结晶性及功能化二氧化碳基高分子材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳(CO2)问题日益受到各国的重视,关注焦点已经从单纯的捕集和填埋转向碳氧资源的综合利用,其中CO2作为碳源参与高聚物的构筑已经成为高分子学科的重要研究领域。其中由CO2和环氧烷烃共聚生成聚碳酸酯(CO2共聚物)这一绿色聚合反应最具潜力。尽管在前期研究工作的带动下,CO2共聚物的工业化已经具备一定基础,但却受制于材料性能、品种单一等问题,发展十分缓慢,主要原因在于CO2共聚物非晶且玻璃化转变温度较低,导致高温强度迅速变差等。
     基于上述瓶颈问题,本论文的研究工作致力于设计合成具有结晶能力的二氧化碳基高分子材料;同时拓展环氧烷烃底物范围,将现代医药和树脂工业中广泛应用的环氧苯乙烷(SO)和环氧氯丙烷(ECH)等含吸电子基团的环氧烷烃用于CO2共聚物构筑以制备功能化的二氧化碳基高分子材料。
     1设计合成了非对称手性四齿席夫碱钴配合物与氯化双(三苯基正膦基)亚铵(PPNCl)组成二元催化体系,用于CO2和环氧环己烷(CHO)的不对称交替共聚反应,100%选择性生成聚碳酸酯。该聚合产物中碳酸酯单元含量高于99%,呈现出完美的交替共聚结构。证明了手性环氧丙烷(PO)与CHO的竞争配位可有效促进CHO的对映选择性开环。在此基础上,利用手性的2-甲基四氢呋喃作为竞争配位手性源,得到了全同立构规整度为98%的聚碳酸环己烯酯(PCHC),为迄今报道的最高值。
     2研究了具有高立构规整度PCHC的结晶行为和结晶形态。广角X射线衍射表明单一光学纯度的PCHC在20=12.2,17.9,19.0和20.4°有强衍射峰出现,属于典型的半结晶性高分子材料,熔点(Tm)为216℃。结晶形态研究表明,单一光学纯度PCHC的球晶以逆时针方向生长,(R)-PCHC的球晶以顺时针方向生长。(S)-PCHC和(R)-PCHC通过等量共混,在20=8.6,17.9和21.5°出现新的强衍射峰,形成了立构复合结构,球晶为板条状的晶态形貌,并表现出了更强的抗热形变能力(Tm=230℃)。这是自1969年CO2和环氧烷烃的交替共聚反应被报道以来首次制备出的具有结晶性能的二氧化碳基高分子材料。
     3利用基于SalenCo(III)配合物的双组分催化剂,详细研究了含吸电子性基团环氧苯乙烷(SO)/C02的共聚反应和PO/CO2的共聚反应中催化活性、区域及立体选择性的不同。在此基础上,通过改进催化剂结构、优化反应条件,提出了高效SO/CO2聚合催化体系的设计原则,得到了高产物选择性、完全交替结构的聚碳酸苯乙烯酯。凝胶渗透色谱(GPC)结果表明SO/CO2的交替共聚呈现良好的活性聚合特征。合成了系列寡聚二元碳酸苯乙烯酯模式化合物,完成了聚碳酸苯乙烯酯的微结构(头头、头尾和尾尾结构单元)的碳核磁指认。以手性SO为反应底物,利用具有多手性因素的钴配合物得到了立构规整度达96%的聚碳酸苯乙烯酯。进一步拓宽催化体系的适用性,将官能团化的对氯苯乙烯环氧化物与C02进行立体选择性交替共聚反应,制备了具有氯官能团、光学活性的功能化C02共聚物。该聚合物的玻璃化转变温度(Tg)和热分解温度(T50)分别为92℃和310℃,具有较高的热稳定性。开展了对CO2、so和PO或CHO的三元调聚合研究。利用Fineman-Ross方程详细考察了不同反应单体的竞聚率,成功制备了碳酸苯乙烯酯和碳酸环己烯酯两种碳酸酯单元交替为主的三元共聚物。
     4考察环氧氯丙烷(ECH)与C02交替共聚反应的聚合特征。通过比较ECH/CO2与PO/CO2共聚反应在产物选择性、催化活性等方面的不同,优化出催化剂结构及反应条件,第一次得到了完全呈交替结构的ECH/CO2共聚物。动力学研究表明,ECH/CO2共聚反应中聚碳酸酯和环状碳酸酯之间较小的活化能差(45.4kJ/mol),是形成大量环状副产物的根本原因。以位阻性有机强碱7-甲基-1,5,7-三氮双环[4.4.0]癸-5-烯(MTBD)作为助催化剂,利用飞行时间质谱对聚合反应进行了原位跟踪监测,直接观察到了聚合反应的链引发及增长过程。在此基础上,结合反应过程中关键中间体的捕捉及单晶结构分析,提出了ECH/CO2交替共聚反应可能的机理。同时,研究了该单体与CO2的区域及立体选择性共聚合,并以手性的ECH为反应底物,利用席夫碱配体苯环3位上具有大位阻取代基的双功能催化剂,制备了立构规整度97%的ECH/CO2交替共聚物。广角X射线衍射及热分析结果表明高立构规整性的交替共聚物具有良好的结晶性能,聚合物的结晶温度为108℃。
CO2emission has aroused great attention in the world, and the focus of this issue has switched from simple CO2capture and landfill to its comprehensive utilization. CO2as starting material for building macromolecular polymers has become an important research field of polymer science. The coupling of epoxide and CO2to produce the biodegradable polycarbonate (CO2-based copolymer) has been regarded as the most promising green polymerization process. Although the commercialization of CO2-based copolymer has already obtained certain progress in recent years, the further development of this green technology is suffering from material performance as well as product type etc. One of the main problems is that all these previously reported CO2copolymers are amorphous and have low glass transition temperatures, which make the strength sharply decrease at enhanced temperatures. In terms of the above bottle-neck problems, in this dissertation, we made an effort to synthesize crystalline CO2-based copolymer. Moreover, we tried to produce functional CO2-based polymers from epoxides with electro-withdrawing groups, such as styrene oxide (SO) and epichlorohydrin (ECH) used in resin industry.
     1. Binary catalyst systems consisted of unsymmetric enantiopure salenCo(III) complexes and bis(triphenylphosphine)iminium chloride (PPNCl) were developed for the asymmetric alternating copolymerization of CO2and cyclohexene oxide, affording poly(cyclohexene carbonate)s with100%selectivity. The resultant copolymers have more than99%carbonate linkages, indicating the perfect alternating nature. It was found that the competition coordination of (S)-propylene oxide significantly improved the enantioselectivity regarding (S,S)-salenCo(Ⅲ) catalyst systems. With (S)-2-methyltetrahydrofuran as a chiral induction agent, the stereoregularity of the resultant poly(cyclohexene carbonate)(PCHC) is up to98%, the highest record in this asymmetric polymerization catalysis.
     2. The crystallization behavior of highly stereoregualr PCHC was studied by wide angle X-ray diffraction (WAXD) and atomic force microscopy (AFM). According to the strong diffraction peaks2θ at12.2,17.9,19.0,20.4°. the highly stereoregular PCHC is a typical semi-crystalline thermoplastic, possessing a high Tm of216℃. Crystallization shape observations show that the spherulitic morphology of (R)-PCHC grows in a clockwise spiral from a centre, while that of (S)-PCHC is counterclockwise spiral. Also, it is demonstrated the formation of stereocomplex from the blend of equivalent (R)-PCHC and (S)-PCHC with new strong diffraction peaks2θ=8.6,17.9,21.5°. Unlike its parent polymers, the PCHC stereocomplex presents lath-like dendritic crystal and better thermal deformation ability (Tm= 230℃). This is the first example of crystalline CO2-based polymer since the CO2/epoxide copolymeriztation was first reported in1969.
     3. Detailed study on the difference in reactivity between styrene oxide (SO) versus PO during the copolymerization with CO2has been conducted, with a focus on the catalytic reactivity, regio-and stereo-selectivity. Furthermore, the alternating copolymerization of CO2and SO to afford the corresponding polycarbonate with more than99%carbonate linkages was achieved with the use of the optimized catalyst systems. A living polymerization process was observed in the CO2/SO copolymrization on the basis of gel permeation chromatography (GPC). In order to assign carbonate signals of poly(styrene carbonate) microstructure, various model compounds to simulate three carbonate linkages of this CO2copolymer, including head-to-head, head-to-tail and tail-to-tail linkages, were synthesized. The highest regioselective ring-opening with96%configuration retention was obtained. Additionally, the reactivity of SO derivatives in the copolymerization with CO2was also tested. The CO2copolymer from4-cholro styrene oxide exhibits excellent thermal stability with a thermolysis temperature up to310℃and a high glass-transition temperature of92℃. The Fineman-Ross plots were performed to determining the monomer reactivity ratios in the CO2/SO/PO and CO2/SO/CHO terpolymerizations. The reactivity ratios indicate that it is favorable to alternating structure of the two different carbonates units, rather than homo-carbonate linkages in the CO2/SO/CHO terpolymers.
     4. On the basis of the copolymerization of SO/CO2, a systematic comparation of the difference in reactivity between epichlorohydrin (ECH) versus PO during the copolymerization with CO2has been well conducted. The alternating copolymerization of CO2and ECH to afford the corresponding polycarbonate with more than99%carbonate linkages was first achieved with the use of the optimized catalyst systems. Comparative kinetic measurements were performed as a function of reaction temperature to assess the activation barrier for production of cyclic carbonates and polycarbonates for the ECH/CO2and PO/CO2coupling systems. The relative small energy difference (45.4kJ/mol) for the ECH/CO2process accounts for the large quantity of cyclic carbonate produced compared with PO/CO2process. Electrospray ionization mass spectrometry (ESI-MS) in combination with single crystal structures of key intermediates can provide a straightforward approach to insight into the details of the copolymerization of CO2and ECH, regarding sterically hindered organic base7-methyl-1.5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). A complex with the bulky groups on the3position has been developed for the highly selective copolymerization of CO2/ECH. The highest regioselective ring-opening with97%configuration retention at methine carbon was obtained. Wide angle X-ray diffraction and differencial scanning calorimeter show the stereospecific polymers exhibit good crystallizability with high melting boint at108℃.
引文
[1]Schnell H. Chemistry and Physics of Polycarbonates [M]. John Wiley, New York,1964.
    [2]Brunelle D J. Encyclopedia of Polymer Science and Technology [M].3rd ed.; Mark H F. Ed.(John Wiley & Sons, Inc., New York,2004.
    [3]Bostick E E. In Handbook of Polycarbonate Science and Technology [M]. LeGrand D G, Bendler J T. Eds.; Marcel Dekker:New York,2000.
    [4]Brunelle D J, Smigelski P M, Boden E P. in Advances in Polycarbonates:Evolution of Polycarbonate Process Technologies [M]. American Chemical Society:Washington, DC,2005.
    [5]Vom Saal F S, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment [J]. Environ Health Perspect.,2005,113:926-933.
    [6]Tsai W T. Human health risk on environmental exposure to Bisphenol-A [J]. J. Environ. Sci. Health Part C.2006,24:225-255.
    [7]Markey C M, Wadia P R, Rubin B S, Sonnenschein C, Soto A M. Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract [J]. Biol. Reprod.,2005, 72:1344-1351.
    [8]Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Polym. Lett.,1969,7:287-292.
    [9]Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide with organometallic compounds [J]. Makromol. Chem.,1969,130:210-220.
    [10]Darensbourg D J, Mackiewicz R M, Phelps A L, et al. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes [J]. Acc. Chem. Res.,2004,37:836-844.
    [II]Sugimoto H, Inoue S. Copolymerization of carbon dioxide and epoxide [J]. J. Polym. Sci., Part A: Polym. Chem.,2004,42:5561-5573.
    [12]Lu X B, Darensbourg D J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates [J]. Chem. Soc. Rev.,2012, DOI:10.1039/C1CS15142H.
    [13]Darensbourg D J. Making plastics from carbon dioxide:Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2 [J]. Chem. Rev.,2007,107:2388-2410.
    [14]Coates G W. Moore D R. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides:discovery, reactivty, optimization, and mechanism [J]. Angew. Chem. Int. Ed.,2004,43: 6618-6639.
    [15]Chisholm M H, Zhou Z. Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate) [J]. J. Am. Chem. Soc.,2004,126:11030-11039.
    [16]Darensbourg D J, Yarbrough J C, Ortiz C, Fang C C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production [J]. J. Am. Chem. Soc.,2003,125:7586-7591.
    [17]Coates G W. Precise control of polyolfin stereochemistry using single-site metal catalyst [J]. Chem. Rev.,2000,100:1223-1252.
    [18]Kobayashi M, Inoue S, Tsurta T. Diethylzinc-dihydric phenol system as catalyst for the copolymerization of carbon dioxide with propylene oxide [J]. Macromolecules,1971,4:658-659.
    [19]Kobayash M, Inoue S, Tsuruta T. Copolymerization of carbon dioxide and epoxide by the dialkylzinc-carboxylic acid system [J]. J. Polym. Sci., Part A:Polym. Chem.,1973,11:2383-2385.
    [20]Soga K, Imai E, Hattori I. Alternating copolymerization of carbon dioxide and propylene oxide with the catalysts prepared from zinc hydroxide and various dicarboxylic acids [J]. Polym. J.,1981.13: 407-410.
    [21]Chen S, Qi G R, Hua Z J, et al. Double metal cyanide complex based on Zn3[Co(CN)6]2 as highly active catalyst for copolymerization of carbon dioxide and cyclohexene oxide [J]. J. Polym. Sci., Part A:Polym. Chem.,2004,42:5284-5291.
    [22]Tao Y H, Wang X H, Chen X S, et al. Regio-regular structure high molecular weight poly(propylene carbonate) by rare earth ternary catalyst and lewis base cocatalyst [J]. J. Polym. Sci., Part A:Polym. Chem.,2008,46:4451-4458.
    [23]Takeda N, Inoue S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins [J]. Makromol. Chem.,1978,179:1377-1381.
    [24]Darensbourg D J, Fitch S B. Copolymerization of epoxides and carbon dioxide. Evidence supporting the lack of dual catalysis at a single metal site [J]. Inorganic Chemistry,2009,48:8668-8677.
    [25]Darensbourg D J, Holtcamp M W. Catalytic activity of zinc(Ⅱ) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide [J]. Macromolecules,1995,28:7577-7579.
    [26]Cheng M, Lobkovsky E B, Coates G W, et al. Catalytic reactions involving C1 feedstocks:New highly-activity Zn(Ⅱ)-based catalysts for the alternating copolymerization of carbon dioxide and epoxide [J]. J. Am. Chem. Soc.,1998,120:11018-11019.
    [27]Lee B Y, Kwon H Y, Lee S Y, et al. Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization [J]. J. Am. Chem. Soc.,2005,127:3031-3037.
    [28]Xiao Y L, Wang Z, Ding K L. Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts [J]. Chem. Eur. J.,2005,11:3668-3678.
    [29]Kember M R, Knight P D, Reung P T R, Williams C K. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure [J]. Angew. Chem., Int. Edit.,2009,48:931-933.
    [30]Cui D M, Nishiura M, Hou Z M. Alternating copolymerization of cyclohexene oxide and carbon dioxide catalyzed by organo rare earth metal complexes [J]. Macromolecules,2005,38:4089-4095.
    [31]Tokunaga M, Larrow J F, Kakiuchi F, et al. Asymmetric catalysis with water:Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis [J]. Science,1997,277:936-938.
    [32]Darensbourg D J, Billodeaux D R. Aluminum salen complexes and tetrabutylammonium salts:a binary catalytic system for production of polycarbonates from CO2 and cyclohexene oxide [J]. lnorg. Chem..2005,44:1433-1442.
    [33]Darensbourg D J, Yarbrough J C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst [J]. J. Am. Chem. Soc.2002. 124:6335-6342.
    [34]Darensbourg D J. Mackiewicz R M. Rodgers J L, et al. (salen)Crlll catalysts for the copolymerization of carbon dioxide and epoxide:role of the initiator and cocatalyst [J]. lnorg, Chem.,2004,43: 1831-1933.
    [35]Darensbourg D J, Mackiewicz R M, Rodgers J L, et al. Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(Ⅲ) salen complexes and N-methylimidazole:effects of varying salen ligand substituents and relative cocatalyst loading [J]. Inorg, Chem.,2004,43:6024-6034.
    [36]Darensbourg D J, Rodgers J L, Mackiewicz R M, et al. Probing the mechanistic aspects of the chromium salen catalyzed carbon dioxide/epoxide copolymerization process using in situ ATR/FTIR. Catal. Today,2004,98:485-192.
    [37]Darensbourg D J, Phelps A L. Effective, selective coupling of propylene oxide and carbon dioxide to poly(propylene carbonate) using (salen)CrN3 catalysts [J]. Inorg, Chem.,2005,44:4622-4629.
    [38]Darensbourg D J, Mackiewicz R M, Billodeaux D R, et al. Pressure dependence of the carbon dioxide/cyclohexene oxide coupling reaction catalyzed by chromium salen complexes. Optimization of the comonomer-alternating enchainment pathway [J]. Organometallics,2005,24:144-148.
    [39]Darensbourg D J, Mackiewicz R M. Role of the cocatlyst in the copolymerization of CO2 and cyclohexene utilizing chromium salen complexes [J]. J. Am. Chem. Soc.,2005,127:14026-14038.
    [40]Rao D Y, Li B, Zhang R, et al. Binding of 4-(N,N-dimethylamino)pyridine to salen-and salan-Cr(Ⅲ) cations:A mechanistic understanding on the difference in their catalytic activity for CO2/epoxide copolymerization [J]. Inorg. Chem.,2009,49:2830-2836.
    [41]Li B, Wu G P, Ren W M, et al. Asymmetric, regio-and stereo-selective alternating copolymerization of CO2 nd propylene oxide catalyzed by chiral chromium Salan complexes [J]. J. Polym. Sci., Part A: Polym. Chem.,2008,46:6102-6113.
    [42]Qin Z Q, Thomas C M, Lee S, et al. Cobalt-based complexes for the copolymerization of propylene oxide and CO2:Active and selective catalysts for polycarbonate synthesis [J]. Angew. Chem. Int. Ed., 2003,42:5484-5487.
    [43]Lu X B, Wang Y. High activity, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions [J]. Angew. Chem. Int. Ed.,2004,43:3574-3577.
    [44]Lu X B, Shi L, Wang Y M, et al. Design of highly active binary catalyst systems for CO2/epoxide copolymerization:polymer selectivity, enantioselectivity, and stereochemistry control [J]. J. Am. Chem. Soc.,2006,128:1664-1674.
    [45]Nakano K, Kamada T, Nozaki K. Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(Ⅲ) complex with a piperidinium end-capping arm [J]. Angew. Chem. Int. Ed.,2006,45:7274-7277.
    [46]Nakano K, Hashimoto S, Nakamura M, et al. Stereocomplex of poly(propylene carbonate):synthesis of stereogradient poly(propylene carbonate) by regio-and enantioselective copolymerization of propylene oxide with carbon dioxide [J]. Angew. Chem. Int. Ed.,2011.123:4970-4973.
    [47]Noh E K, Na S J, S S, et al. Two components in a molecule:highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization [J]. J. Am. Chem. Soc.,2007,129:8082-8083.
    [48]S S, Min J K, Seong J E, et al. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization [J]. Angew. Chem. Int. Ed.,2008,47:7306-7309.
    [49]Ren W M. Liu Z W, Wen Y Q, et al. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(Ⅲ) catalyst [J]. J. Am. Chem. Soc.,2009,131: 11509-11518.
    [50]Ren W M. Zhang X, Liu Y, et al. Highly active, bifunctional Co(Ⅲ)-salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and terpolymerization with aliphatic epoxides [J]. Macromolecules,2010,43:1396-1402.
    [51]Koning C, Wildeson J, Parton R, et al. Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide [J]. Polymer,2001,42:3995-4004.
    [52]Thorat S. D, Phillips Paul J, Semenov V, et al. Physical properties of aliphatic polycarbonates made from CO2 and epoxides [J]. Journal of Applied Polymer Science,2003,89:1163-1176.
    [53]Huang Y H, Wang J Z, Liao B, et al. Epoxy-resins toughened by poly(propylene carbonate) [J]. J. Appl. Poly. Sci.,1997,64:2457-2465.
    [54]Wang S J, Huang Y H, Cong G M. Study on nitrile-butadiene rubber/poly(propylene carbonate) elastomer as coupling agent of poly(vinyl chloride)/poly(propylene parbonate) blends effect on mechanical-properties of blends [J]. J. Appl. Poly. Sci.,1997,63:1107-1111.
    [55]Peng S W, An Y X, Chen C, et al. Thermal degradation kinetics of uncapped and end-capped poly(propylene carbonate) [J]. Polymer Degradation and Stability,2003.80:141-147.
    [56]Pandey J K, Reddy K R, Kumar A P, et al. An overview on the degradability of polymer nanocomposites [J]. Polymer Degradation and Stability,2005,88:234-250.
    [57]Ihata O, Kayaki Y, Ikariya T. Aliphatic poly(urethane-amine)s synthesized by copolymerization of aziridines and supercritical carbon dioxide [J]. Macromolecules,2005,38:6429-6434.
    [58]Kim II, Yi M J, Lee K J, et al. Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X= F, Cl,Br,I) [J]. Catal. Today,2006,111:292-296.
    [59]Duchateau R, Van Meerendonk W J, Yajjou L, et al. Ester-functionalized polycarbonates obtained by copolymerization of ester-substituted oxiranes and carbon dioxide:A MALDI-TOF-MS analysis study [J]. Macromolecules,2006,39:7900-7908.
    [60]Inoue S. Copolymerization of carbon dioxide and epoxide:functionality of the copolymer [J]. J. Macromol. Sci., Part A:Pure Appl. Chem.,1979,13:651-664.
    [61]Byrne C M, Allen S D, Lobkovsky E B, et al. Alternating copolymerization of limonene oxide and carbon dioxide [J]. J. Am. Chem. Soc.,2004,126:11404-11405.
    [62]Zhou J, Wang W, Villarroya S, et al. Epoxy functionalised poly (ε-caprolactone):synthesis and application [J]. Chem. Commun.,2008,5806-5808.
    [63]Tan C S, Juan C C, Kuo T W. Polyethercarbonate-silica nanocomposites synthesized by copolymerization of allyl glycidyl ether with CO2 followed by sol-gel process [J]. Polymer,2004,45: 1805-1814.
    [64]Darensbourg D J, Ganguly P, Choi W. Metal salen derivatives as catalysts for the alternating copolymerization of oxetanes and carbon dioxide to afford polycarbonates [J]. Inorg. Chem.,2006,45: 3831-3833.
    [65]Darensbourg D J. Moncada A I, Choi W, et al. Mechanistic studies of the copolymerization reaction of oxetane and carbon dioxide to provide aliphatic polycarbonates catalyzed by (salen) CrX complexes [J]. J. Am. Chem. Soc.,2008,130:6523-6533.
    [66]Park D W, Mun N Y, Lee E H. et al. Performance of ionic liquid as catalyst in the copolymerization of phenyl glycidyl ether with carbon dioxide [J]. React. Kinet. Catal. Lett..2006,89,149-156.
    [67]Hu Y, Qiao L, Qin Y, et al. Synthesis and stabilization of novel aliphatic polycarbonate from renewable resource [J]. Macromolecules,2009,42:9251-9254.
    [68]Coates G W. Precise control of polyolefin stereochemistry using single-site metal catalysts [J]. Chem. Rev.,2000,100:1223-1252.
    [69]Liu B, Zhao X, Wang X, et al. Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst [J]. Polymer,2003,44:1803-1808.
    [70]Ren W M, Zhang W Z, Lu X B. Stereoregular polycarbonate synthesis:alternating copolymerization of CO2 with aliphatic terminal epoxides catalyzed by multichiral cobalt(Ⅲ) complexes [J]. Sci. China Chem.,2010,53:1646-1652.
    [71]Nozaki K, Nakano K, Hiyama T. Optically active polycarbonates:Asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide [J]. J. Am. Chem. Soc.,1999,121: 11008-11009.
    [72]Nakano K, Nozaki K, Hiyama T. Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes [J]. J. Am. Chem. Soc.,2003,125:5501-5510.
    [73]Nakano K, Hiyama T, Nozaki K. Asymmetric ampliation in asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide [J]. Chem. Commun.,2005,1871-1873.
    [74]Cheng M, Darling N A, Lobkovsky E, et al. Enantiomerically-enriched organic reagents via polymer synthesis:enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts [J]. Chem. Commun.,2000,2007-2008.
    [75]Okamoto Y, Nakano T. Asymmetric polymerization [J]. Chem. Rev.,1994,94:349-372.
    [76]Beckman E J. Making polymers from carbon dioxide [J]. Science,1999,283:746-747.
    [77]Hsiao B S. Book reviews. [J]. J. Am. Chem. Soc.,2002,124:7251-7252.
    [78]Schultz J M. in Polymer crystallization:the development of crystalline order in thermoplastic polymers [M]. Oxford Univ. Press, New York, American Chemical Society,2001.
    [79]Kim Y K, Lee S J, Ahn K H. New hybrid ligands with a trans-1,2-diaminocyclohexane backbone: competing chelation modes in palladium-catalyzed enantioselective allylic alkylation [J]. J. Org. Chem.,2000,65:7807-7813.
    [80]Nakano K, Nozaki K, Hiyama T. Spectral assignment of poly(cyclohexene oxide-alt-carbon dioxide) [J]. Macromolecules,2001,34:6325-6332.
    [81]Li B, Zhang R, Lu X B. Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes [J]. Macromolecules,2007,40:2303-2307.
    [82]Reiter G, Strobl G R, in Progress in understanding polymer crystallization [M].1st ed.; Springer-Verlag, Berlin,2007.
    [83]Oppenlander G C. Structure and properties of crystalline polymers:supramolecular structure is complex, can be controlled, and influences mechanical properties [J]. Science,1968,159:1311-1319.
    [84]Lindenmeyer P H. Crystallization and molecular folding:the properties of high polymers are very sensitive to the way molecules fold during crystallization [J]. Science,1965,147:1256-1262.
    [85]Ikada Y, Jamshidi K, Tsuji H, et al. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules,1986,20:906-907.
    [86]Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbon management: Progress, Challenges, and Opportunities [J]. Chem. Rev.,2001,101:953-996.
    [87]Blumenstein J J, Mohan R S. Whalen D L. Effects of para-substituents on the mechanisms of solvolysis of styrene oxides [J]. J. Org. Chem.,1993.58:924-932.
    [88]Lin B, Whalen D L. Stereochemistry of the Spontaneous, Acid-Catalyzed and Base-Catalyzed Hydrolyses of Styrene Oxide [J].J. Org. Chem..1994.59:1638-1641.
    [89]Allen S D. Byrne C M. Coates G W. Carbon dioxide as a renewable C1 feedstock:synthesis and characterization of polycarbonates from the alternating copolymerization of epoxides and CO2 [M]. Department of Chemistry and Chemical Biology, Cornell University, American Chemical Society, 2006.
    [90]Zou Z Q, Ji W D, Luo J X, et al. Copolymerization of carbon dioxide and styrene oxide with double metal cyanide complex [J]. Polymer Material Science and Engineering,2010,26:1-4.
    [91]Darensbourg D J, Fitch S B. An exploration of the coupling reactions of epoxides and carbon dioxide catalyzed by tetramethyltetraazaannulene chromium(Ⅲ) derivatives:formation of copolymers versus cyclic carbonates [J]. Inorganic Chemistry,2008,47:11868-11878.
    [92]Spassky N, Momtaz A, Kassamaly A, et al. Asymmetric synthesis polymerization of meso oxiranes and thiiranes [J]. Chirality,1992,4:295-299.
    [93]Lednor P W, Rol N C. Copolymerization of propene oxide with carbon dioxide:A selective incorporation of propene oxide into the polycarbonate chains, determined by 100 MHz 13C N.M.R. spectroscopy [J]. Chem. Commun.,1985,598-599.
    [94]Chisholm M H, Navarro L D, Zhou Z P. Poly(propylene carbonate)l. More about poly(propylene carbonate) formed from the copolymerization of propylene oxide and carbon dioxide employing a zinc glutarate catalyst [J]. Macromolecules,2002,35:6494-6470.
    [95]Byrnes M J, Chisholm M H, Hadad C M, et al. Regioragular and regioirrugular oligogether carbonates:A 13C{1H} NMR investigation [J]. Macromolecules,2004,37:4139-4145.
    [96]Baggett J M, Pruitt M E. Epoxy resin [P] U.S. Patent No.2,871,219,1959.
    [97]Shen Z Q, Chen X H, Zhang Y F. New catalytic systems for the fixation of carbon dioxide, Synthesis of high molecular weight epichlorohydrin/carbon dioxide copolymer with rare earth phosphonates /triisobutylaluminium systems [J]. Macromol. Chem. Phys.,1994,195:2003-2011.
    [98]Chen P. Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts [J]. Angew. Chem., Int. Ed.,2003,42:2832-2847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700