fast prediction mode selection algorithm based on the partial SAD is also proposed. The key pixels of each prediction mode are defined, and the prediction modes are categorized into several groups according with the difference of key pixels. Base on this difference, the calculation process of SAD can be simplified, and the calculation of predicted pixels also can be avoided. The coding results and hardware implementation show that, compared with other algorithms, this algorithm has less prediction mode and lower hardware costs.
     (2) Research on the inter coding process. The coding speed of inter prediction can be accelerate by using motion correlation of spatial and temporal neighbor macro blocks. However, in the video sequences with complex motion activity, the correlations between the adjacent macro blocks became weakly, and then lead to a decline in the acceleration of the coding speed. To accurately measure the motion complexity of MB, a fast inter-prediction mode decision algorithm is presented, which is based on the moving complexity in the reference region. The reference region is used to evaluate the motion characteristic, and the coding modes are classified into several categories according to the movement complexity. Extensive test results show that the proposed algorithm can reduce the overall encoding time by70%on average compared with the original algorithm in the H.264/AVC standard codec. Compared with other algorithms, especially for video sequences motion complexity, this algorithm can obtain a higher coding speed. The hardware implementation also results show that the algorithm is simple and easy to implement.
     (3) Research on the search range adjustment (SR) algorithm. At present, only several fixed predetermined SR are used in most search range adjustment algorithm, so the adaptive ability of these algorithms is not high. Because the search range is mainly determined by the predicted motion vector (PMV), the algorithm which is based on the probability density function of motion vector difference can obtain better motion estimation performance, but the calculation process of it is too complex. According to this, this paper presents search range adjustment algorithm which is based on the accuracy of PMV. In this algorithm, a simple measurement is defined to evaluate the accuracy the PMV, and SR is adaptively adjusted by using the relationship between the SR and the accuracy of PMV. The motion vectors of the coding region are also analyzed, the consistency of motion vectors are used to further reduce the SR size. Test results show, the number of search points can be reduced to2.15%when using our algorithm, and compared to the UMHexagonS algorithm,15%motion estimation time can be saved.
     (4) Research on search the multiple reference frame decision algorithm. The top-down prediction method can give the number of candidate reference frame, so it can give higher coding efficiency. But for the test sequence with complex motion, prediction accuracy is not high, and the number of reference frame is also increasing. In this paper, the correlations between the reference frames of different block partitions are analyzed. And the conclusion are drawn that the higher accuracy and less reference frames can be gotten when using the bottom block partitions. Then a fast multiframe selection algorithm is proposed, which is based on the88block partition. According to the relationship between the different partitions, the reference frames of each partition are predicted by using the88partition. Experimental results proved, when applying our algorithm, the reference frame numbers can be reduced from5to1.25. Compared to other typical algorithms, our algorithm obtains a much reduction in the coding time, with the same bit rate and PSNR.
引文
[1] Sezer O G, Demircin M U, and Zhou M H. A DSP-Based Solution to Increasethe Energy Efficiency of Real-Time Video Encoders[C].2012IEEE19thInternational Conference on Image Processing. Orlando, FL, USA: IEEE,2012:2921-2924.
    [2]殷海兵,张小芸,高志勇.高清视频编码芯片架构设计挑战及多目标性能评价模型[J].计算机应用与软件,2012,10(29):14-17.
    [3] Liu Z Y, Song Y, Ming S, et al. HDTV1080P H.264/AVC Encoder ChipDesign and Performance Analysis[J]. IEEE Journal of Solid-State Circuits,2009,2(44):594-608.
    [4] Chen L G, Chuang T D, Chen Y J, et al. An H.264/AVC Scalable Extensionand High Profile HDTV1080p Encoder Chip[C].2008IEEE Symposium onVLSI Circuits. Honolulu, HI, United states: IEEE,2008:104-105.
    [5] Ding L F, Chen W Y, Tsung P K, et al. A212Mpixels/S4096×2160pMultiview Video Encoder Chip for3D/Quad Full HDTV Applications[J].IEEE Journal of Solid-State Circuits,2010,1(45):46-58.
    [6] Iwata K, Mochizuki S, and Kimura M. A256mW40Mbps Full-HD H.264High-Profile Codec Featuring a Dual-Macroblock Pipeline Architecture in65nm CMOS[J]. IEEE Journal of Solid-State Circuits,2009,4(44):1184-1191.
    [7] Lin Y K, Li D W, Kou T Y, et al. A242mW10mm21080p H.264/AVCHigh-Profile Encoder Chip[J]. IEEE International Solid-State CircuitsConference. San Francisco, CA, United states: IEEE,2008:314-615.
    [8] Chang H C, Chen J W, Wu B T, et al. A Dynamic Quality-Adjustable H.264Video Encoder for Power-Aware Video Applications[J] IEEE Transactions onCircuits and Systems for Video Technology,2009,12(19):1739-1754.
    [9] Mochizuki S, Shibayama T, and Hase M. A64mW High Picture QualityH.264/MPEG-4Video Codec IP for HD Mobile Applications in90nmCMOS[J]. IEEE Journal of Solid-State Circuits,2008,11(43):2354-2362.
    [10] Von roden T. H.261and MPEG1-a Comparison[C]. Proceedings of the1996IEEE15th Annual International Phoenix Conference on Computers andCommunications. Scottsdale, AZ, USA: IEEE,1996:65-71.
    [11] Liu S. Performance Comparison of MPEG1and MPEG2Video CompressionStandards[C]. Proceedings of the199641st IEEE Computer SocietyInternational Conference. Santa Clara, CA, USA: IEEE,1996:199-202.
    [12] Wong P C M, Leung V C M, and Nasiopoulos P. An MPEG2-To-ATMConverter to Optimize Performance of VBR Video Broadcast Over ATMNetworks[J]. IEEE Transactions on Consumer Electronics,1998,44(3):750-759.
    [13] Sikora T. The MPEG-7Visual Standard for Content Description-AnOverview[J]. IEEE Transactions on Circuit and Systems for VideoTechnology,2011,11(6):696-702.
    [14] Ashrux G, Chong M N. Performance Analysis of H.261and H.263VideoCoding Algorithms[C]. Proceedings of the1997IEEE InternationalSymposium on Consumer Electronics. Singapore, Singapore: IEEE,1997:153-156.
    [15] Wenger S, Knorr G D, Ott J, et al. Error Resilience Support in H.263+[J].IEEE Transactions on Circuits and Systems for Video Technology,1998,8(7):867-877.
    [16] Joint video team of ITU-T VCEG and ISO/IEC MPEG. Final draftinternational standard of joint video specification. JVT-G050,05,2003.
    [17] Han W J, Min J, Kim I K, et al. Improved Video Compression EfficiencyThrough Flexible Unit Representation and Corresponding Extension ofCoding Tools[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2010,20(12):1709-1720.
    [18] Matsuo S, Takamura S, Kamikura K, et al. Extension of Intra PredictionUsing Multiple Reference Lines[C]. Video Coding Experts Group (VCEG)32nd Meeting. SanJose, CA, USA,2007: http://wftp3.itu.int/av-arch/video-site/0704_San/VCEG-AF05.zip.
    [19] Yeo C, Tan Y H, Li Z G, et al. Mode-Dependent Fast Separable KLT forBlock-based Intra Coding[C]. Joint Collaborative Team on Video Coding(JCT-VC)2nd Meeting. Geneva, CH,2010: http://wftp3.itu.int/av-arch/jctvc-site/2010_07_B_Geneva/JCTVC-B024.doc.
    [20] Zheng J H. Adaptive Frequency Weighting Quantization in MacroblockLevel[C]. Joint Collaborative Team on Video Coding (JCT-VC)2nd Meeting.Geneva, CH,2010: http://wftp3.itu.int/av-arch/jctvc-site/2010_07_B_Geneva/JCTVC-B059.doc.
    [21]沈晓琳. HEVC低复杂度编码优化算法研究沈[D].杭州,浙江大学博士学位论文,2013.
    [22] AVS Video Expert Group. Information Technology-Advanced Audio andVideo Coding Standard Part2: Video, Apr.2005.
    [23] AVS Video Expert Group. Information Technology-Advanced Audio andVideo Coding Standard Part7: Mobility Video, Dec.2004.
    [24]陈云善. AVS视频编码关键技术研究及其在达芬奇平台上的实现[D].长春,中国科学院研究生院(长春光学精密机械与物理研究所),2012.
    [25]谷会涛.视频和图像处理中像素匹配运算的加速技术研究[D].长沙,国防科技大学博士学位论文,2011.
    [26] Chi C C, Mauricio A M, Jan Lucas, et al. Parallel HEVC Decoding on Multi-and Many-core Architectures[J]. Journal of Signal Processing Systems forSignal Image and Video Technology,2012,71(3):247-260.
    [27]丁媛媛. H.264/AVC视频编码关键技术的研究[D].长春,吉林大学博士学位论文,2009.
    [28]刘鹏宇.基于H.264/AVC的快速视频编码方法研究[D].北京,北京工业大学博士学位论文,2011.
    [29]常侃. H.264的关键技术研究[D].北京,北京邮电大学博士学位论文,2010.
    [30]戴声奎,喻莉,朱光喜,等.基于视频时空相关性的帧内预测模式抉择[J].通信学报,2005,26(11):43-48.
    [31]徐平,佘青山,金朝阳,等.基于时空预测的H.264快速帧内预测模式选择算法[J].通信学报,2010,31(9):139-145.
    [32] Pan F, Lin X, Rahardja S, et al. Fast Mode Decision Algorithm forIntraprediction in H.264/AVC Video Coding[J]. IEEE Transactions onCircuits and Systems for Video Technology,2005,15(7):813-822.
    [33]韩从道.基于H.264的快速视频压缩技术研究[D].杭州,浙江大学博士学位论文,2011.
    [34]何宜宝,陈再秀,毕笃彦,等.利用边缘方向检测实现H.264帧内预测编码的新算法[J].西安电子科技大学学报(自然科学版),2009,36(6):1126-1131.
    [35] Tsai A C, Wang J F, Yang J F et al. Effective Subblock-Based andPixel-Based Fast Direction Detections for H.264Intra Prediction[J]. IEEETransactions on Circuits and Systems for Video Technology,2008,18(7):975-982.
    [36] Bharanitharan K, Tsai A C. Efficient Fast Intra Mode Decision and ClassifiedBlock Type Algorithms for H.264/AVC Encoder[C]. IEEE NinthInternational Conference on Computer and Information Technology. Xiamen,China: IEEE,2009:172-176.
    [37] Ouyang K, Chen C G, and Chen J Z. Simplified Directional Mode Selectionfor H.264/AVC Intra Mode Decision[C].2010International Conference onComputational Intelligence and Software Engineering. Wuhan, China: IEEE,2010:1-4.
    [38] Shi Y H, Cai H Y, and Yin B C. Fast Intra Mode Decision Algorithm Basedon Texture Feature for H.264/AVC[C]. Proceedings of the5th InternationalConference on Image and Graphics. Xi'an, Shanxi, China: IEEE,2009:92-96.
    [39] Su X Q, Ji L, and Li X. A Fast and Low Complexity Approach forH.264/AVC Intra Mode Decision[J]. Multimedia Tools and Applications,2011,52:65-76.
    [40] Pejman H and Zargari F. An Efficient Fast Intra Mode Decision MethodBased on Orthogonal Modes Elimination[J]. IEEE Transactions on ConsumerElectronics,2012,58(4):1345-1352.
    [41]宋云,沈燕飞,龙际珍等.基于方向梯度的H.264帧内预测模式选择算[J].计算机学报,2013,36(8):1757-1764.
    [42] Lee S and Kim Y M. Fast Scene Change Detection Using Direct FeatureExtraction from MPEG Compressed Video[J].IEEE Transactions onMultimedia,2000(4):240-254.
    [43] Wang Z H, P Q, Yang J, et al. A Fast Transform Domain Based Algorithm forH.264/AVC Intra Prediction[C]. IEEE International Conference onMultimedia and Expo. Beijing, China: IEEE,2007:1563-1566.
    [44] Lin H Y, Wu K H, Liu B D, et al. An Efficient VLSI Architecture forTransform-Based Intra Prediction in H.264/AVC[J]. IEEE Transactions onConsumer Electronics,2010,20(6):894-906.
    [45] Correa G, Diniz C, Bampi S, et al. Homogeneity and Distortion-Based IntraMode Decision Architecture for H.264/AVC[C].2010IEEE InternationalConference on Electronics, Circuits, and Systems. Athens, Greece: IEEE,2010:591-594.
    [46] Kim D Y, Lee Y L. A Fast Intra Prediction Mode Decision Algorithm forH.264/AVC[C].2009International Symposium on Intelligent SignalProcessing and Communication Systems. Kanazawa, Japan: IEEE,2009:335-338.
    [47] Liu P Y, Jia K B. A Novel Intra-frame Prediction Algorithm Based OnMacro-block’s Histogram for H.264/AVC [C]. The6th InternationalConference on Intelligent Information Hiding and Multimedia SignalProcessing. Darmstadt, Germany: IEEE,2010:664-667.
    [48] Huang Y H, Ou T S, and Chen H H. Fast Decision of Block Size, PredictionMode, and Intra Block for H.264Intra Prediction[J]. IEEE Transactions onCircuits and Systems for Video Technology,2010,20(8):1122-1132.
    [49] Lim K, Kim S, Lee J, et al. Fast Block Size and Mode Decision Algorithm forIntra Prediction in H.264/AVC[J]. IEEE Transactions on ConsumerElectronics,2012,58(2):654-660.
    [50]刘佳,董金明.一种新的H.264/AVC快速帧内预测模式选择新算法[J].电子与信息学报.2009,31(5):1072-1076.
    [51] Sung H S, Park R H. A Feature-Based Intra Mode Decision in H.264/AVC[C].2009IEEE13th International Symposium on Consumer Electronics. Kyoto,Japan: IEEE,2009:137-140.
    [52] Li S P and Zheng W B. An Adaptive Mode Decision Algorithm forH.264/AVC Intra Prediction[C].24th Chinese Control and DecisionConference. Taiyuan, China: IEEE,2012:1073-1076.
    [53] Chang C W, Miao C H, and Fan C P. Fast Mode Selection with Sub-SampledBased Block Matching Algorithm and Architecture Design for H.264/AVCFast Intra Prediction[C].5th International Congress on Image and SignalProcessing. Chongqing, China: IEEE,2012:24-28.
    [54] Zeng H Q, Ma K K, and Cai C. Hierarchical Intra Mode Decision forH.264/AVC[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2010,20(6):907-911.
    [55] Palomino D, Corrêa G, Diniz C, et al. Algorithm and Hardware Design of aFast Intra-Frame Mode Decision Module for H.264/AVC Encoders[C].24thSymposium on Integrated Circuits and Systems Design. Joao Pessoa, Brazil:ACM,2011:143-148.
    [56] Zhang S F, Wang Y L, Kang J H, et al. A New Approach to Fast MultipleReference Frame Motion Estimation for H.264[C].2008InternationalSymposium on Computer Science and Computational Technology. Shanghai,China: IEEE,2008:254-258
    [57] Chen M J, Chiang Y Y, Li H J, et al. Efficient Multi-frame Motion EstimationAlgorithms for MPEG-4AVC/JVT/H.264[C]. IEEE International Symposiumon Circuits Systems. Vancouver, Canada: IEEE,2004:737-740.
    [58] Kim S E, Han J K, and Kim J G. An Efficient Scheme for Motion EstimationUsing Multireference Frames in H.264/AVC[J]. IEEE transactions onmultimedia,2006,8(3):457-466.
    [59]张淑芳,李华.基于H.264的多参考帧快速选择算法.电子学报,2009,37(1):62-66.
    [60] Su Y, Sun M T. Fast Multiple Reference Frame Motion Estimation forH.264/AVC[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2006,16(3):447–452
    [61] Lee T K, Chan Y L, and Fu C H. Reliable Tracking Algorithm for MultipleReference Frame Motion Estimation[J]. Journal of Electronic Imaging,2011,20(3):033003-1-033003-14.
    [62] Byun J, Choi J, and Kim J. A Fast Multi-Reference Frame Motion EstimationAlgorithm[J]. IEEE Transactions on Consumer Electronics,2010,56(3):1911-1917.
    [63] Sun Q C, Chen X H, Wu X Y, et al. A Content-adaptive Fast MultipleReference Frames Motion Estimation in H.264[C]. Proceedings of IEEEInternational Symposium on Circuits and Systems. New Orleans, USA: IEEE,2007,3651-365
    [64]丁媛媛,司玉娟,姚成. H.264快速多参考帧选择算法[J].吉林大学学报(工学版),2010,40(2):566-576.
    [65] Park I, Capson D W. Improved Motion Estimation Time Using aCombination of Dynamic Reference Frame Selection and Residue-basedMode Decision[J]. Signal Image and Video Processing,2012,6(1):25-39.
    [66] Lee K, Jeon G, and Jeong J. Fast Reference Frame Selection Algorithm forH.264/AVC[J]. IEEE Transactions on Consumer Electronics,2009,55(2):773-779.
    [67] Lee K, Jeon G, Falcon R, et al. An Adaptive Fast Multiple Reference FrameSelection Algorithm for H.264/AVC Using Reference Region Data[C]. IEEEWorkshop on Signal Processing Systems. Tampere, Finland: IEEE,2009:93-96.
    [68] Jun D S, Park H W. An Efficient Priority-Based Reference Frame SelectionMethod for Fast Motion Estimation in H.264/AVC. IEEE Transactions onCircuits and Systems for Video Technology,2010,20(8):1156-1161.
    [69] Wu P, Xiao C B. An Adaptive Fast Multiple Reference Frames SelectionAlgorithm for H.264/AVC[C]. Proceedings of International Conference onAcoustics, Speech, Signal Processing. Las Vegas, Nevada: IEEE,2008:1017-1020.
    [70]徐静,周兵,黄雪莉,等.基于空域特征的H.264快速多参考帧选择算法[J].通信学报.2010,31(7):40-45.
    [71] Hsia S H, Hung Y C. Fast Multi-Frame Motion Estimation for H264/AVCSystem[J]. Signal Image and Video Processing,20104(2):167-175.
    [72] Shen L Q, Liu Z, Zhang Z Y, et al. An Adaptive and Fast H.264Multi-FrameSelection Algorithm Based on Information from Previous Searches[C]. IEEEInternational Conference on Multimedia and Expo. Beijing, China: IEEE,2007:1591-1594.
    [73] Shen L Q, Liu Z, and Zhang Z Y. Fast Multiframe Selection Algorithm Basedon Spatial-Temporal Characteristics of Motion Field[J]. Journal of ElectronicImaging,2008,17(4):043004-1-043004-7.
    [74] Liu Z, Shen L Q, and Zhang Z Y. An Efficient Intermode Decision AlgorithmBased on Motion Homogeneity for H.264/AVC[J]. IEEE Transactions onCircuits and Systems for Video Technology,2009,19(1):123-132.
    [75] Wei G, Wu L, Wang S H, et al. Fast Mode Selection for H.264Video CodingStandard Based on Motion Region Classification[J]. Multimedia Tools andApplications,2012,58(3):453–466.
    [76]韦耿,刘文予,李鹏飞.基于运动区域划分的H.264低复杂度模式选择[J].计算机辅助设计与图形学学报,2008,20(1):94-98.
    [77] Zeng H Q, Cai C H, and Ma K K. Fast Mode Decision for H.264/AVC Basedon Macroblock Motion Activity[J]. IEEE Transactions on Circuits andSystems for Video Technology,2009,19(4):1-11.
    [78] Paul M, Lin W, Lau C T, et al. Direct Intermode Selection for H.264VideoCoding Using Phase Correlation[J]. IEEE Transactions on Image Processing,2011,20(2):461-473.
    [79] Wu D, Pan F, Lim K, et al. Fast Inter Mode Decision in H.264/AVC VideoCoding[J]. IEEE Transactions on Circuits and Systems for Video Technology,2005,15(7):953–958.
    [80] Shen L Q, Liu Z, Zhang Z Y, et al. Fast Inter Mode Decision Using SpatialProperty of Motion Field[J]. IEEE Transactions on Multimedia,2008,10(6):1208-1214.
    [81] Ren J, Kehtarnavaz N, and Budagav M. Computationally Efficient ModeSelection in H.264/AVC Video Coding[J] IEEE Transactions on ConsumerElectronics,2008,54(2):876-887.
    [82] Martinez-Enriquez E, Jimenez-Moreno A, and Diaz-de-Maria F. An AdaptiveAlgorithm for Fast Inter Mode Decision in the H.264/AVC Video CodingStandard[J]. IEEE Transactions on Consumer Electronics,2010,56(2):826-834.
    [83] Von dem Knesebeck M, Nasiopoulos P. An Efficient Early-Termination ModeDecision Algorithm For H.264[J]. IEEE Transactions on ConsumerElectronics.2009,55(3):1501-1510.
    [84] Wang H M, Lin J K, and Yang J F. A Successive Termination and EliminationMethod for Fast H.264/AVC SATD-based Inter Mode Decision[J]. IET SignalProcess.2009,3(3):165–176.
    [85] Kim J H, Kim B G. Fast Block Mode Decision Algorithm in H.264/AVCVideo Coding[J]. Journal of Visual Communication and ImageRepresentation,2008,19(3):175-183.
    [86] Lee J, Kim S, and Lee S. Fast Inter Mode Decision Using MotionVector-based Moving Window (MVMW)[J]. IEEE Transactions on ConsumerElectronics,2010,52(3):1942-1949.
    [87] Lee S, Jang E S. Fast Mode Decision for MPEG-4AVC/H.264UsingSpatiotemporal Correlation of Mode and Cost[J] Optical Engineering,2010,49(6):1-8.
    [88] Ri S H, Vatis Y, and Ostermann J. Fast Inter-Mode Decision in anH.264/AVC Encoder Using Mode and Lagrangian Cost Correlation[J]. IEEETransactions on Circuits and Systems for Video Technology,2009,19(2):302-306.
    [89] Duanmu C, Zhou D H. A Fast Inter Mode Selection Algorithm Based on theStatistical Features for the H.264[J]. Journal of Convergence InformationTechnology,2012,7(10):372-380.
    [90] Kim B G. Novel Inter-Mode Decision Algorithm Based on Macroblock (MB)Tracking for the P-Slice in H.264/AVC Video Coding[J]. IEEE Transactionson Circuits and Systems for Video Technology,2008,18(2):273-279.
    [91] Liu L K, Feig E. A Block-based Gradient Descent Search Algorithm forBlock Motion Estimation in Video Coding[J]. IEEE Transactions on Circuitsand Systems for Video Technology,1996,6(4):419-422.
    [92] Li R, Zeng B, and Liou M L. A New Three-Step Search Algorithm for BlockMotion Estimation[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,1994,4(4):438–443.
    [93] Yong S J, Wook P J, Lee I J, et al. Motion Estimation Engine for H.264Encoding Using the UMHexagonS Algorithm[C]. International Conferenceon Convergence and Hybrid Information Technology. Daejeon, Korea: IEEE,2009:53-59.
    [94]李芍,陈建文,何芸.面向MPEG Type-1视频编码器的UMHexagonS算法[J].哈尔滨工程大学学报,2011,32(9):1150-1156.
    [95] Esam A, Qaralleh A, and Chang T S. Fast Variable Block Size MotionEstimation by Adaptive Early Termination[J]. IEEE Transactions on Circuitsand Systems for Video Technology,2006,16(8):1021-1026.
    [96] Zhu S, Ma K K. A New Diamond Search Algorithm for Fast MatchingMotion Estimation[J]. IEEE Transactions on Image Processing,2000,9(2):287-290.
    [97] Gonzales C A, Yeo H, and C. Kuo J. Requirements for Motion-EstimationSearch Range in MPEG-2Coded Video[J]. IBM Journal of Research andDevelopment,1999,43(4):453-470.
    [98] Ko Y H, Kang H S, and Lee S W. Adaptive Search Range Motion EstimationUsing Neighboring Motion Vector Differences[J]. IEEE Transactions onConsumer Electronics,2011,57(2):726-730.
    [99] Kang H S, Lee S W, and Hosseini H G. Probability Constrained SearchRange Determination for Fast Motion Estimation[J]. Journal of theElectronics and Telecommunications Research Institute2012,34(3):369-378.
    [100] Ko Y H, Kang H S, and Lee S W. Adaptive Search Range Motion EstimationUsing Neighboring MVDs[C].2011IEEE International Conference onConsumer Electronics. Las Vegas, NV, United states: IEEE,2011:697-698.
    [101] Lou C C, Lee S W, and Kuo C C J. Adaptive Motion Search Range Predictionfor Video Encoding[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2010,20(12):1903-1908.
    [102] Kim I, Kim J, Jeon J, et al. Low-complexity Block-based Motion EstimationAlgorithm Using Adaptive Search Range Adjustment[J]. Optical Engineering,2012,51(6):067010-1-067010-9.
    [103] Lee S. Fast Motion Estimation Based on Adaptive Search Range Adjustmentand Matching Error Prediction[J]. IET Image Process,2010,4(1):1-10.
    [104] Yamada T, Ikekawa M, and Kuroda I. Fast and Accurate Motion EstimationAlgorithm by Adaptive Search Range and Shape Selection[C].2005IEEEInternational Conference on Acoustics, Speech, and Signal Processing.Philadelphia, PA, United states: IEEE,2005: II897-II900.
    [105] Ismail Y, Elgamel M A, and Bayoumi M A. Fast Variable Padding MotionEstimation Using Smart Zero Motion Prejudgment Technique for Pixel andFrequency Domains[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2009,19(5):609-626.
    [106] Ismail Y, Mcneely J B, Shaaban M, et al. Fast Motion Estimation SystemUsing Dynamic Models for H.264/AVC Video Coding[J]. IEEE Transactionson Circuits and Systems for Video Technology,2012,22(1):28-42.
    [107] Lee S W, Park S M, and Kang H S. Fast Motion Estimation with AdaptiveSearch Range Adjustment[J]. Optical Engineering,2007,64(4):040504-1-040504-3.
    [108] Kuo T Y, Shu J J, and Lu H J. Dynamic Search Range Control for H.264[C].Ninth IEEE International Symposium on Multimedia. Taichung, Taiwan:IEEE,2007:116-121.
    [109] Lee S Y, Choi K, and Jang E S. Adaptive Search Range Adjustment Schemefor Fast Motion Estimation in H.264/AVC[J]. Optical Engineering,2011,50(6):067402-1-067402-6.
    [110] Urhan O. Constrained One-bit Transform Based Fast Block MotionEstimation Using Adaptive Search Range[J]. IEEE Transactions onConsumer Electronics,2010,56(3):1868-1871.
    [111] She L Q and Zhang Z Y. Content-Adaptive Motion Estimation Algorithmfor Coarse-Grain SVC[J]. IEEE Transactions on Image Processing,2012,21(5):2582-2591.
    [112] Zatt B, Diniz C, Agostini L, et al. Timing and interface communicationanalysis of H.264/AVC encoder using System C model[C].18th IEEE/IFIPInternational Conference on VLSI and System-on-Chip. Madrid, Spain: IEEE,2010:235-240.
    [113]蒋洁.高性能视频帧内编码技术研究[D].西安,西安电子科技大学博士学位论文,2012.
    [114] Andersson K, Sjoberg R, and Norkin A. Reliability Measure for BDMeasurements[C]. ITU-T Q.6/SG16VCEG33th Meeting. London, UK:ITU-T,2009:1-3.
    [115] Chiang K-C, Wu M F, and Shann J J-J. Modification and implementation ofan edge-based fast intra prediction mode decision algorithm for H.264/AVChigh resolution real-time systems[J]. Journal of Visual Communication andImage Representation,2012,23(2):245-253.
    [116] Choi I, Lee J, and Jeon B. Fast Coding Mode Selection with Rate-DistortionOptimization for MPEG-4Part-10AVC/H.264[J]. IEEE Transactions onCircuits and Systems for Video Technology,2006,16(12):1557-1561.
    [117] Correa G, Palomino D, Diniz C, et al. SHBS: A heuristic for fast inter modedecision of H.264/AVC standard targeting VLSI design[C].2011IEEEInternational Conference on Multimedia and Expo. Barcelona, Spain: IEEE,2011:1-4.
    [118] He Z, Liang Y, Chen L, et al. Power-Rate-Distortion Analysis for WirelessVideo Communication under Energy Constraints[J]. IEEE Transactions onCircuits and Systems for Video Technology,2005,15(5):645-658.
    [119] Denolf K, Blanch C, Lafruit G, et al. Initial Memory Complexity Analysis ofthe AVC Codec[C]. IEEE Workshop on Signal Processing Systems. SanDiego, America: IEEE,2002:222-227.
    [120] Chen Z X, Goto S. Efficient Motion Vector Prediction Algorithm UsingPattern Matching. Journal of Visual Communication and ImageRepresentation[J].2011,22(8):727–733.
    [121] Dai J, Au O C, Yang W, et al. Motion Vector Coding based on PredictorSelection and Boundary-matching Estimation[C].2009IEEE InternationalWorkshop on Multimedia Signal Processing. Rio de Janeiro, Brazil: IEEE,2009:1-5.
    [122] Hsieh C H, Lu P C, Sh J S, et al. Motion Estimation Algorithm Using InterBlock Correlation[J]. Electronics Letters,2004,26(5):276-277.
    [123] Luo J C, Ahmad I, Liang Y F, et al. Motion Estimation for Content AdaptiveVideo Compression[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2008,18(7):900-909.
    [124] Jeong C Y, Hong M C. Fast Multiple Reference Frame Selection MethodUsing Inter-mode Correlation[C]. Proceedings of14th Asia-PacificConference on Communications. Tokyo, Japan: IEEE,2008:1-4.
    [125] Kuo T Y, Lu H J. Efficient Reference Frame Selector for H.264[J]. IEEETransactions on Circuits and Systems for Video Technology,2008,18(3):400-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700