配体结构和中心金属对双—席夫碱稀土单胺化物和二价稀土配合物的合成以及反应性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以席夫碱为辅助配体,合成了35个稀土配合物,并对其中32个稀土配合物进行了晶体结构表征。研究了配体结构和中心金属对双-席夫碱稀土单胺化物与席夫碱稳定的二价稀土配合物的合成以及反应性质的影响。在此基础上,进一步研究了其中一些配合物对内酯开环聚合、胺与碳化二亚胺的胍化反应的催化行为。主要结果如下:
     1.三齿席夫碱配体3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-8-C_9H_6N (HL~1)与Ln[N(TMS)_2]_3的交换反应,合成了5个双-(三齿席夫碱)稀土单胺化物L_2~1LnN(TMS)_2 (Ln = Yb(1), Y(2), Eu (3), Nd (4), La (5))。发现反应物投料比例、反应温度、反应溶剂以及加料方式等都对双-(三齿席夫碱)稀土单胺化物的合成有很大影响。这些配合物都经过了元素分析、红外光谱表征,测定了它们的单晶结构。从单晶结构中发现随着稀土离子半径的减小,喹啉环氮的邻位氢原子与硅胺基团的距离逐渐变小,特别是对于离子半径较小的稀土金属Yb和Y,它们的距离已经小于氮原子和氢原子的范德华半径之和,表明可能存在Ln-C-H-N的四元环结构。对抗磁性的配合物2和5还进行了核磁表征,研究了液态时的结构,核磁表明也可能存在上述的四元环结构,与固态结构是相吻合的。
     2.双齿席夫碱配体3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2,6-Pr_2~i-C_6H_3 (HL~2)与Ln[N(TMS)_2]_3的交换反应,合成了4个双-(双齿席夫碱)稀土单胺化物L_2~2LnN(TMS)_2 (Ln = Yb (6), Y (7), Nd (8), La (9))。同样发现反应物投料比例对双-(双齿席夫碱)稀土单胺化物的合成有重要影响。这些配合物都经过了元素分析、红外光谱表征,测定了它们的单晶结构,并对抗磁性的配合物7和9进行了核磁表征。单晶结构解析表明这些配合物均是无配位溶剂的单分子结构,中心金属的配位数为5,这是非常少见的配位数较低的席夫碱稀土胺化物。并且发现也可以通过双-席夫碱稀土单氯化物和NaN(TMS)_2的复分解反应来合成配合物7,即席夫碱配体HL~2与NaH反应合成钠盐NaL2,然后再用两当量的该钠盐与YCl_3反应合成双席夫碱稀土单氯化物L_2~2Y(THF)Cl (10),最后用配合物10和NaN(TMS)_2反应得到目标配合物7。
     3.位阻较小的双齿席夫碱配体3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2,6-Me_2-C_6H_3 (HL~3)与Ln[N(TMS)_2]_3的交换反应,合成了2个双-(双齿席夫碱)稀土单胺化物L_2~3LnN(TMS)_2 (Ln = Yb (11), Y (12))和2个均配型稀土配合物L_3~3Ln (Ln =Nd (13), La (14)。发现不仅反应物投料比例对双-(双齿席夫碱)稀土单胺化物的合成有影响,而且中心稀土的离子半径也对其有影响。
     4.尝试了三齿席夫碱配体C_4H_4NCH=N-2-MeO-C_6H_4 (HL~4)与Y[N(SiMe3)_2]_3的胺消除反应,即使降低反应物投料比例也得到了均配型配合物L_3~4Y (15)。较大位阻的三齿席夫碱配体C_4H_4NCH=N-2-PPh_2-C_6H_4 (HL~5)与Yb[N(SiMe3)_2]_3的胺消除反应,仍然生成均配型配合物L_3~5Yb (16),这可能是边臂磷原子不配位致使位阻变小的缘故。另外也尝试了β-酮亚胺类型的双齿席夫碱配体CH_3COCH=C(Me)NH-2,6-Pr_2~i-C_6H_3 (HL~6)与Ln[N(TMS)_2]_3的交换反应,因溶解性的缘故未能得到任何可以表征的配合物。而用CH_3COCH=C(Me)NHPh (HL~7)配体与Ln[N(TMS)_2]_3的交换反应得到的是配体桥联的均配型双核配合物[L_2~7Ln(μ-η~2-L~7)]_2 (Ln = Y (17);Nd (18);La (19))。也尝试通过合成该配体稳定的稀土氯化物与NaN(TMS)_2的反应来合成稀土胺化物,但是在合成氯化物时得到的也是与上述结构一致的配合物17、18、19,对于离子半径较小的稀土Y来说,也有双-(β-酮亚胺)稀土单氯化物[L~7Y(μ-η~2-L~7)Cl]_2 (20)的生成,推测可能是一个混合体系。
     5.对上述合成的一系列双-(席夫碱)稀土单胺化物1-9, 11-12的稳定性进行了研究。发现配体结构和中心金属对双-(席夫碱)稀土单胺化物的稳定性有明显影响。对于稀土离子半径较小的Yb和Y的胺化物1和2,容易发生分子内喹啉环邻位C-H键的活化,生成结构新颖的含有新配体L~1[O, O, N]~(3-)的配合物21和22;对于稀土离子半径较大的Nd的胺化物4,则需要较高的反应温度和较长的反应时间,才可以发生上述类似的反应生成配合物23;然而,对于稀土离子半径最大的La的胺化物5来说,即使加热到70℃,延长反应时间到10天,也没有发生任何变化。而对于双齿配体稳定的胺化物6-9和11-12很稳定,即使加热到80℃,也没有胺基迁移到C=N双键上的现象,也没有发生C-H键的活化反应。并对稀土胺化物参与的分子间的C-H键活化做了初步尝试,胺化物2和5分别与邻甲基吡啶反应,生成配合物23和24。
     6.研究了双-席夫碱稀土单胺化物1-5, 7, 12催化胺与碳化二亚胺的胍化反应。结果表明配体结构对催化活性影响不明显,而中心金属对其影响较大。同时也对该反应的催化机理进行了初步的研究;尝试了双-(三齿席夫碱)稀土单胺化物2催化ε-己内酯、L-丙交酯的聚合反应,发现它的催化活性较高,所得聚合物的分子量分布较窄,对于L-丙交酯的聚合可能是活性聚合体系。
     7.研究了三齿席夫碱配体HL~1与Ln[N(SiMe_3)_2]_2(THF)_2的交换反应。发现对于氧化还原能力较弱的稀土金属Eu,生成二价稀土配合物L_2~1Eu(THF)_2 (26);而对于氧化还原能力较强的稀土金属Yb和Sm,则不能合成相应的二价稀土配合物,容易发生氧化还原反应生成三价稀土配合物21与27,对其形成机理进行了推测。
     8.研究了三齿席夫碱配体3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2-C_5H_4N (HL~9)与Ln[N(SiMe_3)_2]_2(THF)_2 (Ln = Yb, Sm)的交换反应。发现该配体也不能稳定相应的二价稀土配合物,而是容易发生席夫碱配体中C=N双键的还原偶联反应,分别生成双核稀土配合物28与29,并对形成机理进行了推测。
     9.研究了双齿席夫碱配体HL~2与Ln[N(SiMe_3)_2]_2(THF)_2的交换反应。对于氧化还原能力较弱的稀土金属Eu和Yb,生成二价稀土配合物L_2~2Ln(THF)_2 (Ln = Eu (30), Yb (31));而对于氧化还原能力较强的稀土金属Sm,则生成双-(双齿席夫碱)稀土单胺化物(32),并对形成原因做了合理的解释。
     10.研究了双齿席夫碱配体HL~3与Ln[N(SiMe_3)_2]_2(THF)_2的交换反应。对于氧化还原能力较弱的稀土金属Eu和Yb,生成二价稀土配合物L_2~3Ln(THF)_2 (Ln = Eu (33), Yb (34));而对于氧化还原能力较强的稀土金属Sm,则未能得到可测的晶体,但初步判断也不是二价的配合物。同时,也对配合物33活化小分子进行了初步的探索,发现它与O_2反应,生成比较少见的过氧桥稀土配合物[L_2~3Eu(THF)]_2(μ-η~2:η~2-O_2) (35)。
Using Schiff base as ancillary ligands, 35 lanthanide complexes were synthesized. Among them, the molecular structures of 32 complexes were determined by X-ray single crystal diffraction. The influence of Schiff base and lanthanide metals on the synthesis, stability, and reactivity of monoamido lanthanide complexes and divalent lanthanide complexes bearing two Schiff bases were studied. Furthermore, catalytic behavior of some of these complexes for the guanylation of amines and polymerization of caprolactone/lactide were studied. The main contents were listed below.
     1. Reactions of tridentate Schiff base 3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-8-C_9H_6N (HL~1) with Ln[N(TMS)_2]_3 afforded 5 monoamido lanthanide complexes L_2~1LnN(TMS)_2 (Ln = Yb(1), Y(2), Eu (3), Nd (4), La (5)). The reaction conditions, such as the molar ratio of the starting materials, reaction temperature, solvent and the method of adding schiff base, have great influence on the synthesis of these complexes. These complexes were characterized by elemental analysis, IR. The solid structures of these complexes were studied by the X-ray diffraction. single crystal structure analysis and showed that the distances between the N (5) atom of -N(TMS)_2 group and the H (15) atom of one quinoline ring in complexes 1-5 become smaller with decrease of the size of lanthanide metals, in complexes 1 and 2, the distances are shorter than the sum of van der Waals radius of N and H atoms. These indicate that there might be the four-members-ring structure of Ln-C-H-N. The solution behavior of diamagnetic complexes 2 and 5 were studied by NMR. It was found that the structures of these complexes in solution were in accordance with their solid structures.
     2. Reactions of bidentate Schiff base 3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2,6-Pr_2~i-C_6H_3 (HL~2) with Ln[N(TMS)_2]_3 afforded 4 monoamido lanthanide complexes L_2~2LnN(TMS)_2 (Ln = Yb (6), Y (7), Nd (8), La (9)). The molar ratio of the starting materials also have great influence on the synthesis of these complexes. These complexes were characterized by elemental analysis, IR, X-ray diffraction and the NMR for the complexes 7 and 9. Single crystal structure analysis showed that these complexes are monomeric with no coordination solvents. The coordination number of metal center is 5. There are few examples for amido lanthanide complexes bearing Schiff base with low coordination number in the literature. Further study revealed that complex 7 could also be prepared by the salt metathesis reaction of L_2~2Y(THF)Cl (10) formed via the reaction of YCl_3 with two equiv of NaL′, with NaN(TMS)_2 in THF.
     3. Reactions of the less bulky bidentate Schiff base 3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2,6-Me_2-C_6H_3 (HL~3) with Ln[N(TMS)_2]_3 afforded the desired monoamido lanthanide complexes L_2~3LnN(TMS)_2 (Ln = Yb (11), Y (12)) only for the smaller ionic radius of Yb and Y. Instead, the homoleptic tris-Schiff base lanthanide complexes L_3~3Ln (Ln =Nd (13), La (14) were formed for the larger ionic radius of La and Nd. It was found that not only the molar ratio of the starting materials, but also the central metals have crucial influence on the synthesis of amido lanthanide complexes.
     4. Reactions of the other two tridentate Schiff bases C_4H_4NCH=N-2-MeO-C_6H_4 (HL~4) and C_4H_4NCH=N-2-PPh_2-C_6H_4 (HL~5) with Y[N(SiMe3)_2]_3 and Yb[N(SiMe3)_2]_3 afforded the corresponding homoleptic tris-Schiff base lanthanide complexes L_3~4Y (15) and L_3~5Yb (16). Theβ-ketoiminato ligands, as one kind of bidentate Schiff bases, were also tried in the amine-elimination reaction. When the ligand of CH_3COCH=C(Me)NH-2,6-Pr_2~i-C_6H_3 (HL~6) was used, the final products had not been obtained as it’s good solubility. Whilst, using the less bulky ligand CH_3COCH=C(Me)NHPh (HL~7) to decrease the solubility of the final products, the dimeric lanthanide complexes [L_2~7Ln(μ-η~2-L~7)]_2 (Ln = Y (17), Nd (18), La (19)) were isolated. Each of the two metals is coordinated by threeβ-ketoiminato ligands and bridged through the oxygen atom from one of theβ-ketoiminato ligands. The salt metathesis reaction of bis-(β-ketoiminato) lanthanide chloride with NaN(TMS)_2 were designed for the synthesis of amido lanthanide complexes, but it was failed only the complexes 17-19 were formed. This may be because the lanthanide chloride via the reaction of LnCl_3 with two equiv of NaL~7 is not easy to synthesize. However, the mixture of complex 17 and the lanthanide chloride [L~7Y(μ-η~2-L~7)Cl]_2 (20) might be obtained for the smaller ionic radius of Y.
     5. The stability of the bis-(Schiff base) monoamido lanthanide complexes 1-9, 11-12 was also studied. It was found that the Schiff base ligands and the size of the lanthanide metals have a significant impact on the stability of these monoamido lanthanide complexes. Complexes 1 and 2 are easy to decompose to the new complexes 21 and 22 via the intramolecular C-H bond activation and subsequent functionalization reaction. Such transformation for complex 4 to complex 23 could be observed at 70℃for 5 days; but complex 5 is quite stable, no such a conversion was observed even at 70℃for 10 days. This is the first example of C-H bond activation mediated by amido lanthanide complex. While, the bis-(bidentate Schiff base) monoamido lanthanide complexes 6-9, 11-12 are stable, no migration of amido group to C=N bond or C-H bond activation reaction was occurred. The intermolecular C-H bond activation was tried by the reaction of complexes 2 and 5 with o-methylpyridine, and the complexes 24 and 25 were obtained, respectively.
     6. The catalytic behavior of bis-(Schiff base) monoamido lanthanide complexes 1-5, 7, 12 in the guanidine-forming reaction was examined. It is noted that almost no differences in activity among the amido lanthanide complexes with various Schiff base ligands; however, the activity is largely influenced by the central metals. The possible mechanism of this reaction was also studied. Complex 2 was also found to be an efficient catalyst for the ring-opening polymerization ofε-caprolactone and L-lactide, with higher catalytic reactivity and narrow PDI of the polymer.
     7. Reactions of tridentate Schiff base HL~1 with Ln[N(SiMe_3)_2]_2(THF)_2 afforded the divalent Schiff base lanthanide complex L_2~1Eu(THF)_2 (26) for the less active Eu, while the complexes 21 and 27 were formed for Yb and Sm. The possible mechanisms for the formation of 21 and 27 were also presented.
     8. Reactions of tridentate Schiff base 3,5-Bu_2~t-2-(OH)-C_6H_2CH=N-2-C_5H_4N (HL~9) with Ln[N(SiMe_3)_2]_2(THF)_2 were tested. It was found that the corresponding divalent lanthanide complexes could not be stabilized by this ligand, and would transform to the corresponding compexes 28 and 29 for Yb and Sm via the ligand reductive coupling. The possible mechanisms for the formation of both complexes were also included.
     9. Reactions of bidentate Schiff base HL~2 with Ln[N(SiMe_3)_2]_2(THF)_2 afforded the corresponding divalent lanthanide complexes L_2~2Ln(THF)_2 (Ln = Eu (30), Yb (31)); while the amido lanthanide complex L_2~2Sm[N(TMS)_2] (32) was formed for Sm, and the plausible reasons for the formation of 32 was given.
     10. Reactions of bidentate Schiff base HL~3 with Ln[N(SiMe_3)_2]_2(THF)_2 afforded the divalent lanthanide complexes L_2~3Ln(THF)_2 (Ln = Eu (33), Yb (34)) for Eu and Yb, although the complex 34 was not characterized by X-Ray diffraction; while no divalent lanthanide complex was formed judging from the color of reaction system for Sm, and tried to isolation of detectable complex was failed. The reactivity of complex 33 with O_2 was tested, and the peroxide bridged lanthanide complex [L_2~3Eu(THF)]_2(μ-η~2:η~2-O_2) (35) was isolated.
引文
[1] Runte, O.; Priermeier, T.; Anwander, R. J. Chem. Soc., Chem. Commun. 1996, 1385.
    [2] Evans, W. J.; Fujimoto, C. H.; Ziller, J. W. Polyhedron 2002, 21, 1683.
    [3] Grunova, E.; Kirillov, E.; Roisnel, T.; Carpentier, J. F. Organometallics 2008, 27, 5691.
    [4] P. N. O’Shaughnessy, P. D. Knight, C. Morton, K. M. Gillespie and P. Scott, Chem.Commun., 2003, 1770.
    [5] Xiang, L.; Wang, Q.; Song, H.; Zi, G. Organometallics 2007, 26, 5323.
    [6] Matsuo, Y.; Mashima, K.; Tani, K. Organometallics 2001, 20, 3510.
    [7] Schuetz, S. A.; Day, V. W.; Sommer, R. D.; Rheingold, A. L.; Belot, J. A. Inorg. Chem. 2001, 40, 5292.
    [8] Schuetz, S. A.; Day, V. W.; Clark, J. L.; Belot, J. A. Inorg. Chem. Commun. 2002, 5, 706.
    [9] Schuetz, S. A.; Day, V. W.; Rheingold, A. L.; Belot, J. A. Dalton Trans. 2003, 4303.
    [10] Schuetz, S. A.; Erdmann, M. A.; Day, V. W.; Clark, J. L.; Belot, J. A. Inorg. Chim. Acta. 2004, 357, 4045.
    [11] Schuetz, S. A.; Silvernail, C. M.; Incarvito, C. D.; Rheingold, A. L.; Clark, J. L.; Day, V. W.; Belot, J. A. Inorg. Chem. 2004, 43, 6203.
    [12] Zi, G. Dalton Trans. 2009, 9101.
    [13] Zi, G.; Li, X.; Song, H. Organometallics 2008, 27, 1242.
    [14] Wang, Q.; Xiang, L.; Song, H.; Zi, G. Inorg. Chem. 2008, 47, 4319.
    [15] Wang, Q.; Xiang, L.; Zi, G. J. Organomet. Chem. 2008, 693, 68.
    [16] (a) Watson, P. L. J. Am. Chem. Soc. 1982, 104, 337; (b) Watson, P. L. J. Am. Chem. Soc. 1983, 105, 6491.
    [17] (a) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203. (b) Haan, K. H. den; Wielstra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053. (c) Heeres, B. H. J.; Meetsrna, A.; Teuben, J. H. Angew. Chem. Int. Ed. 1990, 29, 420. (d) Booij, M.; Meetsma, A.; Teuben, J. H. Organometallics 1991, 10, 3246. (e) Trifonov, A. A.; Fedorova, E. A.; Fukin, G. K.; Druzhkov, N. O.; Bochkarev, M. N. Angew. Chem. Int. Ed. 2004, 43, 5045. (f) Maron, L.; Werkema, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2005, 127, 279. (g) Takenaka, Y.; Hou, Z. M. Organometallics 2009, 28, 5196.
    [18] (a) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Organometallics 1991, 10, 134. (b) Booij, M.; Deelman, B. J.; Duchateau, R.; Postma, D.S.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12, 3531. (c) Deelman, B. J.; Stevels, W. M.; Teuben, J. H.; Lakin, M. T.; Spek, A. L. Organometallics 1994, 13, 3881. (d) Deelman, B.-J.; Booij, M.; Meetsma, A.; Teuben, J. H.; Kooijman, H.; Spek, A. L. Organometallics1995, 14, 2306. (e) Ringelberg, S. N.; Meetsma, A.; Hessen, B.; Teuben, J. H. J. Am. Chem. Soc. 1999, 121, 6082. (f) Ringelberg, S. N.; Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. Organometallics 2002, 21, 1759.
    [19] (a) Arndt, S.; Spaniol, T. P.; Okuda, J. Organometallics 2003, 22, 775. (b) Hitzbleck, J.; Okuda, J. Organometallics 2007, 26, 3227.
    [20] Spaniol, T. P.; Okuda, J.; Kitamura, M.; Takahashi, T. J. Organomet. Chem. 2003, 684, 194.
    [21] Cameron, T. M.; Gordon, J. C.; Scott, B. L.; Tumas, W. Chem. Commun. 2004, 1398.
    [22] Jantunen, K. C.; Scott, B. L.; Gordon, J. C.; Kiplinger, J. L. Organometallics 2007, 26, 2777.
    [23] (a) Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226. (b) Emslie, D. J. H.; Piers, W. E.; McDonald, R. J. Chem. Soc., Dalton Trans. 2002, 293.
    [24] Bambirra, S.; Meetsma, A.; Hessen, B. Organometallics 2006, 25, 3486.
    [25] Liu, B.; Yang, Y.; Cui, D. M.; Tang,T.; Chen, X. S.; Jing, X. B. Dalton Trans. 2007, 4252.
    [26] Wang, D.; Cui, D. M.; Miao, W.; Li, S. H.; Huang, B. T. Dalton Trans. 2007, 4576.
    [27] Luo, Y. J.; Nishiura, M.; Hou, Z. M. J. Organomet. Chem. 2007, 692, 536.
    [28] (a) Carver, C. T.; Diaconescu, P. L. J. Am. Chem. Soc. 2008, 130, 7558. (b) Carver, C. T.; Benitez, D.; Miller, K. L.; Williams, B. N.; Tkatchouk, E.; GoddardⅢ, W. A.; Diaconescu, P. L. J. Am. Chem. Soc. 2009, 131, 10269.
    [29] Neculai, A. M.; Roesky, H.; Neculai, W.D.; Magull,J. Organometallics 2001, 20, 5501.
    [30] Liddle, S. T.; Arnold, P. L. Dalton Trans. 2007, 3305.
    [31] Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
    [32]李邦玉,苏州大学博士论文, 2009.
    [33] Berube, C. D.; Gambarotta, S.; Yap, G. P. A. Organometallics 2003, 22, 434.
    [34] Hao, J. J.; Song, H. B.; Cui, C. M. Organometallics 2009, 28, 3100.
    [35] Jenter, J.; Gamer, M. T.; Roesky, P. W. Organometallics 2010, 29, 4410.
    [1] Taylor, M. D.; Carter, C. P. J. Inorg. Nucl. Chem. 1962, 24, 387.
    [2] Donald, C. B.; Joginder, S. G. J. Chem. Soc., Dalton Trans. 1973, 1021.?
    [1] Cmeron, P. A; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Bruce, M. D.; White, A. J. P.; Williams, D. J. Chem. Commun., 1999, 1883.
    [2]李邦玉,苏州大学博士论文, 2009.
    [3] Shannon, B. R. D. Acta Cryst., 1976, A32, 751.
    [4]秦笃伟,苏州大学硕士论文, 2010.
    [5] Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10212.
    [6] Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Spek, A. L.; Kojic-Prodic, B.; Hays, G. R.; Huis, R. Organometallics 1986, 5, 1726.
    [7] Mu, Y.; Piers, W. E.; MacDonald, M.-A.; Zaworotko, M. Can. J. Chem. 1995, 73, 2233.
    [8] Matsuo,Y.; Mashima, K.; Tani, K. Organometallics, 2001, 20, 3510.
    [9] Shao, P.; Berg, D. J.; Bushnell, G. W. Inorg. Chem. 1994, 33, 6334.
    [10] (a) Grunova, E.; Kirillov, E.; Roisnel, T.; Carpentier, J. F. Organometallics 2008, 27, 5691. (b) Zi, G.; Li, X.; Song, H. Organometallics 2008, 27, 1242. (c) Wang, Q.; Xiang, L.; Song, H.; Zi, G. Inorg. Chem. 2008, 47, 4319. (d) Xiang, L.; Wang, Q.; Song, H.; Zi, G. Organometallics 2007, 26, 5323. (e) Schuetz, S. A.; Silvernail, C. M.; Incarvito, C. D.; Rheingold, A. L.; Clark, J. L.; Day, V. W.; Belot, J. A. Inorg. Chem. 2004, 43, 6203. (f) Schuetz, S. A.; Erdmann, M. A.; Day, V. W.; Clark, J. L.; Belot, J. A. Inorg. Chim. Acta. 2004, 357, 4045. (g) Schuetz, S. A.; Day, V. W.; Rheingold, A. L.; Belot, J. A. Dalton Trans. 2003, 4303. (h) Schuetz, S. A.; Day, V. W.; Clark, J. L.; Belot, J. A. Inorg. Chem. Commun. 2002, 5, 706. (i) Evans, W. J.; Fujimoto, C. H.; Ziller, J. W. Polyhedron 2002, 21, 1683. (j) Lin, M-H.; RajanBabu, T. V. Org. Lett. 2002, 4, 1607. (k) Matsuo, Y.; Mashima, K.; Tani, K. Organometallics 2001, 20, 3510. (l) Schuetz, S. A.; Day, V. W.; Sommer, R. D.; Rheingold, A. L.; Belot, J. A. Inorg. Chem. 2001, 40, 5292. (m) Runte, O.; Priermeier, T.; Anwander, R. J. Chem. Soc., Chem. Commun. 1996, 1385.
    [11] Dai, X. D.; Wong, A.; Virgil, S. C. J. Org. Chem. 1998, 63, 2597.
    [12] Peng, H. M.; Zhang, Z. Q.; Qi, R. P.; Yao, Y. M.; Zhang, Y.; Shen, Q.; Cheng, Y. X. Inorg. Chem. 2008, 47, 9828.
    [13]蔡成仪,苏州大学硕士论文, 2010.
    [14] (a) Jones, W. D. Acc. Chem. Res. 2003, 36, 140. (b) Lin, Z. Y. Coord. Chem. Rev. 2007, 251, 2280. (c) Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev. 2010, 110, 749.
    [15] (a) Jia, C. G.; Piao, D. G.; Oyamada, J.; Lu, W. J; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992. (b) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (c) Ritleng, V.; Sirlin, C.; Pfeffer M. Chem. Rev. 2002, 102, 1731. (d) Goj, L. A.; Gunnoe, T. B. Curr. Org. Chem. 2005, 9, 671. (e) Kawai, H.; Kobayashi, Y.; Oi, S.; Inoue, Y. Chem. Commun. 2008, 1464. (f) Lewis, J. C.; Bergman, R. G.; Ellman, J.A. Acc. Chem. Res. 2008, 41, 1013. (g) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
    [16] (a) Watson, P. L. J. Am. Chem. Soc. 1982, 104, 337; (b) Watson, P. L. J. Am. Chem. Soc. 1983, 105, 6491.
    [17] (a) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203. (b) Haan, K. H. den; Wielstra, Y.; Teuben, J. H. Organometallics 1987, 6, 2053. (c) Heeres, B. H. J.; Meetsrna, A.; Teuben, J. H. Angew. Chem. Int. Ed. 1990, 29, 420. (d) Booij, M.; Meetsma, A.; Teuben, J. H. Organometallics 1991, 10, 3246. (e) Trifonov, A. A.; Fedorova, E. A.; Fukin, G. K.; Druzhkov, N. O.; Bochkarev, M. N. Angew. Chem. Int. Ed. 2004, 43, 5045. (f) Maron, L.; Werkema, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2005, 127, 279. (g) Takenaka, Y.; Hou, Z. M. Organometallics 2009, 28, 5196.
    [18] (a) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Organometallics 1991, 10, 134. (b) Booij, M.; Deelman, B. J.; Duchateau, R.; Postma, D.S.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12, 3531. (c) Deelman, B. J.; Stevels, W. M.; Teuben, J. H.; Lakin, M. T.; Spek, A. L. Organometallics 1994, 13, 3881. (d) Deelman, B.-J.; Booij, M.; Meetsma, A.; Teuben, J. H.; Kooijman, H.; Spek, A. L. Organometallics 1995, 14, 2306. (e) Ringelberg, S. N.; Meetsma, A.; Hessen, B.; Teuben, J. H. J. Am. Chem. Soc. 1999, 121, 6082. (f) Ringelberg, S. N.; Meetsma, A.; Troyanov, S. I.; Hessen, B.; Teuben, J. H. Organometallics 2002, 21, 1759.
    [19] (a) Arndt, S.; Okuda, J. Chem. Rev. 2002, 102, 1953. (b) Okuda, J. Dalton Trans. 2003, 2367. (c) Arndt, S.; Spaniol, T. P.; Okuda, J. Organometallics 2003, 22, 775. (d) Spaniol, T. P.; Okuda, J.; Kitamura, M.; Takahashi, T. J. Organomet. Chem. 2003, 684, 194. (e) Cameron, T. M.; Gordon, J. C.; Scott, B. L.; Tumas, W. Chem. Commun. 2004, 1398. (f) Dietrich, H. M.; Grove, H.; T?rnroos, K. W.; Anwander, R. J. Am. Chem. Soc. 2006, 128, 1458. (g) Jantunen, K. C.; Scott, B. L.; Gordon, J. C.; Kiplinger, J. L. Organometallics 2007, 26, 2777. (h) Hitzbleck, J.; Okuda, J. Organometallics 2007, 26, 3227.
    [20] (a) Emslie, D. J. H.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics 2002, 21, 4226. (b) Emslie, D. J. H.; Piers, W. E.; McDonald, R. J. Chem. Soc., Dalton Trans. 2002, 293. (c) Bambirra, S.; Meetsma, A.; Hessen, B. Organometallics 2006, 25, 3486. (d) Liu, B.; Yang, Y.; Cui, D. M.; Tang,T.; Chen, X. S.; Jing, X. B. Dalton Trans. 2007, 4252. (e) Liu, B.; Cui, D. M.; Ma, J.; Chen, X. S.; Jing, X. B.Chem.-Eur. J. 2007, 13, 834. (f) Wang, D.; Cui, D. M.; Miao, W.; Li, S. H.; Huang, B. T. Dalton Trans. 2007, 4576. (g) Skvortsov, G. G.; Fukin, G. K.; Trifonov, A. A.; Noor, A.; D?ring, C.; Kempe, R. Organometallics 2007, 26, 5770. (h) Zimmermann, M.; Estler, F.; Herdtweck, E.; T?rnroos, K. W.; Anwander, R. Organometallics 2007, 26, 6029. (i) Luo, Y. J.; Nishiura, M.; Hou, Z. M. J. Organomet. Chem. 2007, 692, 536. (j) Carver, C. T.; Diaconescu, P. L. J. Am. Chem. Soc. 2008, 130, 7558. (k) Carver, C. T.; Benitez, D.; Miller, K. L.; Williams, B. N.; Tkatchouk, E.; GoddardⅢ, W. A.; Diaconescu, P. L. J. Am. Chem. Soc. 2009, 131, 10269. (l) Liu, B.; Liu, X. L.; Cui, D. M.; Liu, L. Organometallics 2009, 28, 1453.
    [21] (a) Gubareva, L. V.; Kaiser, L.; Hayden, F. G. The Lancet 2000, 355, 827. (b) Reitz, A. B.; Tuman, R. W.; Marchione, C. S.; et al. J. Med.Chem. 1989, 32, 2110. (c) Baker, T. J.; Luedtke, N. W.; Goodman, M.; et al. J. Org. Chem. 2000, 65, 9054. (d) Luedtke, N. W.; Baker, T. J.; Goodman, M.; et al. J. Am. Chem. Soc. 2000, 122, 12035. (e) Jeong, J. H.; Murray, B. W.; Takayama, S.; et al. J. Am. Chem. Soc. 1996, 118, 4227.
    [22] (a) Hu, L. Y.; Guo, J.; Magar, S. S.; Fischer, J. B.; BurkeHowie, K. J.; Durant, G. J. J. Med. Chem. 1997, 40, 4281. (b) Manimala, J. C.; Anslyn, E. V. Eur. J. Org. Chem. 2002, 3909.
    [23]沈宗旋,王亚玲,张雅文有机化学, 2002 , 22, 388.
    [24] (a) Tin, M. K. T.; Thirupathi, N.; Yap, G. P. A.; Richeson, D. S. Dalton Trans. 1999, 17, 2947. (b) Tin, M. K. T.; Yap, G. P. A.; Richeson, D. S. Inorg. Chem. 1998, 37, 6728.
    [25] (a) Zhang, W. X.; Nishiura, M., Hou, Z. M. Synlett. 2006, 8, 1213. (b) Zhang, W. X.; Nishiura, M., Hou, Z. M. Chem. Eur. J. 2007, 13, 4037.
    [26] (a) Ong, T. G.; Yap G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 8100. (b) Ong, T. G.; O’Brien, J. S.; Korobkov, I.; Richeson, D.S. Organometallics 2006, 25, 4728. (c) Shen, H.; Chan, H. S.; Xie, Z. W. Organometallics 2006, 25, 5515. (d) Montilla, F.; Pastor, A.; Galindo, A. J. Organomet. Chem. 2004, 689, 993. (e) Zhou, S. L.; Wang, S. W.; Yang, G. S.; Li, Q. H.; Zhang, L. J.; Yao, Z. J.; Zhou, Z. K.; Song, H. B. Organometallics 2007, 26, 3755. (f) Li, Q. H.; Wang, S. W.; Zhou, S. L.; Yang, G. S.; Zhu, X. C.; Liu, Y. Y. J. Org. Chem. 2007, 72, 6763. (f) Liu, C.; Zhou, S. L.; Wang, S. W.; Zhang, L. J.; Yang, G. S. Dalton Trans., 2010, 39, 8994. (h) Du, Z.; Li, W. B.; Zhu, X. H.; Xu, F.; Shen, Q. J. Org. Chem. 2008, 73, 8966.
    [27] Zhu, X. H.; Du, Z.; Xu, F.; Shen, Q. J. Org. Chem. 2009, 74, 6347.
    [28] Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147.
    [29] (a) Bergsm, J. E.; RoZem, F. R.; Bos, R. M. et al Joral. Maxillofac. Surg. 1993, 51, 666. (b) Beumer, G. J. et al J. Biomed. Mater. Res. 1994, 28, 545. (c) Mooney, D. J.; Park, S.; Kaufmane, P. M. et al J. Biomed. Mater. Res. 1995, 29, 959.
    [30] Zhang, X. C.; McAuley, K. B.; Gossen, M. F. A. J. Control. Release 1995, 34, 175.
    [31] Hofman, A.; Slomkowski, S.; Penczek, S. Macromol. Chem., Rapid Commun. 1987, 8, 387.
    [32] (a) Agarwal, S.; Mast, C.; Dehnicke, K.; Greiner, A. Macromol. Rapid Commun. 2000, 21, 195. (b) O’Keefe, B. J.; Hillmayer M. A.; Tolman, W. B. J. Chem. Soc. Dalton Trans. 2001, 2215. (c) Yasuda, H. J. Oranomet. Chem. 2002, 647, 128. (d) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316. (e)Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A.; Yasuda, H.; Harada, A.; Okuda, J. Macromolecules 2002, 35, 7538. (f) Martin, E.; Dubois, P.; Jér?me, R. Macromolecules 2003, 36, 5934. (g) Shueh, M. L.; Wang, Y. S.; Huang, B. H.; Kuo, C. Y.; Lin, C. C. Macromolecules 2004, 37, 5155. (h) Ling, J.; Zhu, W. P.; Shen, Z. Q. Macromolecules 2004, 37, 758. (i) Huang, B. H.; Lin, C. N.; Shueh, M. L.; Athar, T.; Lin, C. C. Polymer 2006, 47, 6622. (j) Spassky, N.; Simic, V.; Montaudo, M. S.; Hubert-Pfalzgraf, L. G. J. Polym. Sci.: Part A: Polym. Chem. 2006, 44, 6646. (k) Amgoune, A.; Thomas, C. M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. Angew. Chem. Int. Ed. 2006, 45, 2782. (l) A
    mgoune, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J. F. Chem. Eur. J. 2006, 12, 169. (m) Alaaeddine, A.; Amgoune, A.; Thomas, C. M.; Dagorne, S.; Bellemin-Laponnaz, S.; Carpentier, J. F. Eur. J. Inorg. Chem. 2006, 3652. (n) Sánchez-Barba, L. F.; Hughes, D. L.; Humphrey, S. M.; Bochmann, M.; Organometallics 2006, 25, 1012. (o) Yang, Y.; Li, S. H.; Cui D. M.; Chen X. S.; Jing, X. B. Organometallics 2007, 26, 671. (p) Amgoune, A.; Thomas, C. M.; Carpentier, J. F. Macromol. Rapid Commun. 2007, 28, 693. (q) Pappalardo, D.; Annunziata, L.; Pellecchia, C.; Biesemans, M.; Willem, R. Macromolecules 2007, 40, 1886.
    [33] See reference 10(e) and ref 30 in there. ?
    [1] Dubé, T.; Gambarotta, S.; Yap, G. Organometallics 1998, 17, 3967.
    [2]李邦玉,苏州大学博士论文, 2009.
    [3] Berube, C. D.; Gambarotta, S.; Yap, G. P. A. Organometallics 2003, 22, 434.
    [4] Hao, J. J.; Song, H. B.; Cui, C. M. Organometallics 2009, 28, 3100.
    [5] Jenter, J.; Gamer, M. T.; Roesky, P. W. Organometallics 2010, 29, 4410.
    [6] (a) Martell, A. E.; Sawyer, D. T.; Eds. Oxygen Complexes and Oxygen Activation by Transition Metals; Plenum Press: New York, 1988. (b) Klotz, I. M.; Kurtz, D. M. Jr.; Guest Eds. Metal Dioxygen Complexes. Chem. Rev. 1994, 94, 3.
    [7] Comprehensive Inorganic Chemistry; Bailax, J . C., Jr.; Emeleus, H. J.; Nyholm, R.; Tratman-Dickenson, A. F., Eds.; Pergamon Press: Oxford, 1973: Vols. 4 and 5.
    [8] (a) Evans, W. J.; Grate, J. W.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 405. (b) Evans, W. J.; Davis, B. L.; Nyce, G. W.; Perotti, J. M.; Ziller, J. W. J. Organomet. Chem. 2003, 677, 89. (c) Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1998, 120, 9273.
    [9] Zhang, X. W.; Loppnow, G. R.; McDonald, R.; Takats, J. J. Am. Chem. Soc. 1995, 117, 7828.
    [10] Bradley, D. C.; Ghotra, J. S.; Hart, F. A.; Hursthouse, M. B.; Reithby, P. R. J. Chem. Soc., Dalton Trans. 1977, 1166.
    [11] Deng, D.; Zhang, Y.; Dai, C.; Zeng, H.; Ye, C.; Hage, R. Inorg. Chim. Acta 2000, 310, 51.
    [12] Niemeyer, M. Z. Anorg. Allg. Chem. 2002, 628, 647.
    [13] Cui, D.; Tang, T.; Cheng, J.; Hu, N.; Chen, W.; Huang, B. J. Organomet. Chem. 2002, 650, 84.
    [14] Patroniak, V.; Kubicki, M.; Mondry, A.; Lisowski, J.; Radecka-Paryzek, W. Dalton Trans. 2004, 3295.
    [15] Zhang, X.; Loppnow, G.; McDonald, R.; Takats, J. J. Am. Chem. Soc. 1995, 117, 7828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700