氮杂环类金属配合物及四氧化三铁纳米粒子负载多羧酸类金属配合物的生物活性及荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要分为三部分内容
     第一部分主要内容是首先对氮杂环类化合物做了简要的概述。在对DNA的生物学基础进行综述的前提下,对氮杂环类化合物及其金属配合物在生物活性(DNA结合研究、细胞毒活性研究)和光学性能方面的研究进展进行了综述。另外对四氧化三铁磁性纳米粒子在生物学、光学和催化等领域的应用研究进展进行了系统的阐述,并介绍了四氧化三铁磁性纳米粒子的制备方法。
     第二部分内容主要是以乙酰苯胺为原料,利用维尔斯迈尔一哈克反应(Vilsmeier-Haack Reaction)合成喹啉-2-氯-3-醛,然后在酸性条件下脱氯得到喹啉-2-酮-3-醛。以喹诺酮类化合物喹啉-2-酮-3-醛为前驱体经过两相混合与相关的酰肼类和胺类化合物反应,得到9个结构新颖的席夫碱配体,分别是喹啉-2-酮-3-醛硫代卡巴腙(L’),喹啉-2-酮-3-醛对羟基苯甲酰腙(L2),喹啉-2-酮-3-醛苯甲酰腙(L3),喹啉-2-酮-3-醛水杨酰腙(L4),喹啉-2-酮-3-醛3'4'-二甲基毗咯酰腙(L5),喹啉-2-酮-3-醛缩4’-氨基安替比啉(L6),喹啉-2-酮-3-醛异烟腙(L7),喹啉-2-酮-3-醛双缩乙二胺(L8),喹啉-2-酮-3-醛苯并三唑酰腙(L9),并合成了它们相关的过渡金属和稀土金属配合物,利用核磁、红外光谱、质谱、元素分析和X射线单晶衍射等手段表征了相关化合物的结构。对L1-5配体的铜过渡金属配合物,借助X射线单晶衍射证明表征了它们的结构,研究结果表明配体L2-5衍生的金属配合物中铜离子与配体的比例均为1:1,并且是相对不太多见的五配位结构,而L1衍生的铜配合物则是四配位正方形结构。酰腙的侧链羰基以烯醇化作用利用氧原子与铜离子配位,构成一个五元环和一个六元环结构,具有较好的平面结构,并有甲醇分子、水分子或者硝酸根离子参与配位,而且这些合成的铜配合物相比配体在甲醇中具有更好的溶解度。借助于紫外光谱、荧光光谱、粘度和EB-DNA竞争实验研究了它们与小牛胸腺DNA (CT-DNA)相互作用模式,实验表明这些金属配合物都能够以插入模式与CT-DNA相互作用,并且具有较大的结合常数。另外还研究了CuL1,CuL2, CuL6, ZnL6和NiL6金属配合物体外抗氧化活性(OH·和O2-),研究表明与传统的抗氧化剂甘露醇相比这些金属配合物对羟基表现了较高的体外清除作用,并且铜配合物相比锌和镍配合物具有更强的抗羟基能力,而对清除超氧自由基活性研究表明CuL1对超氧自由基具有最强的清除作用,是潜在的抗超氧试剂。研究了CuL3, CuL4和CuL5配合物对HeLa细胞和HL-60细胞的细胞毒活性,研究表明这些三个金属配合物都具有比相应配体更高的细胞毒活性。而对这些金属配合物来说,具有末端杂环基团的CuL3表现了对这两种细胞更高的体外抑制率。合成了喹啉-2-酮-3-醛缩安替比啉配体(L6)的铜、锌和镍金属配合物(CuL6, ZnL6和NiL6),借助元素分析、红外光谱和X射线单晶衍射等手段表征了这些金属配合物的结构,并系统研究了金属配合物CuL6、ZnL6和NiL6与CT-DNA的结合模式,结果表明它们能够以插入模式与DNA相互作用,配合物CuL6、ZnL6和NiL6具有较强的CT-DNA结合能力,并且CuL6相比ZnL6和NiL6具有更强的结合能力。合成了喹啉-2-酮-3-醛异烟腙(L7)配体的钐金属配合物(SmL7),研究表明稀土配合物SmL7并没有发出钐离子的特征光谱,低温磷光光谱证明了钐离子与L7配体之间的跃迁能量是不匹配的,通过进一步的化学反应将具有良好荧光敏化功能的基团邻菲罗啉(Phen)接枝到SmL7中,得到了三元配合物SmL7-phen发光材料,有趣的是SmL7-phen发出了钐离子的特征荧光,说明邻菲罗啉的引入导致了配体与钐离子之间具有合适的匹配能量跃迁,从而诱导了钐离子的特征荧光。研究了喹啉-2-酮-3-醛双缩乙二胺(L8)和喹啉-2-酮-3-醛苯并三唑酰腙(L9)的离子识别功能,研究表明L8对锌离子具有较好的荧光增强识别功能,借助单晶衍射确定了L8与锌离子之间的配位比是1:1,另外实验证明喹啉-2-酮-3-醛苯并三唑酰腙(L9)配体在水性体系中对铜离子具有优异的荧光淬灭识别作用,相比其它金属离子铜离子能够有效地淬灭配体的荧光,是一种有意义的铜离子淬灭荧光探针,X射线单晶衍射实验证明证明铜离子与L9的配位比是1:1,有趣的是铜离子与L9的配位是一种借助氮原子形成桥连结构的配位聚合结构。
     第三部分内容是借助油相法高温分解乙酰丙酮铁得到了粒径均一和分散性好的四氧化三铁(Fe304)磁性纳米粒子,借助于Fe304磁性纳米粒子表面的配体交换反应将具有良好水溶性的改性聚乙二醇结构接枝到粒子表面,得到了具有良好水溶性、分散性和生物相容性的Fe304磁性纳米粒子,然后通过化学反应将修饰天线基团(4-甲基-7-氨基香豆素,AMC)后的二乙三胺五乙酸稀土(Eu3+和Gd3+)配合物偶联到修饰后的Fe304磁性纳米粒子表面,得到了良好发光性能和强弛豫性能的多功能磁性材料,研究了Fe304磁性纳米粒子偶联发光铕稀土配合物的细胞荧光标记功能,并对其进行了细胞毒性实验,结果表明这种磁性荧光材料能够很好的渗透进细胞内部,具有良好的细胞标记功能,细胞毒性实验证明它具有较小的细胞毒性,是一种较好的低毒细胞荧光标记试剂,而对Fe304磁性纳米粒子偶联钆稀土配合物研究了它的弛豫效率和小鼠肝部磁共振成像功能,与传统磁共振造影剂二乙三胺五乙酸钆相比,这种多功能磁性材料具有更强的T1弛豫效率,磁共振成像实验说明用这种磁性造影试剂对待的小鼠肝部表现了更强的对比度,是一种具有潜在应用价值的磁共振造影试剂。
This dissertation consists of three parts
     In the first chapter, the nitrogen heterocycle compounds are summarized briefly, On the basis of summing up the biological groundwork of Deoxyribo Nucleic Acid (DNA), introduce the advances in biological activities (DNA-binding, Cytoxic activities) and optical properties of nitrogen heterocycle compounds and their metal complexes. Additionally, develop thoroughly the study in biology、optics and catalysis field of magnetic Fe3O4nanoparticles, and introduce the preparation methods of Fe3O4nanoparticles.
     In the second chapter, acetanilid as raw material, quinoline-2-one-3-carbaldehyde is synthesized by Vilsmeier-Haack reaction and dechlorine reaction under70%acetic acid condition. Then by two phase reaction (Insoluble materials:quinoline-2-one-3-carbaldehyde and Soluble materials:hydrazine or amine derivates), nine new quinoline-2-one-3-carbaldehyde derived Schiff-base ligands are synthesized. They are quinoline-2-one-3-carbaldehyde-thiosemicarbazone (L1), quinoline-2-one-3-carbaldehyde-4'-hydroxybenzoylhydrazone (L2), quinoline-2-one-3-carbaldehyde-benzoylhydrazone (L3), quinoline-2-one-3-carbaldehyde-2'-hydroxybenzoyl-hydrazone (L4), quinoline-2-one-3-carbaldehyde-3',4'-dimethylpyrryl-2'-carboxylic acid hydrazone (L5), quinoline-2-one-3-carbaldehyde-4'-aminoantipyrine (L6), quinoline-2-one-3-carbaldehyde-isonicotinyl hydrazone (L7), quinoline-2-one-3-carbaldehyde-ethylenediamine (L8), quinoline-2-one-3-carbaldehyde-lH-benzotriazol-l-acetic acid hydrazone (L9), and their transition metal and rare earth complexes are also synthesized. The structures of the Schiff-base ligands and complexes are characterized by1H-NMR, ESI-MS, FT-IR and X-ray single crystal diffraction. X-ray single crystal diffraction demonstrate the structures of CuL2, CuL3, CuL4and CuL5are interesting five-coordinative framework, and CuL1is four-coordinative framework. All the coordination ratio between Cu(Ⅱ) and ligand are1:1. The side chain (-C=O bond) of hydrazone from ligand are enloic and the coordination of oxygen atom with Cu(Ⅱ) lead to one five ring and one six ring configuration and excellent planar structure, in the Cu(Ⅱ) complexes, there are some methanol, H2O or nitrate molecules which take part in coordination with Cu(Ⅱ)The binding modes of Cu(Ⅱ) complex with CT-DNA are investigated by Un-vis spectrum, fluorescence spectrum, viscosity experiment and EB-DNA displace experiment. The experiments demonstrate the Cu(Ⅱ) complexes can bind to CT-DNA by intercalation, and show high binding constant. In addition, the anti-oxidative activities (OH· and O2-) of CuL1, CuL2, CuL6, ZnL6and NiL6are studied by in vitro radical scavenging experiments. The data demonstrate CuL1and CuL2exhibit stronger scavenging effect than traditional anti-oxidative product mannitol. And CuL1has strongest anti-superoxide radical activities among the metal complexes. The cytoxic activities against HeLa cells and HL-60cells tests of CuL3,CuL4and CuL5demonstrate that the Cu(Ⅱ) complexes exhibit more effective cell viability than corresponding ligands. And compared with CuL3and CuL4, the Cu(II) complex CuL5, which contains terminal functional group3,4-dimethylpyrryl heterocycle, shows highest cytoxic activity. The Cu(Ⅱ), Zn(Ⅱ) and Ni(Ⅱ) complexes of L6are synthesized and their DNA binding are investigated systemically. The results show that the compounds can interact with CT-DNA by intercalation, and CuL6exhibits higher binding affinity than ZnL6and NiL6. The ligand L7and its Sm(Ⅲ) complex are prepared. The crystal structure confirmed that the complex formed a distorted bicapped square-antiprism polyhedron. Through the fluorescence investigation, SmL7shows no characteristic luminescence of samarium ion due to the unsuitable energy gap between the triplet excited state energy of ligand and the lowest excited state of samarium ion. Interestingly, after the coordinated nitrate from SmL7was substituted with1,10-phenanthrolin which is an excellent chromophore to lanthanide ion, the compounds exhibited characteristic emission of Sm(Ⅲ) ion. Last, the selective properties toward various metal ions of L8and L9are also studied. The results demonstrate that L8exhibits high selectivity and sensitivity toward Zn(Ⅱ) in CH3CN solution. The coordination ration between Zn(II) and L8is demonstrated by X-ray diffraction and exhibits1:1coordinative configuration. Additionally, the fluorescence experiments show the ligand quinoline-2-one-3-carbaldehyde-1H-benzotriazol-1-acetic acid hydrazone (L9) exhibits more excellent fluorescence quenching activity toward Cu(Ⅱ) ions comparing with other metal ions in aqueous condition. Furthermore the coordination between Cu(Ⅱ) and the organic molecule sensor fabricated an interesting ID chain coordination polymer framework (1:1) by the bridge nitrogen atom from the ligand.
     In the third chapter, uniform particle diameter and excellent dispersed superparamagnetic Fe3O4nanoparticles are synthesized by descomposing the ferric acetylacetonate under high temperature condition. Then the modified water-soluble polyethylene glycol molecules coordinate with Fe3O4NPs by ligand exchange interaction. Water-soluble, excellent dispersed and biocompatible Fe3O4NPs materials (Fe3O4NPs-DBI-PEG-NH) are prepared. According to chemical bond reaction, modified diethylenetriamine pentaacetic acid (DTPA) rare earth (Eu3+and Gd3+) complexes by decorating antenna group,7-amino-4-methyl-coumarin (AMC) conjugates with biocompatible Fe3O4NPs materials (Fe3O4NPs-DBI-PEG-NH). Multifunctional magnetic materials (Fe3O4NPs-DBI-PEG-NH-DTPA-AMC-Eu3+and Fe3O4NPs-DBI-PEG-NH-DTPA-AMC-Gd3+) are synthesized and their cell fluorescence labelling and magnetic resonance imaging properties are investigated. The experiments in vitro demonstrates that the water-soluble Fe3O4NPs-DBI-PEG-NH-DTPA-AMC-Eu3+shows good cell imaging activity. Moreover, Fe3O4NPs-DBI-PEG-NH-DTPA-AMC-Gd3+shows higher T1relaxation effect than traditional MR agent DTPA-Gd3+, and according to liver MRI in vivo, the liver organ with addition to Fe3O4NPs-DBI-PEG-NH-DTPA-AMC-Gd3+has better contrast.
引文
[1]Tang, C.W., Van, S.S.A. Organic electroluminescent diodes [J]. Appl Phys Lett.1987,51(12): 913-915.
    [2]Jiang, P., Zhu, W.Q., Gan, Z.Y., Huang, W.M., Li, J.T., Zeng H.Y., Shi, J.L. Electron transport properties of an ethanol-soluble AlQ-based coordination Polymer and its applications in OLED devices[J]. J. Mater. Chem.2009,19:4551-4556
    [3]Poopathy Kathirgamanathan, Sivagnanasundram Surendrakumar, Juan Antipan-Lara, Seenivasagam Ravichandran, VangaR. Reddy, Subramaniam Ganeshamurugan, Muttulingam Kumaraverl, Vincent Arkley, AlexanderJ. Blake and Daniel Bailey J. Mater. Chem.2011,21: 1762-1771
    [4]Artizzu, F., Mercuri, M.L., Serpe, A., Deplano, P. NIR-emissive erbium-quinolinolate complexes[J]. Coordination Chemical Reviews.2011,255(21-22):2514-2529.
    [5]Xue, L., Wang, H.H., Wang, X.J., Jiang, H. Modulating Affinities of Di-2-picolylamine (DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands[J]. Inorg. Chem.2008,47(10):4310-4318.
    [6]Wang, H.H., Xue, L., Qian, Y.Y., Jiang, H. Novel Ratiometric Fluorescent Sensor for Silver Ions. Org. Lett.2010,12(2):292-295.
    [7]Hao, E.H., Meng, T., Zhang, M., Pang, W.D., Zhou Y.Y., Jiao, L.J. Solvent Dependent Fluorescent Properties of a 1,2,3-Triazole Linked 8-Hydroxyquinoline Chemosensor:Tunable Detection from Zinc(Ⅱ) to Iron(Ⅲ) in the CH3CN/H2O System[J]. J. Phys. Chem. A.2011, 115(29):8234-8241.
    [8]Yuji Mikata, Azusa Yamanaka, Azusa Yamashita and Shigenobu Yano. Isoquinoline-Based TQEN Family as TPEN-Derived Fluorescent Zinc Sensors[J]. Inorg. Chem.2008,47(16): 7295-7301.
    [9]Mu, L.X., Shi, W.S., Chang, J.C., Lee, S.T. Silicon Nanowires-Based Fluorescence Sensor for Cu(Ⅱ)[J]. Nano Lett.2008,8(1):104-109.
    [10]Hah, S.S., Henderson, P.T., Turteltaub, K.W. Towards biomarker-dependent individualized chemotherapy:Exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry[J]. Bioorganic & Medicinal Chemistry Letters.2010, 20(8):2448-2451.
    [11]Griado. J., Dominguez, F., Medarde, M., et al. Structural Characterization, Kinetic Studies, and in Vitro Biological Activity of New cis-Diamminebis-cholylglycinate(O,O') Pt(Ⅱ) and cis-Diamminebis-ursodeoxycholate(O,O') Pt(II) Complexes [J]. Bioconjugate Chemistry. 2000,11(2):167-174.
    [12]Marzano, C., Trevisanm, A., Giovagnini, L., Fregona, D. Synthesis of a new platinum(II) complex:anticancer activity and nephrotoxicity in vitrc[J]. Toxicology in vitro.2002,16(4): 413-419.
    [13]Messori, L., Shaw, J., Camalli, M., Mura, P., Marcon, G. Structural Features of a New Dinuclear Platinum(Ⅱ) Complex with Significant Antiproliferative Activity [J]. Inorganic Chemistry.2003,42(20):6166-6168.
    [14]Efthimiadou, E., Karaliota, A., Psomas, G. Structure, antimicrobial activity and DNA-binding properties of the cobalt(II)-sparfloxacin complex[J]. Bioorganic & Medicinal Chemistry Letters.2008,18(14):4033-4037.
    [15]Psomas. G., Tarushi, A., Efthimiadou. E. Synthesis, characterization and DNA-binding of the mononuclear dioxouranium(VI) complex with ciprofloxacin[J]. Polyhedron.2008,27(1): 133-138
    [16]Tarushi, A., Raptopoulou, C.P., Sycharis, V.P., Terzis, A., Psomas, G., Kessissoglou, D.P.. Zinc(II) complexes of the second-generation quinolone antibacterial drug enrofloxacin: Structure, and DNA or albumin interaction[J]. Bioorganic & Medicinal Chemistry.2010, 18(7):2678-2685.
    [17]Efthimiadou, E.K., Karaliota, A., Psomas, G. Mononuclear metal complexes of the second-generation quinolone antibacterial agent enrofloxacin:Synthesis, structure, antibacterial activity and interaction with DNA[J]. Polyhedron.2008,27(6):1729-1738.
    [18]Efthimiadou, E.K., Psomas, G., Sanakis, Y., Katsaros, N., Karaliota, A. Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin:Synthesis, structure and bioactivity[J]. Journal of Inorganic Biochemistry.2007,101(3):525-535.
    [19]Efthimiadou, E.K., Sanakis, Y., Katsaros, N., Karaliota, A., Psomas. G. Transition metal complexes with the quinolone antibacterial agent pipemidic acid:Synthesis, characterization and biological activity[J]. Polyhedron 2007,26(5):1148-1158.
    [20]Csaszar, J., Morvay, J., Herczeg, O. Study of 5-nitro-2-furfurakle-hyde derivatives preparation spectrua and antibacterial activities of Schiff bases with sulfonamides[J]. Acta Physica Chemica.1985,31(3-4):717-722.
    [21]窦伟,刘伟生等。柔性开链席夫碱配体金属超分子配合物研究.中国博士学位论文数据库.2007,CNKI:CDMD:1.2007.116096.
    [22]谢小凤,唐辉,应敏等.席夫碱冠醚对铀酰离子萃取性能的研究[J].分析化学学报,2005(5):56-59.
    [23]Khuhawar, M.Y., Lanjwani, S.N., High-performance liquid chromatographic determination of urnium solvent extraction and bis(salicyladehyde) tetramethylenediimine as complxeing reagent[J]. Talanta.1995,42(1):925-929
    [24]魏丹毅,李冬成,姚克敏。稀土元素与-丙氨酸席夫碱双核配合物的合成、表征及催化性能[J].解放军理工大学学报[J].1998,14(2):209-214.
    [25]吕绪良,许卫东,崔传安,等.希夫碱的合成及其在热红外伪装涂料中的应用[J].解放军理工大学学报[J],2000,1(6):54-57
    [26]Wang, L., Zhu, X.J., Wong, W.Y., Guo, J.P., Wong W.K., and Li. Z.Y. Dipyrrolylquinoxaline-bridged Schiff bases:a new class of fluorescent sensors for mercury(Ⅱ) [J]. Dalton Trans. 2005,19:3235-3240.
    [27]Dong, Y., Li, J.F., Jiang, X.X., Song, F.F., Cheng, Y.X., and Zhu. C.J. Na+ Triggered Fluorescence Sensors for Mg2+ Detection Based on a Coumarin Salen Moiety[J]. Org. Lett. 2011,13(9):2252-2255.
    [28]Sahana, A., Banerjee, A., Das, S., Lohar, S., Karak, D., Sarkar, B., Mukhopadhyay, S. K., Mukherjee A. K., and Das. D. A naphthalene-based A13+ selective fluorescent sensor for living cell imaging[J]. Org. Biomol. Chem.,2011,9:5523-5529
    [29]Zhang, W., Loebach, J.L., Wilson, S.R., Jacobsen, E.N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes[J]. J. Am. Chem. Soc. 1990,112(7):2801-2803.
    [30]Jacobsen, E.N., Zhang, W., Muci, A.R., Ecker, J.R., Deng, L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane[J]. J. Am. Chem. Soc.1991, 113(18):7063-7064.
    [31]孙杨,唐宁.一种新型手性二聚Salen配体的合成.化学通报.2004,67[2011-10-4].
    [32]Tang, H.W., Ye, Y., Li, T., Zhou, J.S. and Chen, G.Q. Study on Schiff base complexes-cellular DNA interactions by a novel system of Hadamard transform fluorescence image microscopy [J]. Analyst.2003,128(7):974-979.
    [33]雷文,王建华等Schiff碱及其金属配合物的合成与生物活性研究.重庆大学硕士学位论文CNKI:CDMD:2.2003.031805
    [34]蔡丽华,胡培植等.新型席夫碱及金属配合物的合成及生物活性研究CNKI:CDMD:2.2006.035886
    [35]Dilworth, J.R., Parrott, S.J. The biomedical chemistry of technetium and rhenium[J]. Chemical Society Reviews.1998,27:43-55.
    [36]雷文,王建华。Schiff碱及其金属配合物合成与生物活性研究.中国优秀硕士学位论文全文数据库.2002,CNKI:CDMD:2.2003.031805.
    [37]杨频,高飞。生物无机化学原理.北京:科学出版社.2002.
    [38]《分子生物学》(第二版),人民卫生出版社.
    [39]Bischoff. G, Hoffmann S, DNA binding of drugs used in medicinal therapies [J] Curr Med. Chem.2002,9(3)312-348
    [40]STRYER, L著。唐有祺等译.生物化学[M].北京,北京大学出版社,1990.
    [41]靳兰,杨频,李青山。荧光法研究金属手性配合物与DNA的作用机理[J].高等学校学报.1996,17(9):1345-1348.
    [42]Palchaudhuri, R., and Hergenrother, P.J. DNA as a target for anticancer compounds:methods to determine the mode of binding and the mechanism of action[J]. Current Opinion in Biotechnology.2007,18(6):497-503.
    [43]Wilson, W.D., Li, Y., Veal, J.M. NMR Analysis of Reversible Nucleic Acid Small Molecule Complexes, in Advances in DNA Sequence Specific Agents. Hurley L. H., ed., New York: JAI Press,1992:89-165.
    [44]张蓉颖,庞代文,蔡汝秀,高等学校化学学报[J].1999,20(8):1210.
    [45]Metcalfe, C., Webb, M., and Thomas, J.A. A facile synthetic route to bimetallic Re complexes containing two dppz DNA intercalating ligands[J]. Chemical Communications.2002,44(18): 2026-2027.
    [46]谢华松,梅文杰等手型钌配合物的分子设计及其抗肿瘤活性的研究[J].中国硕士论文数据库.
    [47]张黔玲,刘剑洪,张培新,任祥忠,李翠华,洪伟良,刘建忠,计亮年。配体形状对多吡啶铜!配合物与DNA作用的影响[J].无机化学学报.2005,21,344-348.
    [48]Liu, J., Zhang, T.X., Lu, T.B., Qu, L.H., Zhou, H., Zhang, Q.L., Ji. L.N. DNA-binding and cleavage studies of macrocyclic copper(Ⅱ) complexes. Journal of Inorganic Biochemistry. 2002,91(1):269-276.
    [49]Mallena, S., Lee, M.P.H., Bailly, C., Neidle, S., Kumar, A., Boykin, D.W., Wilson. W.D. Thiophene-Based Diamidine Forms a "Super" AT Binding Minor Groove Agent[J]. J. Am. Chem. Soc.2004,126(42):13659-13669.
    [50]Tjahjono, D.H., Akutsu T. Yoshioka, et al. Cationic prophyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA [J]. Biochem. Et Biophys. Acta,1999, 1472(1-2):333-334.
    [51]Hodnett, E.M., Dunn. W.J. Cobalt derivatives of Schiff bases of alphatic amines as antitumor agents[J].J. Med. Chem.1972,15:339.
    [52]El-Asmy, A.A., El-Sonbati, A.Z., Ba-Issa, A.A., Mounir, M. Synthesis and properties of 7-formyl-8-hydroxyquinoline and its transition metal complexes[J]. Transiton Met. Chem. 1990,5:222-225.
    [53]Monnot, M., Mauffret, O., Simon, V. et al. DNA-drug recognition and ettects on topisomerase Ⅱ-mediated, a three-mode binding moded fro ellipticine derivatives[J]. J. Biol. Chem.1991, 266(33):1820-1829.
    [54]Tuite, E., Kelly, J.M., Beddard, G.D., Reid, G.S. Femtosecond Deactivation of Thionine Singlet State by Mononucleotides and Polynucleotides[J]. Chem. Phys. Lett.1994,226(5-6): 517-524.
    [55]Kumar, C.V., Turner, R.S., Asuncion, E.H. Groove binding of a styrylcyanine dye to the DNA double helix:the salt effect [J]. J. Photochem. Photobiol. A:Chem.1993,74(2-3):231-238.
    [56]Kumar, C.V., Asuncion, E.H. Sequence dependent energy tranfer from DNA to a simple artomatic chromophore [J], J. Chem. Soc. Chem. Commun.1992,6:470-472.
    [57]Kumar, C.V., Asuncion, E.H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe [J]. J. Am. Chem. Soc.1993,115(19):8547-8553.
    [58]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Neither DELTA-nor LAMBDA-tris (phenanthroline) ruthenium (Ⅱ) binds to DNA by classical intercalation. Biochemistry[J]. Biochemistry.1992,31(39):9319-9324.
    [59]Alonso, A., Almendral, M.J., Curto, Y., Criado, J.J., Rodriguez, E., Manzano, J.L., Determination of the DNA-binding characteristics of ethidium bromide, proflavine, and cisplatin by flow injection analysis:usefulness in studies on antitumor drugs[J]. Anal. Biochem.2006,355(2):157-164.
    [60]Uram, J.D., Mayer, M. Estimation of solid phase affnity constants using resistive-pulses from functionalized nanoparticles[J]. Biosensors and Bioelectronics.2007,22(7):1556-1560.
    [61]Lepecq. J.B., Paoletti. C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization[J]. J. Mol Biol.1967,27(1):87-106.
    [62]周雅琴,郭波,曹恩华等中药抗癌的实验研究.用荧光探针法研究中药与DNA的相互作用[J].北京大学学报(自然科学版).1993,29(1):125-128.
    [63]王云普,萧耀南,王荣民.水溶性高分子金属卟啉配合物的合成及其与DNA的作用的光谱研究[J].西北师范大学学报(自然科学版).2000,369(1):40-44.
    [64]潘沁,许利剑,王志飞,陆祖宏,何农跃.纳米金标记电化学检测DNA特异性结合蛋白[J].高等学校化学学报.2007,28(12):2290-2294.
    [65]Wang S.F., Peng T.Z., Li J.P. Electrochemical methods for studying the interaction of DNA with irreversible targets [J]. Acta Chim. Sinica.2000,60(2):310-316.
    [66]徐春,蔡宏,何品刚,方禹之.二茂铁标记DNA电化学探针的研制及性质研究[J].高等化学学报.2001,22(9):1492-1495.
    [67]M.S. Ibrahim. Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA[J]. Anal. Chim. Acta.2001,443:63-69
    [68]葛存旺,王南平,顾宁.DNA与5-氟尿嘧啶相互作用的电化学和谱学研究[J].化学学报.2006,64(17):1837-1842.
    [69]Ihmels, H., Faulhaber, K., Vedaldid, D., Acquaf, K., and Viola. G. Intercalation of organic dye molecules into double-stranded DNA. Part2:the annelated qunolizinium ion as a structural motif in DNA intercalators [J]. Photochem. Photobiol.2005,81(5):1107-1115.
    [70]Lu, W.Y., Lu, H., Xu, C.X., Zhang, J.B., Lu, Z.H. Spectroscopic and binding properties of berberine to DNA and its application to DNA detection [J]. Spectroscopy Lett.1998,31(6): 1287-1298.
    [71]Yang, D.Z., Strode, J.T., Spielarm, H.P. DNA interactions of two clinical camptothecin drugs stabilize their activel actone forms [J]. J. Am. Chem. Soc,1998,120(12):2979-2980.
    [72]Nunn, C.M., Garman, E., Neidle, S. Crystal Structure of the DNA Decamer d(CGCAATTGCG) Complexed with the Minor Groove Binding Drug Netropsin[J]. Biochemistry.1997,36(16):4792-4799.
    [73]黄琦,赖依峰,钟文英。帕珠沙星与DNA相互作用的光谱研究[J].中国新药杂志.2009,18(6):541-544.
    [74]Rajalakshmi, S., Weyhermuller, T., Freddy, A.J., Vasanthi, H.R., Nair, B.U. Anomalous behavior of pentacoordinate copper complexes of dimethylphenanthroline and derivatives of terpyridine ligands:Studies on DNA binding, cleavage and apoptotic activity[J]. European Journal of Medicinal Chemistry.2011,46(2):608-617.
    [75]Liao, L.B., Zhou, H.Y., Xiao, X.M. Spectroscopic and viscosity study of doxorubicin interaction with DNA[J]. Journal of Molecular Structure.2005,749(1-3):1253-1259.
    [76]吴海霞,康敬万,李志锋,董树清,苏碧泉,卢小泉.亚甲基蓝与DNA相互作用的电化学研究[J].分析测试学报.2006,25(4):1-5.
    [77]Saha, B., Islam, M.M., Paul, S., Samanta, S., Ray, S., Santra, C.R., Choudhury, S.R., Dey, B., Das, A., Ghoush, S., Mukhopadhyay, S., Kumar, G.S., Karmakar, P. DNA Binding Ability and Hydrogen Peroxide Induced Nuclease Activity of a Novel Cu(Ⅱ) Complex with Malonate as the Primary Ligand and Protonated 2-Amino-4-picoline as the Counterion[J]. J. Phys. Chem. B.2010,114(17):5851-5861
    [78]Tjioe, S.S., Hurtubise, R.J. Solid-matrix fluorescence and phosphorescence detection and characterization of benzo\[a]pyrene-DNA adducts with whatman No.1 and whatman 1PS filter paper[J]. Appl. Spectrosc.1998,52(3):414-419.
    [79]Dias-garieia, M.E., Roza-fernandez. M. Room temperature phosphorescence sensing probe for detection of DNA[J]. Proc. Sdle-Int. Soc. Opt. Eng.1995,29-36.
    [80]Guo, L.M., Dong, W.J., Tong, X.F., Dong C., Shuang, S.M. Study on spectroscopic characterization of Pd Porphyrin and its interaction with ctDNA[J]. Talanta,2006,70: 630-636.
    [81]王树玲,于俊生.表面增强拉曼光谱研究小檗碱与DNA的相互作用[J].高等学校化学学报,2002,329(9):1676-1679.
    [82]Wang Z.F., Guo X.H., Z.Q. Liu, M. Cui, F.R. Song, S.Y. Liu, Studies on alkaloids binding to GC-rich human survivin promoter DNA using positive and negative ion electrospray ionization mass spectrometry [J]. J. Mass Spectrom.2008,43:327-335.
    [83]Wu J.F., Chen L.X., Luo G.A., Liu Y.S., Wang Y.M., Jiang Z.H. Interaction study between double-stranded DNA and berberine using capillary zone electrophoresis[J]. J. Chromatogr. B 2006,833(2):158-164.
    [84]Liu, Y.C., Yang, Z.Y. Synthesis, crystal structure, antioxidation and DNA binding properties of binuclear Ho(III) complexes of Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and four aroylhydrazines[J]. Journal of Organometallic Chemistry 2009,694(19):3091-3101.
    [85]Liu, Y.C., Yang, Z.Y. Antioxidation and DNA binding properties of binuclear Nd(Ⅲ) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and four aroylhydrazides[J]. Inorganic Chemistry Communications.2009,12(8):704-706.
    [86]Liu, Y.C., Yang, Z.Y. Crystal structures, antioxidation and DNA binding properties of Dy(Ⅲ) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde and four aroylhydrazines[J]. European Journal of Medicinal Chemistry.2009,44(12):5080-5089.
    [87]Liu, Y.C., Yang, Z.Y. Crystal structures, antioxidation and DNA binding properties of Eu(Ⅲ) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and three aroylhydrazines[J]. Journal of Inorganic Biochemistry.2009,103(7):1014-1022.
    [88]Liu, Y.C., Jiang X.H., Yang, Z.Y. Fluorescent and Ultraviolet-Visible Spectroscopy Studies on the Antioxidation and DNA Binding Properties of Binuclear Tb(Ⅲ) Complexes[J]. Applied Spectroscopy.2010,64(9):980-985.
    [89]Liu, Y.C., Yang, Z.Y. Crystal structures, antioxidation and DNA binding properties of Yb(Ⅲ) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carbaldehyde and four aroylhydrazines[J]. Biometals.2009,22(5):733-751.
    [90]Liu, Y.C., Yang, Z.Y. Antioxidation and DNA-binding properties of binuclear Er(Ⅲ) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde and four aroylhydrazines[J]. Journal of Biochemistry.2010,147(3):381-391.
    [91]Wang, Y., Yang, Z.Y., Chen, Z.N. Synthesis, characterization and DNA-binding properties of four Zn(II) complexes with bis(pyrrol-2-yl-methyleneamine) ligands[J]. Bioorganic and Medicinal Chemistry Letters.2008,18(1):298-303.
    [92]Wang, Y. Yang, Z.Y., Wang, Q., Cai. Q.K., Yu. K.B. Crystal structure, antitumor activities and DNA-binding properities of the La(Ⅲ) complex with Phthalazin-1(2H)-one prepared by a novel route[J]. Journal of Organometallic Chemistry.2005,690(21-22):4557-4563.
    [93]Li, H.G., Yang, Z.Y., Wang, B.D., Wu, J.C., Synthesis, crystalstructure, antioxidation and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldhyde-(benzoyl) hydrazone[J]. Journal of Organometallic Chemistry.2010,695(3): 415-422.
    [94]Yang, Z.Y., Wang, B.D., Li, Y.H. Study on DNA-binding properties and cytotoxicity in L1210 of La(Ⅲ) complex with PMBP-isonicotinoyl hydrazone[J]. Journal of Organometallic Chemistry.2006,691(20):4159-4166.
    [95]Da Silveira, V.C., Benezra, H., Luz, J.S., Georg, R.C., Oloveira C.C., Da Costa Gerreira, A.M. Binding of oxindole-Schiff base copper(Ⅱ) complexes to DNA and its modulation by the ligand[J]. Journal of Inorganic Biochemistry.2011, DOI:10.1016/j.jinorgbio.2011.09.016.
    [96]Xue, L., Wang, H.H., Wang, X.J., Jiang, H. Modulating Affnities of Di-2-picolylamine(DPA)-Substituted Quinoline Sensors for Zinc Ions by Varying Pendant Ligands[J]. Inorganic Chemistry.2008,47(10):4310-4318.
    [97]Ravikumar, I., Ghosh, P. Zinc(II) and Ppi Selective Fluorescence OFF-ON-OFF Functionality of A Chemosensor in Physiological Conditions[J]. Inorganic Chemistry.2011,50(10): 4229-4231.
    [98]Tallec, G., Fries, P.H., Imbert, D., Mazzanti, M. High Relaxivity and Stability of a Hydroxyquinolinate-Based Tripodal Monoaquagadolinium Complex for Use as a Bimodal MRI/Optical Imaging Agent[J]. Inorganic Chemistry.2011,50(17):7943-7945.
    [99]Hoffman, C.G., Eroy-Reveles, A.A., Alvarenga, J., Mascharak, P.K. Syntheses, Structures, and Photochemistry of Manganese Nitrosyls Derived from Designed Schiff Base Ligands: Potential NO Donors That Can Be Activated by Near-Infrared Light[J]. Inorganic Chemistry. 2009,48(19):9104-9111.
    [100]Shavaleev, N.M., Scopelliti, T., Gumy, F., Bunzli, J-C.G. Modulating the Near-Infrared Luminescence of Neodymiumand Ytterbium Complexes with Tridentate Ligands Based onBenzoxazole-Substituted 8-Hydroxyquinolines[J]. Inorganic Chemistry.2009,48(17): 2908-2918.
    [101]Shavaleev, N.M., Scopelliti, T., Gumy, F., Bunzli, J-C.G. Surprisingly Bright Near-Infrared Luminescence and Short Radiative Lifetimes of Ytterbium in Hetero-Binuclear Yb-Na Chelates[J]. Inorganic Chemistry.2009,48(16):7937-7946.
    [102]Whitesides, G.M. The 'right' size in nanobiotechnolog[J]. Nat. Biotechnol.2003,21(10): 1161-1165
    [103]Sun, S.H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles[J]. Advanced Materials.2006,18(4):393-403.
    [104]Park, J., Joo, J., Kwon, S.G., Jang, Y., Hyeon, T. Synthesis of monodisperse Spherical nanocrystals[J]. Angew. Chem. Int. Ed.2007,46(25):4630-4660.
    [105]Xu, C.J., Yuang, Z.L., Kohler, N., Kim, J., Chung, M.A., Sun, SH. FePt Nanoparticles as an Fe Reservoir for Controlled Fe Release and Tumor Inhibition[J]. Journal of the American Chemical Society.2009,131(42):15346-15351.
    [106]Sun, S.H., Anders, S., Thomson, T., Baglin, J.E., Toney, M.F., Hamann, H.F., Murray, C.B., Terris, B.D. Controlled Synthesis and Assembly of FePt Nanoparticles[J]. Journal of Physcial Chemistry B.2003,107(23):5419-5425.
    [107]Walker, M., Diebel, C., Haugh, C., Pankhurst, P., Montgomery, J., Green, C. Structure and function of the vertebrate magnetic sense[J]. Nature 1997,390:371-376.
    [108]Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.X. Monodisperse Mfe2O4 (M=Fe,Co,Mn) nanoparticles[J]. Journal of the American Chemical Society.2004,126(1):273-279.
    [109]Cheon, J., Kang, N.-J., Lee, S.-M., Yoon, J.-H., Oh, S.J. Shape evolution of single-crystalline iron oxide nanocrystals[J]. Journal of the American Chemical Society. 2004,126(7):1950-1951.
    [110]Park, J., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T. Ultra-large scale synthesis of monodispersed nanocrystals[J]. Nat. Mater.2004, 3(12):891-895.
    [112]Sun, S.H., Zeng, H. Size-controlled synthesis of magnetite nanoparticles[J]. Journal of the American Chemical Society.2002,124(28):8204-8205.
    [113]Cheng, K., Peng, S., Xu, C.J., Sun, S.H. Porous hollow Fe3O4 Nanoparticles for targeted delivery and controlled release of cisplatin. Journal of the American Chemical Society.2009, 131(30):10637-10644.
    [114]Wang, B.D., Xu, C.J., Xie, J., Yang, Z.Y., Sun, S.H. pH Controlled Release of Chromone from Chromone-Fe3O4 Nanoparticles[J]. Journal of the American Chemical Society.2008, 130(44):14437-14437.
    [115]Xu, C.J., Wang, B.D., Sun, S.H. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery[J]. Journal of the American Chemical Society.2009,131(12):4216-14217.
    [116]Zhu, Y.F., Fang, Y., Kaskel, S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery[J]. Journal of Physical Chemistry C.2010,114(39): 16382-16388.
    [117]Zhang, X.F., Clime, L., Toberge, H., Normandin, F., Yahia, L.H., Sacher, E., Veres, T. pH-Triggered Doxorubicin Delivery Based on Hollow Nanoporous Silica Nanoparticles with Free-Standing Superparamagnetic Fe3O4 Cores[J]. Journal of Physical Chemistry B. 2011,115(5):1436-1443.
    [118]Guo, M., Yan, Y., Zhang, H.K., Yan, H.S., Cao, Y.J., Liu, K.L., Wan, S.R., Huang, J.S., Yue, W. Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery[J]. Journal of Materials Chemistry.2008,18:5104-5112.
    [119]Zeng, T.Q., Yang, L., Hudson, T., Song, G.H., Moores, A.R., Li, C.J. Fe3O4 Nanoparticle-Supported Copper(I) Pybox Catalyst:Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines[J]. Organic Letters,2011, 13(3):442-445.
    [120]Shi, F., Tse, M.K., Zhou, S.L., Pohl, M.M., Radnik, J.R., Bner, S.H., Hnisch, J., Ckner, A.B., Beller, M. Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe3O4[J]. Journal of the American Chemical Society.2009,131(5):1775-1779.
    [121]Wang, C., Yin, H.F., Dai, S., Sun, S.H. A general approach to noble metal-metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation[J]. Chemistry of Materials.2010,22(10):3277-3282.
    [122]Amali, A.J., Rana, R.K. Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions[J]. Green Chemistry.2009,11:1781-1786.
    [123]Zhang, Q., Su, H., Luo, J., Wei, Y.Y. A magnetic nanoparticle supported dual acid icionic liquid:a "quasi-homogeneous" catalyst for the one-pot synthesis of benzoxanthen[J]. Green Chemistry.2011, DOI:10.1039/c1gc16031a.
    [124]Karami, A., Hoseini, A.J., Eskandari, K., Ghasemi, A., Nasrabadi, H. Synthesis of xanthene derivatives by employing Fe3O4 nanoparticles as an effective and magnetically revoverable catalyst in water[J]. Catalysis Science & Technology. DOI:10.1039/clcy00289a.
    [125]Weissleder, R., and Ntziachristos, V. Shedding light onto live molecular targets[J]. Nat. Med. 2003,9(1):123-128.
    [126]Zhu, L. Y., Wu, W.W., Zhu, M.Q., Han, J.J., Hurst, J.K. and Li, A.D.Q. Reversibly Photoswitchable Dual-Color Fluorescent Nanoparticles as New Tools for Live-Cell Imaging[J]. Journal of the American Chemical Society.2007,129(12):3524-3526.
    [127]Stephens, D.J. and Allan, V.J. Light Microscopy Techniques for Live Cell Imaging[J]. Science.2003,300(5616):82-86.
    [128]Orndorff, R.L. and Rosenthal, S.J. Neurotoxin Quantum Dot Conjugates Detect Endogenous Targets Expressed in Live Cancer Cells[J]. Nano Letter.2009,9(7):2589-2599.
    [129]Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H. Quantum dot bioconjugates for imaging, labeling and sensing[J]. Nature Materials.2005,4(6):435-446.
    [130]Chang, P.V., Prescher, J.A., Hangauer, M.J., and Bertozzi, C.R. Imaging Cell Surface Glycans with Bioorthogonal Chemical Reporters[J]. Journal of the American Chemical Society.2007,129(27):8400-8401.
    [131]Gao, J.H.; Zhang, W.; Huang, P.B.; Zhang, B.; Zhang, X.X.; Xu, B. Intracellular Spatial control of fluorescent magnetic nanoparticles[J]. Journal of the American Chemical Society. 2008,130(12):3710-3711.
    [132]Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D.H., Bhattarai, N., Ellenbogen, R., Sze, Raymond, Hallahan, A., Olson, J., Zhang, M.Q. Optical and MRI multifunctional nanoprobe for targeting gliomas[J]. Nano Letters.2005,5(6):1003-1008.
    [133]Bardhan, B.R., Chen, W.X., Torres, C.P., Martels, M., Huschka, R.M., Zhao, L.L., Morosan, E., Pautler, R.G., Joshi, A., Halas, N.J. Nanoshells with targeted simultaneous enhancement of magneticand optical imaging and photothermal therapeutic response[J]. Adv. Func. Mater. 2009,19(24):3901-3909.
    [134]Xi, P.X., Cheng, K., Sun, X.L., Zeng, Z.Z., Sun, S.H. Fluorescent magnetic nanoparticles based on a ruthenium complex and Fe3O4[J]. Journal of Materials Chemistry.2011,21(31): 11464-11467.
    [135]Wang, B.D., Hai, J., Wang, Q., Li, T.R., Yang, Z.Y. Coupling of Luminescent Terbium to Fe3O4 Nanoparticles for Imaging Application[J]. Angewandte Chemie-International Edition.2011,50(13):3063-3066.
    [136]Murphy, K.J., Brunberg, J.A., Cohan, R.H. Adverse reactions to gadolinium contrast media: A review of 36 cases. Am J Roentgenol 1996,167(4):847-849.
    [137]Querol, M., Cheng, J.W., Weissleder, R., Jr, A.B. DTPA-bisamide-Based MR Sensor Agents for Peroxidase Imaging[J].2005,7(9):1719-1722.
    [138]Song, Y., Zong, H., Trivedi, E.R., Vesper, B.J., Waters, E.A., Barrett, A.G.M., Radosevich, J.A., Hoffman, B.M., Meade, T.J. Synthesis and Characterization of New Porphyrazine-Gd(III) Conjugatesas Multimodal MR Contrast Agents[J]. Bioconjugate Chemistry.2010,21(12):2267-2275.
    [139]Mohs, A.M., Wang, X.H., Goodrich, K.C., Zong, Y.D., Parker, D.L., Lu, Z.R. PEG-^-poly(GdDTPA-co-L-cystine):A Biodegradable Macromolecular Blood Pool Contrast Agent for MR Imaging[J]. Bioconjugate Chemistry.2004,15(6):1424-1430.
    [140]Lu, Z.R., Wang, X.H., Parker, D.L., Goodrich, K.C., Buswell, H.R. Poly Poly (L-glutamic acid)Gd(Ⅲ)-DOTA Conjugate with a Degradable Spacer for Magnetic Resonance Imaging[J].2003,14(4):715-719.
    [141]New, K., Jr. H.B., Brechbiel, M.W. Poly(amidoamine) Dendrimer Based MRI Contrast Agents Exhibiting Enhanced Relaxivities Derived via Metal Preligation Techniques[J]. 2010,21(6):1014-1017.
    [142]Duarte, M.G., Gil, M.H., Colet, P.J.M., Elst, L.V., Nuller, R.N., Geraldes, C.F.G.C. Synthesis, Characterization, and Relaxivity of Two Linear Gd(DTPA)- Polymer Conjugates[J].2001,12(2):170-177.
    [143]Zhang, G.D., Zhang, R., Wen, X.X., Li, C. Micelles Based on Biodegradable Poly(L-glutamicacid)-b-Polylactide with Paramagnetic Gd Ions Chelated to the Shell Layer as a Potential Nanoscale MRI-Visible Delivery System [J]. Biomacromolecules.2008,9(1): 36-42.
    [144]Wen, X.X., Jackson, E.F., Price, R.E., Kim, E.E., Wu, Q.P., Wallace, S., Charnasngavei, C., Gelovani, J.G., Li, C. Synthesis and Characterization of Poly (L-glutamicacid) Gadolinium Chelate:A New Biodegradable MRI Contrast Agent[J]. Bioconjugate Chemistry.2004, 15(6):1408-1415.
    [145]A.M. Mohs, Zong. Y.D. Guo, J.Y., Parker, D.L., Lu, Z.R. PEG-g-poly(Gd DTPA-co-L-cystine):Effect of PEG Chain Length on in Vivo Contrast Enhancement in MRI[J]. Biomacromolecules.2005,6(4):2305-2311.
    [146]Kalber, T.L., Kamaly, N., Higham, S.A., Pugh, J.A., Bunch, J., Mcleod, C.W., Miller, A.D., Bell, J.D. Synthesis and Characterization of a Theranostic Vascular Disrupting Agent for In Vivo MR Imaging[J]. Journal of Medicinal Chemistry.2011,22:879-886.
    [147]Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, K., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S., Cheon, J.W. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging[J]. Journal of the American Chemical Society.2005,127(16):5732-5733.
    [148]Hu, F.Q., Wei, L., Zhou, Z., Ran, Y.L., Li, Z., Gao, M.Y. Preparation of Bioco-mpatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer[J]. Advanced Materials.2006,18(19):2553-2556.
    [149]Yang, H.M., Park, C.W., Woo, M.A., Kim, M., Jo, Y.M., Park, H.G., Kim, J.D. HER2/neu Antibody Conjugated Poly(aminoacid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging[J]. Biomacromolecules.2010,11(11):2866-2872.
    [150]Kim, D.K., Mikhaylova, M., Wang, F.H., Kehr, J., Bjelke, B., Zhang, Y., Tsakalakos, T., Muhammed, M. Starch-Coated Superparamagnetic Nanoparticles as MR Contrast Agents[J], Chemistry Materials.2003,15(23):4343-4351.
    [151]Casula, M.F., Floris, P., Innocenti, C., Lascialfari, A., Marinone, M., Corti, M., Sperling, R.A., Parak, W.J., Sangregorio, C. Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids[J]. Chemistry of Materials.2010,22(5): 1739-1748.
    [152]F.Q. Hu, Macrenaris, K.W., Waters, E.A., Liang, T.Y., Schultz-Sikma, E.A., Eckermann, A.L., Meade, T.J. Ultrasmall, Water-Soluble Magnetite Nanoparticles with High Relaxivity for Magnetic Resonance Imaging[J]. Journal of Physical Chemistry:C.2009,113(49): 20885-20860.
    [153]Yuan, J.J., Armes, S.P., Synthesis of Biocompatible Poly[2-(methacryloyloxy)-ethylphosphorylcholine]-Coated Magnetite Nanoparticles[J]. Langmuir.2006,22(26): 10989-10993.
    [154]Liu, S.L., Jia, B., Qiao, R.R., Yang, Z., Yu, Z.L., Liu, Z.F., Liu, K., Shi, J.Y., Ouyang, H., Wang, F., Gao, M.Y. A Novel Type of Dual-Modality Molecular Probe for MR and Nuclear Imaging of Tumor:Preparation, Characterization and in Vivo Application[J]. Molecular Pharmaceutics.2009,6(4):1074-1082.
    [155]Tong, S.T., Hou, S.J., Zheng, Z.L., Zhou, J., Bao, G. Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity[J]. Nano Letters.2010, 10(11):4607-4613.
    [156]Tromsdorf, U.I., Bruns, O.T., Salmen, S.C., Berisiegel, U., Weller, H., A Highly Effective, Nontoxic TIMRContrast Agent Based on Ultrasmall PEGylated Iron Oxide Nanoparticles[J].2009,9(12):4434-4440.
    [157]Sun, C.R., Du, K., Fang, C., Bhattarai, N., Veiseh, O., Kievit, F., Stephen, Z., Lee, D.H., Ellenbogen, R.G., Ratner, B., Zhang, M.Q., PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles:Their Physicochemical Properties and Function In Vivo[J].ACS Nano.2010,4(4):2402-2410.
    [158]Xiao, L.S., Li, J.T., Brougham, D.F., Fox, E.K., Feliu, N., Bushmelev, A., Schmidt, A., Nertens, N., Kiessling, F., Valldor, M., Fadeel, B., Mathur, S. Water-Soluble SuperparamagneticMagnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging[J].2011,5(3):6315-6324.
    [159]Larsen, E.K.U., Nielsen, T., Wittenborn, T., Birkedal, H., Jensen, T.V., Jakobsen, M.H., Stergaard, L., Horsman, M.R., Besenbacher, F., Howard, K.A., Kjems, J. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors[J]. ACS Nano.2009,3(7):1947-1951.
    [160]Bae, K.H., Kim, Y.B., Lee, Y.H., Hwang, J.Y., Park, H.W., Park, T.G. Bioinspired Synthesis and Characterization of Gadolinium-Labeled T1- and T2- Weighted MagneticMagnetite Nanoparticles for Dual Contrast Resonance Imaging[J]. Bioconjugate Chemistry.2010,21(3):505-512.
    [161]郭英,李酽,刘秀琳,才华.磁性四氧化三铁纳米粒子的超声波辅助水热合成及表征[J].无机盐工业.2007,39(3):21-24。
    [162]Arturo, M., Lopcz, Q., Josc, R., Magnetic iron oxide nano particles synthesized via microcmulsions [J]. IEEE Transaxtions on Magnetics.1992,28(5):3180-3182.
    [163]Sun, S.H., Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. Journal of the American Chemical Society.2002,124(28):8204-8205.
    [164]Wong, E., Giandomenico, C.M. Current Status of Platinum-Based Antitumor Drugs[J]. Chemical Reviews.1999,99(8):2451-2466.
    [165]Hunter, R.B., Walker, W. Anticoagulant action of neodymium 3-sulpho-isonicotinate. Nature,1956,178(4523):47-47.
    [166]Albrecht, M., Osetska, O., Frohliich, R. 2-[(8-Hydroxyquinolinyl)methylene hydrazine carboxamide:expanding the coordination sphere of 8-hydroxyquinoline for coordination of rare-earth metal (Ⅲ)ions Danton Transactions.2005,23:3757-3762.
    [167]Bekhit, A.A., Dl-Sayed, O.A., Al-Allaf, T.A.K., Bboul-Enein, H.Y., Kunhi, M., Pulicat, S.M., Al-Hussain, K., Al-Lhodairey, F., Arif, J. Synthesis, characterization and cytotoxicity evaluation of some new platinum(Ⅱ) complexes of tetrazolo[1,5-a]quinolines[J]. European Journal of Medicinal Chemistry.2004,38(6):499-505.
    [168]Gao, J.H., Gu, H.W., Xu, B. Multifunctional Magnetic Nanoparticles:Design, Synthesis, and Biomedical Applications[J]. Accounts of chemical research.2009,42(89):1097-1107.
    [1]Kamal, A., Laxman, N., Ramesh, G., Neelima, K., Kondapi, A.K. Synthesis of novel non-cross-linking pyrrolobenzodiazepines with remarkable DNA binding affinity and potent antitumour activity[J]. Chemical Commnications.2001,5:437-438.
    [2]Banthia, S., Samanta, A. A two-dimensional chromogenic sensor as well as fluorescence inverter:selective detection of copper(II) in aqueous medium[J]. New Journal of Chemistry. 2005,29:1007-1010.
    [3]Baruah, H., Barry. C.G., Bierbach, U. Platinum-Intercalator Conjugates:From DNA-Targeted Cisplatin Derivatives to Adenine Binding Complexes as Potential Modulators of Gene Regulation[J]. Curr. Top. Med. Chem.2004,4(15):1537-1549.
    [4]Goswami, T.K., Roy, M., Nethaji, M., Chakravarty, A.R. Photoinduced DNA and Protein Cleavage Activity of Ferrocene-Appended L-Methionine Reduced Schiff Base Copper(II) Complexes of Phenanthroline Bases[J].2009,28(7):1992-1994.
    [5]Pellei, M., Lobbia, G.G., Santini, C., Spagna, R., Camalli, M., Fedeli, D., Falcioni, G. Synthesis, Characterization and antioxidant activity of new copper(I) complexes of scorpionate and water soluble phosphane ligands[J]. Dalton Transactions.2004,17:2822-2828.
    [6]Bonomo, R.P., Impellizzeri, G., Pappalardo, G., Purrello, R., Rizzarelli, E., Tabbi, Giovanni. Co-ordinating properties of cyclopeptides. Thermodynamic and spectroscopic study on the formation of copper(I) complexes with cyclo(Gly-His)4 and cyclo(Gly-His-Gly)2 and their superoxide dismutase-like activity[J]. Dalton Transactions.1998,0:3851-3857.
    [7]Palacios, M.A., Wang, Z., Montes, V.A., Zyryanov, G.V., Hausch, B.J., Jursikova, K., Anzenbacher Jr, P. Hydroxyquinolines with extended fluorophores:arrays for turn-on and ratiometric sensing of cations[J]. Chemical Communications.2007,36:3708-3710.
    [8]Aldakov, D., Anzebacher J, P. Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate[J]. Chemical Communications.2003,12: 1394-1395.
    [9]Seatehard, G., Ann, N.Y. The attraction of proteins for small molecules and ions[J]. Aead. Sci.1949,51:660-673.
    [10]Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B. Neither D- nor L-tris(phenanthroline) ruthenium(Ⅱ) binds to DNA by classical intercalation [J]. Biochemistry.1992,31(39): 9319-9324.
    [11]Krishna, A.G., Kumar, D.V., Khan, B.M., Rawal, S.K., Ganesh, K.N. Taxol-DNA interactions: fluorescence and CD studies of DNA groove binding properties of taxol[J]. Biochimica et Biophysica Acta.1998,1381(1):104-112.
    [12]Howe, G.M., Wu, K.C., Bauer, W.R. Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs[J]. Biochemistry.1976,19:339-347.
    [13]Suh, D., Chaires, J.B. Criteria for the mode of binding of DNA binding agents[J]. Bioorganic & Medicinal Chemistry.1998,3(6):723-728.
    [14]Wu, B.Y., Gao, L.H., Duan, Z.M., Wang, K.Z. Syntheses and DNA-binding studies of two ruthenium(II) complexes containing one ancillary ligand of bpy or phen: [Ru(bpy)(pp[2,3]p)"2](C10"4)"2 and [Ru(phen)(pp[2,3]p)"2](C10"4)"2[J]. Journal of Inorganic Biochem itry.2005,99(8):1685-1691.
    [15]Winterbourn, C.C. Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide[J].Biochemisry J.1981,198:125-131.
    [16]Winterbourn, C.C. Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals[J]. Biochemistry J.1979,182:625-628.
    [17]Sharma, S.D., Rajor, H.K., Chopra, S., Sharma, R.K. Studies on structure activity relationship of some dihydroxy-4-methylcoumarin antioxidants based on their interaction with Fe(III) and ADP[J]. BioMetals.2005,18(2):143-154.
    [18]Ak, T., Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions[J]. Chem. Bio. Inter.2008,174(1):27-37.
    [19]Singh, M.K., Chandra, A., Singh, B., Singh, R.M. Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization[J]. Tetrahedron Letters.2007,48(34): 5987-5990.
    [20]. Helms, A., Heiler, D., Mclendon, G. Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence [J]. Journal of American Chemical Society.1992,114(15):6227-6238.
    [21]Wang, Q., Wang, Y., Yang, Z.Y. Synthesis, characterization, and the antioxidative activity of 4-{[(3,4-dimethylpyrrole-2-carbonyl)hydrazono](phenyl)methyl}-3-methyl-l-phenylpyrazol-5-ol and its zinc(Ⅱ), copper(Ⅱ), nickel(Ⅱ) complexes[J]. Chem. Pharm. Bull.2008,56(7): 1018-1021.
    [22]El-Khawass, S.M., Habib, N.S. Synthesis of 1,2,4-triazole,1,2,4-triazolo [3,4-b][1,3,4] thiadiazole and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazine derivatives of benzotriazole[J]. Journal of Heterocyclic Chemistry.1989,26(1):177-181.
    [23]Monnot, M., Mauffret, O., Simon, V., et al. DNA-drug recognition and effects on topoisomerase Ⅱ-mediated, a three-mode binding model for ellipticine derivatives[J]. Journal of Biological Chemistry.1991,266(3):1820-1829.
    [24]Cantor, C., Freeman, W.H., Schimmel, P.R. Biophysical Chemistry [M]. San Francisco,1980, 2:245-250.
    [25]Berezhkovskiy, L.M., Astafieva, I.V., Cardoso, C. Analysis of peptide affinity to major histocompatibility complex proteins for the two-step binding mechanism[J]. Analytic Biochemistry.2002,308(2):239-246
    [26]Friedman, A.E., Chambron, J.C., Sauvage, J.P., Turro, N.J., Barton, J.K. A molecular light switch for DNA:Ru(bpy)2(dppz)2+[J]. Journal of American Chemical Society.1990, 112(12):4960-4962.
    [27]Xu, H., Yi, L. Zhang, P., Du, F., Zhou, B.R., Wu, J., Liu, J.H., Liu, Z.G., Ji, L.N. Biophysical studies of a ruthenium(II) polypyridyl complex binding to DNA prove that nucleic acid structure has significant effects on binding behaviors [J]. Journal of Biological Inorganic Chemistry.2005,10(5):529-538.
    [28]Wang, B.D., Yang, Z.Y., Li, T.R. Synthesis, characterization, and DNA-binding properties of the Ln(III) complexes with 6-hydroxy chromone-3-carbaidehyde(2'-hydroxy) benzoyl hydrazone[J]. Bioorganic&Medicianl Chemistry.2006,14(17):6012-6021.
    [29]Yang, Z.Y., Wang, Y. Wang, Y. Study on synthesis, structure, and DNA-binding of lanthanide complexes with 2-carboxylbenzaldiehyde thiosemicarbazone[J]. Bioorganic&Medicianl Chemistry Letters.2007,17(7):2096-2101.
    [30]Chaires, J.D., Dattagupta, N., Crothers, D.M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid:equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid[J]. Biochemistry.1982,21(17):3933-3940.
    [31]Bhat, S.S., Kumbhar, A.A., Heptullah, H., Khan, A.A., Gobre, V.V., Gejji, S.P., Puranik. V.G. Synthesis, Electronic Structure, DNA and Protein Binding, DNA Cleavage, and Anticancer Activity of Fluorohore-Labeled Copper(II) Complexes[J]. Inorganic Chemistry.2011,50(2): 545-558.
    [32]Mahadevan, S., Palaniandavar, M. Spectroscopic and Voltammetric Studies of on Copper Complexes of 2,9-Dimethyl-1,10-phenanthrolines Bound to Calf Thymus DNA[J]. Inorganic Chemistry.1998,37(4):693-700.
    [34]Bhat, S.S., Kumbhar, A.S., Lonnecke, P., Hey-Hawkins, E. Self-Association of Ruthenium(II) Polypyridyl Complexes and Their Interactions with Calf-Thymus DNA[J]. Inorganic Chemistry.2010,49(11):4843-4853.
    [35]Huang, C.H., Mong, S., Crooke, S.T. Interactions of a New Antitumor Antibiotic BBM-928A with Deoxyribonucleic Acid. Bifunctional Intercalative Binding Studied by Fluorometry and Viscometry[J].1980,19:5537-5542.
    [36]Benevides, J.M., Thomas, Jr, G.J. Local Conformational Changes Induced in B-DNA by Ethidium Intercalation[J]. Biochemistry.2005,44(8):2993-2999.
    [37]Wakelin, L.P.G., Chetcuti, P., Denny, WA. Kinetic and Equilibrium Binding Studies of Amsacrine-4-carboxamides:A Class of Asymmetrical DNA-Intercalating Agents Which Bind by Threading through the DNA Helix[J]. Journal of Medicinal Chemistry.1990,33(7): 2039-2044.
    [38]Gao, E.J., Zhu, M.C., Liu, L., Huang, Y., Wang. L., Shi, C.Y., Zhang, W.Z., Sun, Y.G. Impact of the Carbon Chain Length of Novel Palladium(II) Complexes on Interaction with DNA and Cytotoxic Activity[J].2010,49(7):3261-3270.
    [39]Ayar, A., Mercime, B. Interaction of nucleic acid bases and nucleosides with cobalt ions immobilized in a column systemProcess Biochemitry[M].2006,41(7):1553-1559.
    [40]Ihara, Y., chuda, M., Kuroda, S. Hayabara, T. Hydroxyl radical and Superoxide dismutase in patients with Parkinson's disease:Relationship to clinical data[J]. J. Neurol. Sci.1999,170: 90-95.
    [41]Ji, H.F., Zhang, H.Y. A Theoretical Study on Cu(Ⅱ) Binding Modes and Antioxidant Activity of Mammalian Normal Prion Protein[J]. Chemical Research in Toxicology.2004,17(4) 471-475.
    [42]Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q.P., Padhye, S., Sarkar, F.H. Novel Schiff Base Copper Complexes of Quinoline-2 Carboxaldehyde as Proteasome Inhibitors in Human Prostate Cancer Cells[J]. J. Med. Chem.2006,49(24) 7242-7246.
    [43]Beker, B.Y., Bakir, T., Sonmezoglu, I., Imer, F., Apak, R. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(Ⅱ)/ascorbi cacid system [J]. Chemistry and Physics of Lipids.2011,164:732-739.
    [44]Rizzo, F., Meinardi, F., Tubino, R., Pagliarin, R., Dellepiane, G., Papagni, A. Synthesis of 8-hydroxyquinoline functionalised DO3A ligand and Eu(Ⅲ) and Er(Ⅲ) complexes: Luminescence properties[J]. Synth. Met.2009,159:356.
    [45]McGehee, M.D., Bergstedt, T., Zhang, C. Narrow Bandwidth Luminescence from Blends with Energy Transfer from Semiconducting Conjugated Polymers to Europium Complexes [J]. Adv. Mater.1999,11:1349.
    [46]Liu, X.Y., Hu, Y.L., Wang, B.Y., Su, Z.X. Synthesis and fluorescent properties of europium-polymer complexes containing 1,10-phenanthroline[J]. Synth. Metals.2009, 159(15-16):1557-1562.
    [47]Vallee, B.L., Falchuk, K.H. The biochemical basis of zinc physiology [J]. Phys. Rev.1993,73: 79-118.
    [48]Frederickson, C.J., Koh, J-Y. and Bush, A.I. The neurobiology of zinc in health and disease[J]. Nat Rev Neurosci 2005,6:449-62
    [49]Lippard, S.J. and Berg, J.M. Principle of Bioinogranic Chemistry, University Science Book, CA,1994, pp.10,14,78-183
    [50]Xu, Z., Baek, K-H., Kim, H.N., Cui, J., Qian, X., Spring, D.R., Shin, I., and Yoon, J. Zn2+ Triggered Amide Tautomerization Produces a Highly Zn2+ Selective, Cell-Permeable and Ratiometric Fluorescent Sensor[J]. J. Am. Chem. Soc.2010,132(2):601-610.
    [51]Lu, X.Y., Zhu, W.H., Xie, Y.S., Li, X., Gao, Y., Li, F.Y., and Tian, H. Near-IR Core-substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effect on PET and ICT Channels[J]. Chem Eur. J.2010,16:8355-8364.
    [52]Waggoner, D.J., Bartnikas T.B. and Gitlin, J.D. he role of copper in neurodegenerative disease[J]. Neurobiol, Dis.,1999,6(4):221-230.
    [53]Seth, R., S. Yang, S., Choi, M., Sabean, M., and Roberts, E.A. In vitro assessment of copper-induced toxicity in the human hepatoma line, Hep G2[J]. Toxicol. In Vitro.2004, 18(4):501-509.
    [54]Lodeiro, C. and Pina, F. Luminescent and chromogenic molecular probes based on polyamines and related compounds[J]. Coord. Chem. Rev.,2009,253:1353-1385.
    [55]Klein, G.D., Kaufmann, S. and Reymond, J.L. A fluorescent metal sensor based on macrocyclic chelation[J]. Chem. Commun.2001,6:561-562.
    [56]Lai, C.Y., Trewyn, B.G., Jeftinija,D.M., Jeftinija, K. Xu, S., Jeftinija, S., and Lin, V.S.Y.A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules[J]. J. Am. Chem. Soc.,2003,125(15):4451-4459.
    [57]Benesi, H.A., Hildebrand, J.H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydro carbons [J]. J. Am. Chem. Soc.,1949,71:2703
    [58]Qazi, M.A., Qureshi, I. and Memon, S. A highly copper selective chromogenic calix[4]arene derivative[J]. New J. Chem.2010,34(11):2579-2586.
    [59]Qin, H.X., Ren, J.T., Wang, J.H., Wang, E.K. G-quadruplex facilitated turn-off fluorescent chemosensor for selective detection of cupric ion[J]. Chem. Commun.2010,46(39): 7385-7387.
    [1]Yang, X.Y., Chen, L., Han, B., Yang, X.L., Duan, H.Q. Preparation of magnetite and tumor dual-targeting hollow polymer microspheres with pH-sensitivity for anticancer drug-carriers[J]. Polymer,2010,51(12):2533-2539.
    [2]Chen, Y., Chen, H.R., Zeng, D.P., Tian, Y.B., Chen, F., Feng, J.W., Shi, J.L. Core/Shell structured Hollowe Mesoporous Nanocapsules:A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery[J]. ACS Nano.2010,4(10):6001-6013.
    [3]Haw, C.Y., Mohanmed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M., Lim, H.N. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents[J]. Ceramics,2010, 36(4):1417-1422.
    [4]Hu, F.Q., MacRenaris, K.W., Waters, E.A., Liang, T.Y., Schultz-Sikma, E.A., Eckermann, A.L., Meade, T.J. Ultrasmall, Water-Soluble Magnetite Nanoparticles with High Relaxivity for Magnetic Resonance Imaging[J]. Journal of Physical Chemistry.2009,113(49):20855-20860.
    [5]Song, H.T., Choi, J.S., Huh, Y.M., Kim, S.J., Jun, Y.W., Suh, J.S., Cheon, J.W. Surface Modulation of Magnetic Nanocrystals in the Development of Highly Efficient Magnetic Resonance Probes for Intracellular Labeling[J]. Journal of American Chemical Society.2005, 127(28):9992-9993.
    [6]Isabel, G., Juan, G., Nuria, G., Daniel, P., Soledad, P. Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells[J]. Bioconjugate Chemistry.2011,22(2):264-273.
    [7]Fan, H.M., Olivo, M., Shuter, B., Yi, J.B., Bhuvaneswari, R., Tan, H.R., Xing, G.C., Ng, C.T., Liu, L., Lucky, S.S., Bay, B.H., Ding, J. Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging[J]. Journal of American Chemical Society.2010,132(42):14803-14811.
    [8]Haw, C.Y., Mohanmed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M., Lim, H.N. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents[J]. Ceramics,2010, 36(4):1417-1422.
    [9]Kim, H.K., Park, J.A., Kim, K.M., Sk M, N., Kang, D.S., Lee, J.M., Chang, Y.M., Kim, T.J.0 Gd-complexes of macrocyclic DTPA conjugates of 1,1-bis(amino) ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs)[J]. Chemical Communications.2010,46: 8442-8444.
    [10]Xu, Z.C., Shen, C.M., Hou, Y.L., Gao, H.J., Sun, S.H. Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles[J]. Chemistry of Materials. 2009,21(9):1778-1780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700