大尺度平板水膜流动行为的数值模拟和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电站的安全性对于核电的长期发展具有重要的意义。各国纷纷建造在安全性能上更加出色的第三代反应堆,我国引进的是西屋公司设计的第三代核电站AP1000。AP1000采用非能动安全壳冷却系统(PCCS)来保证事故工况下安全壳结构的完整。我国自主设计的大型先进压水堆CAP1400在水箱容量和安全壳高度方面都有提高,只有对水膜在安全壳上流动中的物理现象及其对实际工程应用产生的影响有深刻的认识和掌握,才能为我国自主设计大型先进压水堆相关非能动安全壳冷却系统提供基础理论和技术支撑。
     针对目前的研究现状,本文对大尺度平板降膜流动行为进行了实验研究,得到了较可靠的降膜流动参数的实验关联式,并开展3维的数值模拟,给出最佳实践指导。最后基于实验和数值研究的结果对PCCS的应用方案提出初步建议。
     本论文开展的主要工作包括:
     1.大尺度平板降膜流动行为实验:自行设计和建立大尺度的平板降膜流动实验台架,研究雷诺数、平板倾角、空气剪应力、平板表面特性、入口条件对降膜连续流动行为和破断行为的影响。通过分析降膜的膜厚统计特性和表面波特性来了解不同流动阶段降膜的运动规律。通过对实验数据合理的分析和整理,得到了降膜流动参数的实验关联式。
     2.平板降膜流动行为3维数值模拟:建立适用于平板降膜流动行为计算的数值模型,对有、无空气剪应力作用下降膜的连续流动行为和破断进行3维的CFD计算,通过与实验的对比验证了数值模型的有效性。揭示了诸如壁面剪应力和速度分布等实验无法测量的参数的变化规律。
     3.平板降膜表面独立波流动传热特性数值研究:结合实验测量,对平板降膜的表面波建立合适的数值模型,计算得到独立波内部的流场和温度场,并揭示了独立波尺度变化、空气剪应力作用对其内部流动和传热的影响机理。
     4.对PCCS系统提出初步应用方案:基于大尺度平板降膜实验研究和3维降膜流动行为的数值模拟,对PCCS系统的涂层材料,入口形式提出应用方案。对围堰V型槽的结构和尺寸提出参数优化模型。
     本文旨在探索大尺度平板的降膜流动传热特性,研究不同因素对降膜流动传热行为的影响。并预示CFD方法研究降膜流动行为的可行性。本文的结论对于了解PCCS系统的水膜流动行为有一定的贡献,对于其他PCCS相关研究数学模型的建立有一定的价值。
The safety performance of nuclear power plant is of great significance forlong term development of nuclear power. Many countries are buildingadvanced nuclear power plant of generation III. China is constructing theWestinghouse AP1000. AP1000containment utilizes passive containmentcooling system (PCCS) to provide the ultimate heat sink for decay heatremoval and to ensure the integrity of the containment. Based on AP1000technologies, the large advanced pressurized water reactor CAP1400is nowbeing designed in China with larger containment size and larger containmentcooling tank. The present study will provide theoretical foundations andtechnical supports for the design of PCCS of CAP1400through a deepunderstanding of mechanisms involved in water film behavior.
     Aiming at the research status, this paper conducts experimental studies onwater film behavior on large scale flat plate. Some reliable empirical relationsof parameters of film flow are obtained. The best practice guideline is giventhrough three dimensional numerical simulations. Based on the results of theexperimental data and simulation calculations, some primary suggestions onPCCS application are made.
     The main tasks of the present study consist of four parts, as summarizedbelow:
     1. Experimental study on water film behavior on large scale flat plate.The experimental facility is designed and constructed. The effect ofReynolds number, plate inclination, count-current air flow, surfacecharacteristics, and entrance condition on the film behavior is studied,such as film thickness; surface wave characteristics and film break up. Based on experimental data empirical correlations describing film flowparameters are developed
     2. Three-dimensional numerical simulation on water film behavior.A numerical model is established to simulate water film behavior on flatplate. The water film characteristics and break up behavior with andwithout count-current air flow are investigated. Numerical results arecompared with experimental data. The numerical study providescomplementary information to experimental data.
     3. Numerical study on flow and heat transfer behavior of surface wave.Numerical model is established to simulate flow and heat transfer behaviorin the solitary wave of the falling water film. The flow and temperaturefield inside the solitary wave provides evident to understand the effect ofsolitary wave scale and count-current air flow on the flow and heat transferperformance inside solitary wave.
     4. Application to PCCS.Based on both experimental and numerical studies, proposals are made onimprovement of heat removal capability of PCCS, such as surface coatingmaterial and geometric structure of entrance section, including distributionunit, of the falling water injection.
     This thesis is devoted to investigate flow and heart transfer characteristics offalling water film of PCCS. The effects of different factors are investigatedexperimentally and numerically. Based on comparison with experimental data,the applicability of the numerical approach used is proved. The resultsachieved in the thesis contribute significantly to a better understanding ofimportant mechanisms involved in water film flow of PCCS, and provideuseful knowledge to the establishment of mathematical and numerical modelsfor future investigation on PCCS related phenomena.
引文
1.科利尔(Coller J.G.)著,魏先英等译.对流沸腾和凝结[M].北京:科学出版社,1982.
    2.齐复东,贾树本,马义伟,电站凝汽设备和冷却系统[M],水利电力出版社,1990.
    3. E.U.施林耐尔主编,马庆芳,马重芳主译.换热器设计手册[M],第二卷,流体力学与传热学.机械工业出版社,1989.
    4. W.M.罗森诺等主编,李荫亭等译.传热学手册[M],下册.科学出版社,1985.
    5. Ligrani P.M., Gong R.J., Cuthrell M., et al. Bulk Flow Pulsations and Film Cooling-I InjectantBehavior [J]. International Journal of Heat and Mass Transfer,1996,39(11):2271-2282.
    6. Kim B., Heat and Mass Transfer in a Falling Film Absorber of Ammonia-water Absorption System[J]. Heat Transfer Engineering,1998,19(3):53-63.
    7. Alhusseini A.A., Tuzla K., Chen J.C., Falling Film Evaporation of Single Component Liquids [J].International Journal of Heat and Mass Transfer,1998,41(12):1623-1632.
    8. Chang H.C., Wave evolution on a falling film [J]. Annual Review of Fluid Mechanics,1994,26:103-36.
    9. S.P. Lin, Film Waves, in: R.P. Meyer (Ed.), Waves on Fluid Interface[C]. Academic Press, NewYork,1983,261–289.
    10. Kapitza P. L., Kapitza S. P., Wave Flow of Thin Fluid Layers of Liquid [J]. Zh. Eksp. Tear. Fiz.1949,19:105-20.
    11. Alekseenko S. V., Nakoryakov V. E., Pokusaev B.G., Wave Formation on a Vertical Falling LiquidFilm [J]. American Institute of Chemical Engineers,1985,31:1446-1460
    12. Liu J., Paul J.D., Gollub J.P., Measurement of the Primary Instabilities of Film Flows [J]. Journalof Fluid Mechanics,1993,220:69-101
    13. Liu J., Gollub J.P., Onset of spatially chaotic waves on flowing films [J]. Physical Review Letters,1993,70:2289-2292.
    14. Prokopiou T, Cheng M., Chang H.C., Long Waves on Inclined Films at High Reynolds Number [J].The Journal of Fluid Mechanics,1991,222:665-691
    15. Cheng M., Chang H.C., Stability of Axisymmetric Waves on Liqnid Films Flowing Down aVertical Column to Azimuthal and Stream Wise Disturbances [J].Chemical EngineeringCommunications,1992,118:327-340
    16. Kapitza P.L., Wave Flow of Thin Layers of a Viscous Fluid [J]. Collected papers of P.L. Kapitza.Oxford:Pergamon Press,1965
    17. Nusselt N, Die Oberflachenkondensation des Wasserdampfes [J]. Zeit.Ver.D.Ing,1916,60:541-569.
    18. Br tz W., Sch nbucher A., Heat and Mass Transfer in Pool Flames [J]. Chemie Ingenieur Technik,1978,50(8):573–585.
    19. Brauer H., Str mungs und W rmeübergang bei Rieselfilmen[J]. Ver Deut.Ing., Forschungsheft,1956,457.
    20. Ganchev B.G., Koglov V.M., Lozovetskiy V.V., A Study of Heat Transfer to a Falling Fluid Film ata Vertical Surface [J].Heat Transfer-Soviet Research,1972,4:102-110
    21. Gimbutis G.J., Heat Transfer in Film Heat Exchangers [C], Proceedings of the14th InternationalCongress of Refrigeration, Moscow,1975,2:1-7.
    22. Takahama H., Kato S., Longitudinal Flow Characteristics of Vertically Falling Liquid Filmswithout Concurrent Gas Flow [J]. International Journal of Multiphase Flow,1980,6(2):203-215.
    23. Hirshburg R.I., Florschuetz L.W., Laminar Wavy-Film Flow: PartI, Hydrodynamic Analysis [J].Journal of Heat Transfer,1982,104(3):452-458.
    24. Karapantsios T.D., Paras S.V., Karabelas A.J., Statistical Characteristics of Free Falling Films atHigh Reynolds Numbers [J]. International Journal of Multiphase Flow,1989,15(1):1-21.
    25. Lyu T.H., Mudawwar I., Statistical Investigation of the Relationship between Interfacial Wavinessand Sensible Heat Transfer to a Falling Liquid Film [J]. International Journal of Heat and MassTransfer,1991,34(6):1451-1464.
    26. H rk nen M., Aula A., Aittom ki A., Heat Transfer and Hydro-dynamics of Falling Films [C].ActaPolytechnica Scandinavica Mechanical Engineering Series No.115, HELSINKI,1994.
    27. Jiang Z., Yan W., Experimental Studies on Surface Wave Characteristics of Free-Falling LiquidFilms [C]. Heat Transfer Science and Technology, Proceedings of the4th International Symposiumon Heat Transfer, Edited by Wang B., Higher Education Press, Beijing,1996,200-205.
    28. Jiang Z.,Yan W., Tao Z., Experimental Studies on Heat Transfer to Non-Newtonian Power-lawFluid Falling Film Flow [C]. Proceeding of the International Symposium on Multiphase Flow,Edited by Chen X., Ge M., International Academic Publishers, Beijing,1997,356-361.
    29. Takamasa T., Hazuku T., Measuring Interfacial Waves on Film Flowing down a Vertical Plate Wallin the Entry Region Using Laser Focus Displacement Meters [J]. International Journal of Heat andMass Transfer,2000,43(15):2807-2819.
    30. Takamasa T., Kobayashi K., Measuring Interfacial Waves on Film Flowing down Tube Inner WallUsing Laser Focus Displacement Meter [J]. International Journal of Multiphase Flow,26(9):1493-1507.
    31. Nosoko T., Yoshimura P.N., et al., Characteristics of Two-dimensional Waves on a Falling LiquidFilm [J]. Chemical Engineering Science,1996,51:725.
    32. Yoshimura P.N., Nosoko T., Nagata T., Enhancement of Mass Transfer into a Falling LaminarLiquid Film by Two-dimensional Surface Waves-Some Experimental Observations and Modeling[J]. Chemical Engineering Science,1996,51(8):1231-1240.
    33. Philipp A., Ulrich R., Hydrodynamics of Three-dimensional Waves in Laminar Falling Films [J].International Journal of Multiphase Flow,2000,26(7):1183-1208.
    34. Sutalo I.D., Bui A., Rudman M., The Flow of Non-Newtonian Fluids down Inclines [J]. Journal ofNon-newtonian Fluid Mechanics,2006,136:64–75.
    35. Moran K., Inumaru J., Kawaji M., Instantaneous Hydrodynamics of a Laminar Wavy Liquid Film[J]. International Journal of Multiphase Flow,2002,28:731–755.
    36.许媛媛,多相液膜流动的计算流体力学建模与验证[D].上海交通大学,2010
    37. Tihon J., Serifi K., Argyriadi K., Bontozoglou V., Solitary Waves on Inclined Films: TheirCharacteristics and the Effects on Wall Shear Stress [J]. Experiments in Fluids,2006,41(1):79-89.
    38. Ambrosini W., Forgione N., Oriolo F., Statistical Characteristics of a Water Film Falling Down aFlat Plate at Different Inclinations and Temperatures [J]. International Journal of Multiphase Flow,2002,28:521.
    39. Telles A.S., Dukler A.E., Statistical Characteristics of Thin, Vertical, Wavy, Liquid Films[J].Industrial&Engineering Chemistry Fundamentals,1970,9(3):412-421.
    40. Haeri S., Hashemabadi S.H., Three Dimensional CFD Simulation and Experimental Study ofPower Law Fluid Spreading on Inclined Plates [J], International Communications in Heat andMass Transfer,35(8):1041-1047.
    41.马学虎,高大志,兰忠等,功能表面材料与流体界面相互作用对垂直降液膜流动特性的影响[J].高校化学工程学报,2004,18(3)269-274.
    42. Vlachos N.A., Paras S.V., Mouza A.A., Karabelas A.J., Visual Observations of Flooding in NarrowRectangular Channels [J]. International Journal of Multiphase Flow,2001,27(8):1415-1430
    43. Bankoff S.G., Lee S.C., Acritical Review of the Flooding Literature [C]. In: Hewitt G.F., DelhayeJ.M., Zuber N.(Eds.),Multiphase Science and Technology.Hemisphere, New York,1986,95-180.
    44. Biage M., Structure de la surface libre d'un film liquide ruisselant sur une plaque plane vertical etsoumis a un contre-courant de gas: Transition vers l'ecoulement cocourant ascendant [D]. Inst. Nat.Polytechnique de Grenoble, France,1989
    45. Osakabe M., Kawasaki Y., Top Flooding in Thin Rectangular and Annular Passages [J].International Journal of Multiphase Flow,1989,15:747–754.
    46. Larson T.K., Oh C.H., Chapman J.C., Flooding in a Thin Rectangular Slit GeometryRepresentative of ATR Fuel Assembly Side-plate Flow Channels [J]. Nuclear Engineer and Design,1994,152:277–285.
    47. Ghiaasiaan S.M., Bohner J.D., Abdel-Khalik S.I., The Effect of Gas Injection Configuration onTwo-phase Countercurrent Flow Limitation in Short Vertical Channels [J]. Nuclear Science andEngineering,1996,123:136–146.
    48. COHEN L.S., HANRATTY T.J., Effect of Waves at a Gas-liquid Interface on a Turbulent Air Flow[J]. Journal of Fluid Mechanics,1968,31:467-479.
    49. Lilleleht L.U, Hanratty T.J., Relation of Interfacial Shear Stress to the Wave Height for ConcurrentAir-water Flow [J]. American Institute of Chemical Engineers,2004,7(4):548–550.
    50. Lilleleht L.U, Hanratty T.J., Measurement of Interfacial Structure for Co-current Air-water Flow[J], Journal of Fluid Mechanics,1961,11:65-81.
    51. Ellis S.R., Gay B., The Parallel Flow of Two Fluid Streams: Interfacial Shear and Fluid-fluidInteraction [J].Transactions of the Institution of Chemical Engineers,1959,37:206-213.
    52. Rossum V.J.J., Experimental Investigation of Horizontal Liquid Films: Wave Formation,Atomization, Film Thickness [J]. Chemical Engineering Science,1959,11(1):35-52.
    53. Hewitt G.F., Wallis G.B., Flooding and Associated Phenomena in Fal1ing Film Flow in a VerticalTube [C]. AERE-R4022, UKAEA, Harwell, England,1963.
    54. Collier J.G., Hewitt G.F., Fi1m Thickness Measurements [C]. AERE-R4684, UKAEA, Harwell,England,1964.
    55. Hawley D.L., Wallis G.B., Experimental Study of Liquid Film Fraction and Pressure DropCharacteristics in Vertical Countercurrent Annular Flow [R].EPRI NP-2280. Electric PowerRes.Inst., Palo Alto California,1982
    56. Aiello G., Ciofalo M., Natural Convection Cooling of a Hot Vertical Wall Wet by a Falling LiquidFilm [J]. International Journal of Heat and Mass Transfer,2009,52(25-26):5954-5961.
    57. Fujita T., Ueda T., Heat Transfer to Falling Liquid Film and Film Breakdown-Part I: SubcoolingFilms [J]. International Journal of Heat and Mass Transfer,1978,21:97-108.
    58. Hewitt G.F., Lacey P.M.C., The Breakdown of the Liquid Film in Annular Two-phase Flow [J].International Journal of Heat and Mass Transfer,1965,8:781.
    59.蒋章焰,马同泽,赵嘉琪,霍秀和,过冷液膜的换热特性和破断特性[J].化工学报,1990,6(6):663-669.
    60.蒋章焰,宋金田,孔旭静,郭朝阳,垂直加热管外自由降膜流的破断特性[J].工程热物理学报,1995,16(2):199-204.
    61. Hoke J., Chen J.C., Thermocapillary Breakdown of Subcooled Falling Liquid Films [J]. Industrial&engineering Chemistry Research.1992,31(3):668-694.
    62. Wang B.X., Zhang J.T., Peng X.F., Experimental Study on the Dryout Heat Flux of Falling LiquidFilm [J]. International Journal of Heat and Mass Transfer,2000,43(11):1897-1903.
    63. Hsu Y.Y., Simon F.F., Lad J.F., Destruction of a Thin Liquid Film Flowing Over a Heating Surface[J], Chemical Engineering Progress,1965,57(61):139–152.
    64.徐尧润,刘振义,卢晓江,席华,宋继田,异形竖板上降落液膜破断特性[J].化工学报,1997,48(4):485-491.
    65. Ponter B., Davies G.A., Ross T.K., Thornley P.G., The Influence of Mass Transfer on Liquid FilmBreakdown [J]. International Journal of Heat and Mass Transfer,1967,10:349.
    66. Brauner N., Maron D.M., Harel, Z.W., Rewettability and Breakdown of Thin Films of AqueousSalt Solutions [J]. Desalination,1985,52(3):295-307.
    67. Maron D.M., Ingel G., Brauner N., Wettability and Break-up of Thin Films on Inclined Surfaceswith Continuous and Intermittent Feed [J]. Desalination,1982,42(1):87-96.
    68. Podgorski T., Flesselles J.M., Limat L., Dry arches within flowing films [J]. Physics of Fluids,1999,11:845-852.
    69. Benjamin T.B., Wave Formation in Laminar Flow Down an Inclined Plane [J]. Journal of FluidMechanics,1957,2:554-574.
    70. Whitaker S., Effect of Surface Active Agents on the Stability of Falling Liquid Films [J]. Industrial&Engineering Chemistry Fundamentals,1964,3:132-136.
    71. Lee J., Kapitza’s Method of Film Flow Description [J]. Chemical Engineering Science,1969,24:1309-1320.
    72. Krantz W.B., Goren S.L., Stability of Thin Liquid Films Flowing down a Plane [J]. Industrial&Engineering Chemistry Fundamentals.1971,10:91-101.
    73. Chang H.C., Demekhin E.A., Kopelevich D.I., Nonlinear Evolution of Waves on a VerticallyFalling Film [J]. Journal of Fluid Mechanics,1993,250:433-480.
    74. Chang H.C., Evolution of Nonlinear Waves on Vertically Falling Films-A Normal Form Analysis[J]. Chemical Engineering Science,1987,42:515-533.
    75.王补宣,张金涛,彭晓峰,壁薄液膜流动稳定性的分析[J].工程热物理学报,1997,20(4):457-461.
    76. Kheshgi H.S., Scriven L.E., Disturbed Film Flow on a Vertical Plate [J]. Physics of Fluids,1987,30:990.
    77. Maron D.M., Brauner N., Hewitt G.F., Flow Patterns in Wavy Thin Films: Numerical Simulation[J]. International Communications in Heat and Mass Transfer,1989,16(5):655-666.
    78. Stuhltr ger E., Miyara A., Uehara H., Flow Dynamics and Heat Transfer of a Condensate Film on aVertical Wall—II. Flow Dynamics and Heat Transfer [J], International Journal of Heat and MassTransfer,1995,38(15):2715-2722.
    79. Serifi K, Malamataris N.A., Bontozoglou V., Transient Flow and Heat Transfer Phenomena inInclined Wavy Films [J]. International Journal of Thermal Sciences,2004,43(8):761-767.
    80. Tomoaki K., Chiaki K., Numerical Simulation of Oscillatory Falling Liquid Film Flows [J]. FusionEngineering and Design,2003,65(3):387-392.
    81. Miyara A., Numerical Analysis on Heat Transfer of Falling Liquid Films with Interfacial Waves[C]. Heat Transfer Proceedings of11th IHTC, Kyongju, Korea,1998,57-62.
    82. Miyara A., Numerical Analysis on Flow Dynamics and Heat Transfer of Falling Liquid Films withInterfacial Waves [J]. Heat and Mass Transfer,1999,35(4):298-306.
    83. Miyara A., Numerical Simulation of Wavy Liquid Film Flowing Down on a Vertical Wall and anInclined Wall [J], International Journal of Thermal Sciences,2000,39(9-11):1015-1027.
    84. Jayanti S., Hewitt G.F., Hydrodynamics and Heat Transfer of Wavy Thin Film Flow [J],International Journal of Heat and Mass Transfer,1997,40(1):179-190.
    85.叶学民,阎维平,蒋章焰,王军,自由降膜表面波流动和传热特性的研究[J],华北电力大学学报,1999,1:7-12.
    86. Gao D., Morley N.B., Dhir V., Numerical Simulation of Wavy Falling Film Flow Using VOFMethod [J], Journal of Computational Physics,2003,192:624.
    87.刘玉峰,童一峻,任海刚,张群,高雷诺数竖壁降膜流动特性的数值研究[J],红外技术,2010,(10):567-571.
    88. Sutalo I.D., Bui A., Rudman M., The Flow of Non-Newtonian Fluids down Inclines [J]. Journal ofNon-newtonian Fluid Mechanics,2006,(136):64–75.
    89. Yoshida H., Tamai H., Ohnuki A., et al., Current Status of Thermal-Hydraulic Feasibility Projectfor Reduced-Moderation Water Reactor (2)–Development of Two-phase Flow Simulation Codewith Advanced Interface Tracking Method [J]. Nuclear Engineering and Technology,2006, SpecialIssue on ICAPP’05,38(2):119–128.
    90. Haeria S., Hashemabadi S.H., Three Dimensional CFD Simulation and Experimental Study ofPower Law Fluid Spreading on Inclined Plates [J]. International Communications in Heat andMass Transfer,2008,35(8):1041-1047.
    91. Cess R.D., Laminar-film Condensation on a Flat Plate in the Absence of Body Force [J]. Zeitschriftfür Angewandte Mathematik und Physik,1960,11:426-433.
    92. Koh J.C.Y., Film Condensation in a Forced-convection Boundary-layer flow [J]. InternationalJournal of Heat and Mass Transfer,1960,5:941-954.
    93. Shekriladze I.G., Gomelauri V.I., Theoretical Study of Laminar Film Condensation of FlowingVapour [J]. Journal of Heat and Mass Transfer,1966,9(6):581-591.
    94. Rohsenow W.M.,Webber J.H., Ling A.T., Effect of Vapor Velocity on Laminar and Turbulent FilmCondensation[J], Journal of Heat Transfer,1956,78:1637-1643.
    95.师晋生,陈玉宙,自由表面摩擦和蒸发对过冷下降液膜传热的影响[J].热能动力工程,2001,16(7):383-385.
    96.叶学民,阎维平,切应力作用下层流饱和蒸发降膜的传热特性[J].中国电机工程学报,2007,27(11):68-72.
    97. Jayanti S., Hewitt G.F., Hydrodynamics and Heat Transfer in Wavy Annular Gas-Liquid Flow:Computational Fluid Dynamics Study [J]. International Journal of Heat and Mass Transfer,1997,40(10):2445-2460.
    98.谷芳,刘春江,袁希钢,等.倾斜倾斜波纹板上液膜流动的CFD研究[J],2005,56(3):462-467.
    99. Lakehal D., Fulgosi M., Yadigaroglu G., Banerjee S., Direct Numerical Simulation of TurbulentHeat Transfer across a Mobile, Sheared Gas–liquid Interface [J]. Journal of Heat Transfer,2003,125:1129–1140.
    100. Joo S.W., Davis S.H., Bankoff S.G., Long-wave Instabilities of Heated Films: Two-dimensionalTheory of Uniform Layers [J]. Journal of Fluid Mechanics,1991,230:117-146.
    101. Bankoff S.G., Significant Questions in Thin Liquid Film Heat Transfer [J]. Journal of heat transfer,1994,116:10-16.
    102. Hartely D.E., Murgatroyd W., Criteria for the Break-up of Thin Liquid Layers FlowingIsothermally over Solid Surface [J]. International Journal of Heat and Mass Transfer,1964,7:1003.
    103. Zuber N., Staub F.W., Stability of Dry Patches Forming in Liquid Films Flowing over HeatedSurfaces [J]. International Journal of Heat and Mass Transfer,1966,9(9):897-905.
    104. Murgatroyd W., The Role of Shear and Form forces in the stability of a dry patch in two-phase filmflow [J]. International Journal of Heat and Mass Transfer,1965,8(2):297-301.
    105. Penn D.G., De-Bertodano M.A.L., Lykoudis P., Beus S.G., Dry Patch Stability of Shear DrivenLiquid Film [C]. Proceeding of NHTC’00,34th National Heat Transfer Conference,617-625,Pittsburgh, Pennsylvansia,2000,20-22.
    106.师晋生,施明恒,平壁上等温层流液膜的破裂特性[J].东南大学学报,1997,27(3):131-135.
    107. Saber H.H., El-Genk M.S., Determination of the Minimum Thickness of an Isothermal Liquid Filmon a Vertical Surface[C]. Proceeding of NHTC’00,34th National Heat Transfer Conference,Pittsburgh, PA; UNITED STATES,2000.
    108. Hughes D.T., Bott T.R., Minimum Thickness of a Liquid Film Flowing down a Vertical Tube [J].International Journal of Heat and Mass Transfer,1998,41(2):253-260.
    109. Doniec A., Laminar Flow of a Liquid Rivulet down a Vertical Solid Surface [J].The CanadianJournal of Chemical Engineering,1991,69(1):198-202.
    110. El-Genk M.S., Saber H.H., Minimum Thickness of a Flowing down Liquid Film on a VerticalSurface [J]. International Journal of Heat and Mass Transfer,2001,44:2809.
    111. Krishnamoorthy S., Ramaswamy B., Joo S.W., Spontaneous Rupture of Thin Liquid Films due toThermocapillarity: A Full-scale Direct Numerical Simulation [J], Physics of Fluids,1995,7(9):2291-2293.
    112. Ramaswamy B., Krishnamoorthy S., Joo S.W., Three-Dimensional Simulation of Instabilities andRivulet Formation in Heated Falling Films [J], Journal of Computational Physics,1997,131(1):70-88.
    113. Chu K.J., Dukler A.E., Statistical Characteristics of Thin, Wavy Films III: Structure of the LargeWaves and Their Resistance to Gas Flow [J]. American Institute of Chemical Engineers1975,21:583–593.
    114. Annaland M.V.S., Dijkhuizen W., Deen N.G., Kuipers J.A.M, Numerical Simulation of GasBubbles using a3-D Front-Tracking Method [J], American Institute of Chemical Engineers,2006,99-110.
    115. Hirt C.W., Nichols B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries [J].Journal of computational physics,1981,39(1):201-225.
    116. Ubbink O., Numerical Prediction of Two Fluid Systems with Sharp Interface [D]. Imperial CollegeLondon,1997.
    117.阎维平,叶学民,李洪涛,液体薄膜流的流动和传热特性[J],华北电力大学学报,2005,32(1):59-65.
    118. Henstock W.H., Hanratty T.J., The Interfacial Drag and Height of the Wall Layer in Annular Flows[J]. American Institute of Chemical Engineers,1976,22:990–1000.
    119. Alekseenko S.V., Nakoryakov V.E., Pokusaev B.G., In: Fukano, T.(Ed.), Wave Flow of LiquidFilms[C]. Begell House,1994.
    120. Ito M.S., Breakdown and Formation of a Liquid Film Flowing down an Inclined Plane [J],Transaction of the Japan Society of Mechanical Engineers,1986,52(475B):1261-1265.
    121. Karapantsios T.D., Karabelas A.J., Longitudinal characteristics of wave falling films [J].International Journal of Multiphase Flow,1995,21:119-127.
    122. Mori K., Matsumoto T., Uematsu H., Time-spatial Interfacial Structures and Flow Characteristicsin Falling Liquid Films [C]. In: Third International Conference on Multiphase Flow, ICMF’98,Lyon, France, June8–12,1998.
    123. Leuthner S., Maun A.H., Auracher H., A High Frequency Impedance Probe for Wave StructureIdentification of falling films [C]. In: Third International Conference on Multiphase Flow,ICMF’98, Lyon, France, June8–12,1998.
    124. Takamasa T., Tamura S., Kobayashi K., Interfacial Waves on a Film Flowing Down Plate Wall inan Entry Region Measured with Laser Focus Displacement Meters [C]. In: Third InternationalConference on Multiphase Flow, ICMF’98, Lyon, France, June8–12,1998.
    125. Liu J., Gollub J.P., Solitary Wave Dynamics of Film Flows [J]. Physics of Fluids,1994,6:1702–1712.
    126. Kapitza P.L., Wave Flow of Thin Layers of Viscous Fluid [J], Collected Papers of P.L. Kapitza,1964,2:662-713.
    127. Levich V.G., in: Physiochemical Hydrodynamics [C], Prentice-Hall, Englewood Cliffs, NJ,1962,683-693.
    128. Tihon J., Serifi K., Argyriadi K., Bontozoglou V., Solitary Waves on Inclined Films: TheirCharacteristics and the Effect on Wall Shear Stress[J]. Experiments in Fluids,2006,41:79-89.
    129. Lienhard J.H., A Heat Transfer Textbook [M], Prentice-Hall, Englewood Cliffs, NJ,1981:113-119.
    130. Nakoryakov V.E., Pokusaev B.G., Alekseenko S.V., Stationary Two-dimensional Rolling Waves ona Vertical Film of Liquid [J]. Journal of Engineering Physics and Thermophysics,1976,30:517-521.
    131. Brackbill J.U., Kothe D.B., Zemach C., A Continuum Method for Modelling Surface Tension [J].Journal of Computational Physics,1992,100:335–354.
    132. Ansys CFX10.0:Manual[M].ANSYS,Inc,2005.
    133. Yu L.Q., Wasden F.K., Dukler A.E., Balakotaiah V., Nonlinear Evolution of Waves on FallingFilms at High Reynolds Numbers [J]. Physics of Fluids,1995,7:1886–1902.
    134. Miya M., Woodmansee D., Hanratty T.J., A model for Roll Waves in Gas–liquid Flow [J].Chemical Engineering Science,1971,26:1915-1931.
    135. Wasden F.K., Dukler A.E., Numerical Investigation of Large Wave Interactions on Free FallingFilms [J]. International Journal of Multiphase Flow,1989,15:357–370.
    136. Jones W. P., Launder B.E., The Prediction of Laminarization with a Two-equation Model ofTurbulence [J], International Journal of Heat and Mass Transfer,1972,15:301-314.
    137. Wilke W.,W rmeübergang an Rieselfilme [J],VDI Forschungsh, Düsseldorf,1962,490.
    138.蒋章焰,马同泽,赵嘉琪,霍秀和,垂直管外降落液膜的流动和传热特性,工程热物理学报[J],1988,9(1):70-74.
    139. H rk nen M., Aula A., Aittom ki A., Heat Transfer and Hydro-dynamics of Falling Films [R].HELSINKI Acta Polytechnica Scandinavica Mechanical Engineering Series,l994.
    140. Ye X.M., Yan W.P., JiangZ.Y., et al., Hydrodynamics of Free-Falling Turbulent Wavy Films and itsImplication to Enhanced Heat Transfer [J]. Heat Transfer Engineering,2002,23(1):48-60.
    141. Kennedy M.D., et al., Advanced PWR Passive Containment Cooling System Testing [C], in:International Topical Meeting on Advanced Reactors Safety, Pittsburgh, PA, April17–21,1994.
    142. Cheng X., Erbacher F.J., Neitzel H.J., Passive Containment Cooling by Natural Air Convection andThermal Radiation after Severe Accidents [J], Nuclear Engineering and Design,2000,202(2):219.
    143. Kang Y.M., Park G.C., An Experimental Study on Evaporative Heat Transfer Coefficient andApplications for Passive Cooling of AP600Steel Containment [J]. Nuclear Engineering andDesign,2001,204:347–359.
    144. Aiello G., Ciofalo M., Natural Convection Cooling of a Hot Vertical Wall Wet by a Falling LiquidFilm [J], International Journal of Heat and Mass Transfer,2009,52:5954–5961.
    145. Zapke A, Kr ger D.G.,The Influence of Fluid Properties and Inlet Geometry on Flooding inVertical and Inclined Tubes [J]. International Journal of Multiphase Flow,1996,22:461-472.
    146. Zapke A., Kr ger D.G., Countercurrent Gas-liquid Flow in Inclined and Vertical Ducts—I:FlowPatterns, Pressure Drops Characteristics and Flooding [J]. International Journal of Multiphase Flow,2000,26:1439-1455
    147. Stockfleth R, Brunner G., Film Thickness, Flow Regimes, and Flooding in Countercurrent AnnularFlow of a Falling Film at High Pressures [J]. Industrial&engineering chemistry Research,2001,40:6014-6020.
    148. Stephan M., Mayinger F., Experimental and Analytical Study of Counter-current Flow Limitationin Vertical Gas/liquid Flows [J]. Chemical engineering&technology,1992,15:1-62.
    149. Wallis G.B., One Dimensional Two-phase Flow [C]. McGraw-Hill, New York,1969.
    150. Maharudrayya S., Jayanti S., Investigation of Postflooding Conditions in CountercurrentGas-liquid Flow [J]. American Institute of Chemical Engineers,2002,48(2):212-220.
    151. Bharathan D., Wallis G.B., Richter H.J., Air-water Countercurrent Annular Flow [C]. ElectricPower Research Institute Rep.EPRI-NP_1165, Palo Alto, CA,1979.
    152. Vijayan M., Jayanti S., Balakrishman A.R., Effect of Tube Diameter on Flooding [J]. InternationalJournal of Multiphase Flow,2001,27:797-816.
    153. Fore L.B., Beus S.G., Bauer R.C., Interfacial Friction in Gas-liquid Annular Flow-Analogies toFull and Transition Roughness [J]. International Journal of Multiphase Flow,2000,26:1755-1769.
    154. Henstock W.H., Hanratty T.J., The Interfacial Drag and the Height of the Wall Layer in AnnularFlows [J]. American Institute of Chemical Engineers,1976,22(6):990-1000.
    155. Asali J.C., Entrainment in Vertical Gas-liquid Annular Flows [D]. University of Illinois,1984.
    156. Sudo Y., Mechanism and Effects of Predominant Parameters Regarding Limitation of Falling Waterin Vertical Counter-current Two-phase Flow [J]. Journal of heat transfer,1996,118:715-724.
    157.李春曦,王松岭,叶学民,气液界面剪切力对液膜流动稳定性的影响[J],中国电机工程学报,2009,29(8):60-63.
    158. Vlachos N.A., Paras S.V., Mouza A.A., Karabelas A.J., Visual Observations of Flooding in NarrowRectangular Channels [J]. International Journal of Multiphase Flow,2001,27:1415–1430.
    159. Iliuta I, Thyrion F.C., Bolle L., Giot M., Comparison of Hydrodynamic Parameters forCountercurrent and Cocurrent Flow Through Packed Beds [J]. Chemical Engineering&Technology,1997,20:171-181.
    160. Brauner N., Maron D.M., Characteristics of Inclined Thin Films, Waviness and the AssociatedMass transfer [J]. International Journal of Heat and Mass Transfer,1982,25(1):99-110.
    161. Yu L.M., Zeng A.W., Yu K.T., Effect of Interfacial Velocity Fluctuations on the Enhancement ofthe Mass-transfer Process in Falling Film Flow [J]. Industrial&engineering chemistry Research,2006,45(3):1201-1210.
    162. Bohn M.S., Davis S.H., Thermocapillary Breakdown of Falling Liquid Films at High ReynoldsNumbers [J]. International Journal of Heat and Mass Transfer,1993,36(7):1875-1881.
    163.叶学民,壁面薄膜流的热质传递和稳定性研究[D],华北电力大学,2003.
    164. Duffey R.B., Hughes E.D., Dryout Stability and Inception at Low Flow Rates [J]. InternationalJournal of Heat and Mass Transfer,1991,34(2):473-481.
    165.师晋生,施明恒,平壁上等温层流液膜的破裂特性[J].东南大学学报,1997,27(3):131-135.
    166. Tang Z.W., Yan X.K., Jiang Z.Y., Experimental Study on Surface Wave and Film Breakdown ofFalling Liquid Film Flow [J]. Heat Mass Transfer,2009,45:673–677.
    167. Hobler T., Minimum Surface Wetting [J]. Chemia Stosow,1964,2B:145.
    168. Bankoff S.G., Minimum Thickness of a Draining Liquid Film [J]. International Journal of Heat andMass Transfer,1971,14:2143.
    169. Westinghouse. WGOTHIC Application to AP600and AP1000[M], WCAP-15846,2004
    170. Nicolaiewsky E.M.A., Tavares F.W., Rajagopal K., Fair J.R., Liquid Film Flow and AreaGeneration in Structured Packed Columns [J]. Powder Technology,1999,104(1):84-94.
    171. Ponter B., Davies G.A., Ross T.K, Thornley P.G., The Influence of Mass Transfer on Liquid FilmBreakdown [J], International Journal of Heat and Mass Transfer,1967,10:349-359.
    172. Munakata T., Watanabe K., Miyashita K., Minimum Wetting Rate on Wetted-wall Column [J].Journal of Chemical Engineering of Japan.1975,8(6):440-444.
    173. Saber H.H., El-Genk M.S., On the Breakup of a Thin Liquid Film Subject to Interfacial Shear [J].Journal of Fluid Mechanics,2004,500:113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700